首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
D Sun  P Setlow 《Journal of bacteriology》1993,175(9):2501-2506
Previous work has shown that expression of the Bacillus subtilis ans operon which codes for L-asparaginase and L-aspartase, is both increased and made insensitive to repression by NH4+ by the aspH1 mutation. In current work, the gene in which the aspH1 mutation resides has been identified and sequenced; this gene, termed ansR, is immediately upstream of, but transcribed in the opposite direction from, the ans operon. The promoter region of ansR contains -10 and -35 sequences similar to those recognized by RNA polymerase containing the major vegetative-cell sigma factor sigma A, and ansR appears to be monocistronic. The ansR gene codes for a 116-residue protein, but the aspH1 mutant allele has an additional guanine residue at codon 55, resulting in generation of a truncated polypeptide of only 58 residues. Insertional inactivation of ansR resulted in a phenotype identical to that of the aspH1 mutant. The predicted amino acid sequence of the ansR gene product (AnsR) was homologous to that of the repressor of B. subtilis prophage PBSX, and a helix-turn-helix motif, characteristic of many DNA-binding proteins, was present in the AnsR amino-terminal region. These results suggest that ansR codes for a repressor of the ans operon.  相似文献   

2.
3.
4.
5.
The lon gene of Escherichia coli encodes the ATP-dependent serine protease La and belongs to the family of sigma 32-dependent heat shock genes. In this paper, we report the cloning and characterization of the lon gene from the gram-positive bacterium Bacillus subtilis. The nucleotide sequence of the lon locus, which is localized upstream of the hemAXCDBL operon, was determined. The lon gene codes for an 87-kDa protein consisting of 774 amino acid residues. A comparison of the deduced amino acid sequence with previously described lon gene products from E. coli, Bacillus brevis, and Myxococcus xanthus revealed strong homologies among all known bacterial Lon proteins. Like the E. coli lon gene, the B. subtilis lon gene is induced by heat shock. Furthermore, the amount of lon-specific mRNA is increased after salt, ethanol, and oxidative stress as well as after treatment with puromycin. The potential promoter region does not show similarities to promoters recognized by sigma 32 of E. coli but contains sequences which resemble promoters recognized by the vegetative RNA polymerase E sigma A of B. subtilis. A second gene designated orfX is suggested to be transcribed together with lon and encodes a protein with 195 amino acid residues and a calculated molecular weight of 22,000.  相似文献   

6.
The nucleotide sequence of the rodC operon of Bacillus subtilis   总被引:10,自引:0,他引:10  
The rodC1 mutation of Bacillus subtilis is a temperature-sensitive marker which affects the levels of teichoic acid synthesis and the cellular morphology. We have determined the nucleotide sequence of the bicistronic operon which contains the rodC gene and the nucleotide sequence of the rodC1 mutant allele. The temperature-sensitive phenotype of the rodC mutant is the result of a single base-pair change. A cytosine to thymine transition in the non-coding strand results in the replacement of a serine residue in the wild-type protein with a phenylalanine residue in the mutant protein. The other gene in the operon, the rodD gene, appears to be equivalent to the gtaA gene which encodes uridine diphosphate-glucose poly-(glycerol phosphate) alpha-glucosyl transferase, an enzyme involved in techoic acid synthesis. This is the first nucleotide sequence analysis of both the wild-type and mutant alleles of a morphogene in B. subtilis.  相似文献   

7.
8.
9.
10.
11.
12.
The gene coding for an extracellular lipase of Bacillus subtilis 168 was cloned and found to be expressed in Escherichia coli. Enzyme activity measurements showed no fatty acid chain length preference. A set of Tn5 insertions which inactivate the gene were localized and used to initiate its sequencing. The nucleotide sequence was determined on two independent clones expressed in E. coli. In one of these clones, the sequence revealed a frameshift, due to the presence of an additional adenine in the N-terminal region, which caused the interruption of the open reading frame, probably allowing translation to initiate at a second ATG codon. The sequence of the wild-type lip gene from B. subtilis was confirmed on the chromosomal fragment amplified by polymerase chain reaction (PCR). When compared to other lipases sequenced to date, the enzyme described here lacks the conserved pentapeptide Gly-X-Ser-X-Gly supposed to be essential for catalysis. However, alignments of several microbial lipase sequences suggest that the pentapeptide Ala-X-Ser-X-Gly present in the lipase B. subtilis may function as the catalytic site. Homologies were found in the N-terminal protein region with lipases from different Pseudomonas species. The predicted M(r) and isoelectric point for the mature protein are 19,348 and 9.7 respectively.  相似文献   

13.
A clone bearing the structural gene sacB, coding for the exoenzyme levansucrase, was isolated from a library of Bacillