首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions of chicken liver basic fatty acid-binding protein (Lb-FABP) with large unilamellar vesicles (LUVs) of palmitoyloleoyl phosphatidylcholine (POPC) and palmitoyloleoyl phosphatidylglycerol (POPG) were studied by binding assays, Fourier transform infrared (FT-IR) spectroscopy, monolayers at air-water interface, and low-angle X-ray diffraction. Lb-FABP binds to POPG LUVs at low ionic strength but not at 0.1 M NaCl. The infrared (IR) spectra of the POPG membrane-bound protein showed a decrease of the band corresponding to beta-structures as compared to the protein in solution. In addition, a cooperative decrease of the beta-edge band above 70 degrees C in solution was also evident, while the transition was less cooperative and took place at lower temperature for the POPG membrane-bound protein. Low- and wide-angle X-ray diffraction experiments with lipid multilayers indicate that binding of the protein produces a rearrangement of the membrane structure, increasing the interlamellar spacing and decreasing the compactness of the lipids.  相似文献   

2.
Chicken liver basic fatty acid binding protein (Lb-FABP) belongs to the basic-type fatty acid binding proteins, a novel group of proteins isolated from liver of different non mammalian species whose structure is not known. The structure of Lb-FABP has been solved by 1H NMR. The overall fold of Lb-FABP, common to the other proteins of the family, consists of ten antiparallel -strands organised in two nearly ortogonal -sheets with two alpha helices closing the protein cavity where small hydrophobic ligands can be bound. The binding specificity of the protein is not known, however, based on the high sequence and structural similarity with an orthologous protein, ileal lipid binding protein, it is suggested that bile acids may be the putative ligands.  相似文献   

3.
The family of the liver bile acid-binding proteins (L-BABPs), formerly called liver basic fatty acid-binding proteins (Lb-FABPs) shares fold and sequence similarity with the paralogous liver fatty acid-binding proteins (L-FABPs) but has a different stoichiometry and specificity of ligand binding. This article describes the first X-ray structure of a member of the L-BABP family, axolotl (Ambystoma mexicanum) L-BABP, bound to two different ligands: cholic and oleic acid. The protein binds one molecule of oleic acid in a position that is significantly different from that of either of the two molecules that bind to rat liver FABP. The stoichiometry of binding of cholate is of two ligands per protein molecule, as observed in chicken L-BABP. The cholate molecule that binds buried most deeply into the internal cavity overlaps well with the analogous bound to chicken L-BABP, whereas the second molecule, which interacts with the first only through hydrophobic contacts, is more external and exposed to the solvent.  相似文献   

4.
Two different groups of liver fatty acid-binding proteins (L-FABPs) are known: the mammalian type and the basic type. Very few members of this second group of L-FABPs have been characterized and studied, whereas most of the past studies were concerned with the mammalian type. The interactions of chicken liver basic fatty acid-binding protein (Lb-FABP) with 1-(13)C-enriched palmitic acid (PA) and oleic acid (OA) were investigated by (13)C NMR spectroscopy. Samples containing fatty acids (FA) and Lb-FABP at different molar ratios exhibited only a single carboxylate resonance corresponding to bound FA, and showed a binding stoichiometry of 1:1 both for PA and for OA. Fluorescence spectroscopy measurements yielded the same binding stoichiometry for the interaction with cis-parinaric acid [K(d) = 0.38(4) microM]. Competition studies between cis-parinaric acid and the natural ligands indicated a decreasing affinity of chicken Lb-FABP for PA, OA, and retinoic acid (RA). (13)C NMR proved that pH and ionic strength affect complex stability. The carboxyl signal intensity reversibly decreased upon lowering the pH up to 5. The pH dependence of the bound carboxyl chemical shift yielded an apparent pK(a) of 4.8. A decrease of the integrated intensity of the bound carboxylic signal in the NMR spectra was observed while increasing the chloride ion concentration up to 200 mM. This body of evidence indicates that the bound FA is completely ionized at pH 7.4, that its polar head is positioned in a solvent-accessible region, that a FA-protein strong ionic bond is not present, and that high ionic strength causes the release of the bound FA. The reported results show that, insofar as the number of bound ligands and its relative affinity for different FAs are concerned, chicken Lb-FABP is remarkably different from the mammalian liver FABPs, and, within its subfamily, that it is more similar to catfish Lb-FABP while it behaves quite differently from shark or axolotl Lb-FABPs.  相似文献   

5.
The 2.2-A crystal structure of chicken liver dihydrofolate reductase (EC 1.5.1.3, DHFR) has been solved as a ternary complex with NADP+ and biopterin (a poor substrate). The space group and unit cell are isomorphous with the previously reported structure of chicken liver DHFR complexed with NADPH and phenyltriazine [Volz, K. W., Matthews, D. A., Alden, R. A., Freer, S. T., Hansch, C., Kaufman, B. T., & Kraut, J. (1982) J. Biol. Chem. 257, 2528-2536]. The structure contains an ordered water molecule hydrogen-bonded to both hydroxyls of the biopterin dihydroxypropyl group as well as to O4 and N5 of the biopterin pteridine ring. This water molecule, not observed in previously determined DHFR structures, is positioned to complete a proposed route for proton transfer from the side-chain carboxylate of E30 to N5 of the pteridine ring. Protonation of N5 is believed to occur during the reduction of dihydropteridine substrates. The positions of the NADP+ nicotinamide and biopterin pteridine rings are quite similar to the nicotinamide and pteridine ring positions in the Escherichia coli DHFR.NADP+.folate complex [Bystroff, C., Oatley, S. J., & Kraut, J. (1990) Biochemistry 29, 3263-3277], suggesting that the reduction of biopterin and the reduction of folate occur via similar mechanisms, that the binding geometry of the nicotinamide and pteridine rings is conserved between DHFR species, and that the p-aminobenzoylglutamate moiety of folate is not required for correct positioning of the pteridine ring in ground-state ternary complexes. Instead, binding of the p-aminobenzoylglutamate moiety of folate may induce the side chain of residue 31 (tyrosine or phenylalanine) in vertebrate DHFRs to adopt a conformation in which the opening to the pteridine binding site is too narrow to allow the substrate to diffuse away rapidly. A reverse conformational change of residue 31 is proposed to be required for tetrahydrofolate release.  相似文献   

6.
Expression of brain fatty acid-binding protein (B-FABP) is spatially and temporally correlated with neuronal differentiation during brain development. Isothermal titration calorimetry demonstrates that recombinant human B-FABP clearly exhibits high affinity for the polyunsaturated n-3 fatty acids alpha-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, and for monounsaturated n-9 oleic acid (K(d) from 28 to 53 nm) over polyunsaturated n-6 fatty acids, linoleic acid, and arachidonic acid (K(d) from 115 to 206 nm). B-FABP has low binding affinity for saturated long chain fatty acids. The three-dimensional structure of recombinant human B-FABP in complex with oleic acid shows that the oleic acid hydrocarbon tail assumes a "U-shaped" conformation, whereas in the complex with docosahexaenoic acid the hydrocarbon tail adopts a helical conformation. A comparison of the three-dimensional structures and binding properties of human B-FABP with other homologous FABPs, indicates that the binding specificity is in part the result of nonconserved amino acid Phe(104), which interacts with double bonds present in the lipid hydrocarbon tail. In this context, analysis of the primary and tertiary structures of human B-FABP provides a rationale for its high affinity and specificity for polyunsaturated fatty acids. The expression of B-FABP in glial cells and its high affinity for docosahexaenoic acid, which is known to be an important component of neuronal membranes, points toward a role for B-FABP in supplying brain abundant fatty acids to the developing neuron.  相似文献   

7.
The conformation of basic fatty acid binding protein from chicken liver and the binding properties of the apo protein toward 11-dansylamino-undecanoic acid were investigated by CD and fluorescence spectroscopy. In one set of experiments the binding process was followed by the appearance of induced optical activity in the absorption region of the dansyl chromophore. In a second set of experiments the binding process was followed by the large enhancement of emission fluorescence of the dansyl fluorophore. From the saturation curves, the stoichiometry of the complex and the binding constant of the fatty acid to the protein were precisely determined. The values of the dissociation constant determined with the two methods were in excellent agreement: we obtained KD = (1.0 ± 0.1) · 10?6M in a 0.9 : 1 stoichiometry. The native conformation of the protein is remarkably stable in a variety of solvent systems, including acetonitrile–water, ethylene glycol–water, and dicxane–water of various compositions. The CD results also showed that the binding of the fatty acid does not induce any appreciable change in the protein conformation. In a mixture of water and 2,2,2-trifluoroethanol 1 : 9 (v/v), the native conformation collapses and a new ordered structure is formed, characterized by a high amount of α-helix. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
Wang Q  Li H  Liu S  Wang G  Wang Y 《Animal biotechnology》2005,16(2):191-201
Fatty acid-binding proteins (FABPs) are members of a superfamily of lipid-binding proteins, occurring intracellularly in invertebrates and vertebrates. This study was designed to clone and characterize the genes of heart fatty acid-binding protein and intestine fatty acid-binding protein in the chicken. PCR primers were designed according to the chicken EST sequences to amplify cDNA of H-FABP and I-FABP genes from chicken heart and intestinal tissues. Analysis of sequence showed that the cDNA of the chicken H-FABP gene is 75 to 77% homologues to human, mouse, and pig H-FABP genes, and the chicken I-FABP gene is 71 to 72% homologues to human, mouse, and pig I-FABP genes. In addition, Northern blot analysis indicated that of the two genes, similar to the copartner of the mammal, H-FABP gene was expressed in a wide variety of tissues, and I-FABP gene was expressed only in intestinal tissues. The expression levels of the chicken H-FABP mRNA in heart and I-FABP mRNA in intestine had significant differences between the broilers from fat line and Bai'er layers at six weeks of age. The results of this study provided basic molecular information for studying the role of two FABPs in the regulation of fatty acid metabolism in avian species.  相似文献   

9.
He Y  Yang X  Wang H  Estephan R  Francis F  Kodukula S  Storch J  Stark RE 《Biochemistry》2007,46(44):12543-12556
Rat liver fatty acid-binding protein (LFABP) is distinctive among intracellular lipid-binding proteins (iLBPs): more than one molecule of long-chain fatty acid and a variety of diverse ligands can be bound within its large cavity, and in vitro lipid transfer to model membranes follows a mechanism that is diffusion-controlled rather than mediated by protein-membrane collisions. Because the apoprotein has proven resistant to crystallization, nuclear magnetic resonance spectroscopy offers a unique route to functionally informative comparisons of molecular structure and dynamics for LFABP in free (apo) and liganded (holo) forms. We report herein the solution-state structures determined for apo-LFABP at pH 6.0 and for holoprotein liganded to two oleates at pH 7.0, as well as the structure of the complex including locations of the ligands. 1H, 13C, and 15N resonance assignments revealed very similar types and locations of secondary structural elements for apo- and holo-LFABP as judged from chemical shift indices. The solution-state tertiary structures of the proteins were derived with the CNS/ARIA computational protocol, using distance and angular restraints based on 1H-1H nuclear Overhauser effects (NOEs), hydrogen-bonding networks, 3J(HNHA) coupling constants, intermolecular NOEs, and residual dipolar (NH) couplings. The holo-LFABP solution-state conformation is in substantial agreement with a previously reported X-ray structure [Thompson, J., Winter, N., Terwey, D., Bratt, J., and Banaszak, L. (1997) The crystal structure of the liver fatty acid-binding protein. A complex with two bound oleates, J. Biol. Chem. 272, 7140-7150], including the typical beta-barrel capped by a helix-turn-helix portal. In the solution state, the internally bound oleate has the expected U-shaped conformation and is tethered electrostatically, but the extended portal ligand can adopt a range of conformations based on the computationally refined structures, in contrast to the single conformation observed in the crystal structure. The apo-LFABP also has a well-defined beta-barrel structural motif typical of other members of the iLBP protein family, but the portal region that is thought to facilitate ligand entry and exit exhibits conformational variability and an unusual "open cap" orientation with respect to the barrel. These structural results allow us to propose a model in which ligand binding to LFABP occurs through conformational fluctuations that adjust the helix-turn-helix motif to open or close the top of the beta-barrel, and solvent accessibility to the protein cavity favors diffusion-controlled ligand transport.  相似文献   

10.
The complete amino acid sequence of a basic (pI 9.0) fatty acid-binding protein purified from liver of Gallus domesticus was determined by automated Edman degradation of tryptic, CNBr/HFBA and Staphylococcus aureus protease peptides. The protein contains 125 amino acid residues which correspond to a molecular mass of 14094. The identification of the blocked N-terminus Ac-Ala required digestion of a SV-8 peptide with the acylamino acid-releasing enzyme prior to sequence analysis. Sequence comparison shows that chicken liver basic-FABP has a significant similarity to other proteins belonging to the superfamily of intracellular lipid molecule binding proteins. Moreover, these sequence data confirm that basic-FABP probably binds its substrate in a slightly different way when compared with other FABPs. Basic-FABP was submitted to the EMBL Data Library with an accession number of P80226  相似文献   

11.
We crystallized human liver fatty acid-binding protein (LFABP) in apo, holo, and intermediate states of palmitic acid engagement. Structural snapshots of fatty acid recognition, entry, and docking within LFABP support a heads-in mechanism for ligand entry. Apo-LFABP undergoes structural remodeling, where the first palmitate ingress creates the atomic environment for placement of the second palmitate. These new mechanistic insights will facilitate development of pharmacological agents against LFABP.  相似文献   

12.
Rat liver fatty acid-binding protein (FABP) is a 14.3-kDa cytosolic protein which binds long chain free fatty acids (ffa) and is believed to participate in intracellular movement and/or distribution of ffa. In the studies described here fluorescently labeled ffa were used to examine the physical nature of the ffa-binding site on FABP. The fluorescent analogues were 16- and 18-carbon ffa with an anthracene moiety covalently attached at eight different points along the length of the hydrocarbon chain (AOffa). Emission maxima of all FABP-bound AOffa were found to be considerably blue-shifted with respect to emission of phospholipid membrane-bound AOffa, suggesting a high degree of motional constraint for protein-bound ffa. Large fluorescence quantum yields and long excited state life-times indicate that the FABP-binding site for ffa is highly hydrophobic. Analysis of rotational correlation times for the FABP-bound AOffa suggest that the ffa are tightly bound to the protein. Variation of the quantum yield with attachment site suggests that the carboxylic acid group of the fatty acyl chain is located near the aqueous surface of the FABP. The rest of the ffa hydrocarbon chain is buried within the protein in a hydrophobic pocket and is particularly constrained at the midportion of the acyl chain.  相似文献   

13.
Mechanisms of regulation of liver fatty acid-binding protein   总被引:2,自引:0,他引:2  
Liver fatty acid-binding protein (L-FABP) expression is modulated by developmental, hormonal, dietary, and pharmacological factors. The most pronounced induction is seen after treatment with peroxisome proliferators, which induce L-FABP coordinately with microsomal cytochrome P-450 4A1 and the enzymes of peroxisomal fatty acid -oxidation. These effects of peroxisome proliferators may be mediated by a receptor which has been shown to be activated by peroxisome proliferators in mammalian cell transfection studies. However, the peroxisome proliferators tested thus far do not bind to this receptor, known as the peroxisome proliferator-activated receptor (PPAR), and its endogenous ligand(s) also remain unknown. Peroxisome proliferators inhibit mitochondrial -oxidation, and one hypothesis is that the dicarboxylic fatty acid metabolites of accumulated LCFA, formed via the P-450 4A1 -oxidation pathway, serve as primary inducers of L-FABP and peroxisomal -oxidation. We have tested this hypothesis in primary hepatocyte cultures exposed to clofibrate (CF). Inhibition of P-450 4A1 markedly diminished, via a pre-translational mechanism, the CF induction of L-FABP and peroxisomal -oxidation. In further experiments, long-chain dicarboxylic acids, the final products of the P-450 4A1 -oxidation pathway, but not LCFA, induced L-FABP and peroxisomal -oxidation pre-translationally. These results suggest a role, in part, for long-chain dicarboxylic acids in mediating the peroxisome proliferator induction of L-FABP and peroxisomal -oxidation. We also found that LCFA, which undergo rapid hepatocellular metabolism, could become inducers of L-FABP and peroxisomal -oxidation under conditions where their metabolism was inhibited. The role of the PPAR in mediating these effects is unknown, but clearly warrants further study. The induction of L-FABP and peroxisomal -oxidation by LCFA and/or their -oxidized metabolites may provide a means for limiting the deleterious effects of increased intracellular concentrations of free LCFA, and thus act as an important hepatocellular adaptation to impairment or overload of mitochondrial LCFA oxidation.  相似文献   

14.
Summary Although abundant in most biological tissues and chemically well characterized, the fatty acid-binding protein (FABP) was until recently in search of a function. Because of its strong affinity for long chain fatty acids and its cytoplasmic origin, this protein was repeatedly claimed in the literature to be the transcytoplasmic fatty acid carrier. However, techniques to visualize and quantify the movements of molecules in the cytoplasm are still in their infancy. Consequently the carrier function of FABP remains somewhat speculative. However, FABP binds not only fatty acids but also their CoA and carnitine derivatives, two typical molecules of mitochondrial origin. Moreover, it has been demonstrated and confirmed that FABP is not exclusively cytoplasmic, but also mitochondrial. A function for FABP in the mitochondrial metabolism of fatty acids plus CoA and carnitine derivatives would therefore be anticpated. Using spin-labelling techniques, we present here evidence that FABP is a powerful regulator of acylcarnitine flux entering the mitochondrial -oxidative system. In this perspective FABP appears to be an active link between the cytoplasm and the mitochondria, regulating the energy made available to the cell. This active participation of FABP is shown to be the consequence of its gradient-like distribution in the cardiac cell, and also of the coexistence of multispecies of this protein produced by self-aggregation.  相似文献   

15.
.16 +/- 0.062% of the fatty acid-binding protein purified from 50 mM N-ethylmaleimide-treated rat liver (L-FABP) was determined as a form S-thiolated by glutathione (L-FABP-SSG). L-FABP-SSG, which was prepared in vitro through thiol-disulfide exchange reaction, showed more acidic pI (approximately 5.0) than the pI (approximately 7.0) of reduced L-FABP. S-thiolation of L-FABP by glutathione decreased the affinity of the protein for unsaturated fatty acids without changing the equimolar maximum binding. The changes in Kd were from 0.63 +/- 0.054 microM to 1.03 +/- 0.14 microM for oleic acid, from 0.63 +/- 0.028 microM to 0.97 +/- 0.12 microM for linoleic acid and from 0.85 +/- 0.050 microM to 1.45 +/- 0.024 microM for arachidonic acid. This modification did not alter the affinity nor the maximum binding for saturated fatty acids, which were determined to be Kd of approximately 1.0 microM for palmitic acid and approximately 0.9 microM for stearic acids, and equimolar maximum binding for both fatty acids. The binding affinity of L-FABP for unsaturated fatty acid may be regulated by redox state of the liver.  相似文献   

16.
Although liver fatty acid-binding protein (L-FABP) is an important binding site for various hydrophobic ligands in hepatocytes, its in vivo significance is not understood. We have therefore created L-FABP null mice and report here their initial analysis, focusing on the impact of this mutation on hepatic fatty acid binding capacity, lipid composition, and expression of other lipid-binding proteins. Gel-filtered cytosol from L-FABP null liver lacked the main fatty acid binding peak in the fraction that normally comprises both L-FABP and sterol carrier protein-2 (SCP-2). The binding capacity for cis-parinaric acid was decreased >80% in this region. Molar ratios of cholesterol/cholesterol ester, cholesteryl ester/triglyceride, and cholesterol/phospholipid were 2- to 3-fold greater, reflecting up to 3-fold absolute increases in specific lipid classes in the order cholesterol > cholesterol esters > phospholipids. In contrast, the liver pool sizes of nonesterified fatty acids and triglycerides were not altered. However, hepatic deposition of a bolus of intravenously injected [14C]oleate was markedly reduced, showing altered lipid pool turnover. An increase of approximately 75% of soluble SCP-2 but little or no change of other soluble (glutathione S-transferase, albumin) and membrane (fatty acid transport protein, CD36, aspartate aminotransferase, caveolin) fatty acid transporters was measured. These results (i) provide for the first time a quantitative assessment of the contribution of L-FABP to cytosolic fatty acid binding capacity, (ii) establish L-FABP as an important determinant of hepatic lipid composition and turnover, and (iii) suggest that SCP-2 contributes to the accumulation of cholesterol in L-FABP null liver.  相似文献   

17.
The inactive 2Fe species of the Fe protein of the nitrogenase of Klebsiella pneumoniae was generated by treating oxidized Fe protein (Kp2) with MgATP and chelator. Incubation of the 2Fe species of Kp2 with the sulphurtransferase rhodanese in the presence of thiosulphate, ferric citrate and reduced lipoate reproducibly restored activity. The extent of restoration of activity depended on the molar ratio of 2Fe Kp2 to rhodanese and was time-dependent. Re-activation did not occur in the reaction mixture lacking rhodanese.  相似文献   

18.
Mouse L cell fibroblasts were transfected with cloned cDNA encoding rat liver fatty acid binding protein (L-FABP) also known as sterol carrier protein. Stable transfectant cell lines were selected and expression of L-FABP determined using Western blot analysis. The nontransfected controls and low expression cells did not differ significantly in any of the properties examined. All cell lines showed similar doubling times but cells expressing high levels of L-FABP attained 2-fold higher cell saturation density and differed significantly in their lipid metabolism as indicated by 1) higher cholesterol ester and phospholipid content, and 2) decreased sterol/phospholipid ratio. The observed changes in the lipid composition predicted a lower degree of membrane-lipid order (higher fluidity) in the plasma membranes of cells expressing high levels of L-FABP. Therefore, fluorescent molecule, 1,6-diphenyl-1,3,5-hexatriene, and multifrequency (1-250 MHz) phase and modulation fluorometry were used to probe the effect of L-FABP expression on membrane structure. Steady-state polarization and limiting anisotropy of diphenylhexatriene were significantly lower in the isolated plasma membrane vesicles from the high expression clones. The observed changes in L-cells as a result of de novo expression of L-FABP are consistent with the ability of this protein to bind sterols and fatty acids, stimulate sterol esterification, and stimulate phospholipid biosynthesis. This evidence is supportive of a physiologic role for L-FABP in modulating cellular lipid metabolism and membrane structure.  相似文献   

19.
Fatty acid-binding proteins (FABP) belong to a superfamily of lipid binding proteins that exhibit a high affinity for long chain fatty acids and appear to function in metabolism and intracellular transportation of lipids. The current study was designed to investigate the effects of heart (H)-FABP gene on chicken growth and body composition traits. The Northeast Agricultural University divergent broiler lines for abdominal fat and a broiler X silkie F2 population were used in this study. Body weight and body composition traits were measured in the populations. Primers were designed according to the chicken H-FABP gene sequence. Polymorphisms between parental lines were detected by DNA sequencing. PCR-RFLP and PCR-fragment length polymorphism methods were developed to genotype the populations. The results showed that the H-FABP gene polymorphisms in the two populations were associated with abdominal fat percentage. It implied that H-FABP gene can be a candidate locus or linked to a major gene(s) that affects abdominal fat content in the chicken.  相似文献   

20.

Background

Human serum albumin (HSA) is an abundant plasma protein that binds a wide variety of hydrophobic ligands including fatty acids, bilirubin, thyroxine and hemin. Although HSA-heme complexes do not bind oxygen reversibly, it may be possible to develop modified HSA proteins or heme groups that will confer this ability on the complex.

Results

We present here the crystal structure of a ternary HSA-hemin-myristate complex, formed at a 1:1:4 molar ratio, that contains a single hemin group bound to subdomain IB and myristate bound at six sites. The complex displays a conformation that is intermediate between defatted HSA and HSA-fatty acid complexes; this is likely to be due to low myristate occupancy in the fatty acid binding sites that drive the conformational change. The hemin group is bound within a narrow D-shaped hydrophobic cavity which usually accommodates fatty acid; the hemin propionate groups are coordinated by a triad of basic residues at the pocket entrance. The iron atom in the centre of the hemin is coordinated by Tyr161.

Conclusion

The structure of the HSA-hemin-myristate complex (PDB ID 1o9x) reveals the key polar and hydrophobic interactions that determine the hemin-binding specificity of HSA. The details of the hemin-binding environment of HSA provide a structural foundation for efforts to modify the protein and/or the heme molecule in order to engineer complexes that have favourable oxygen-binding properties.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号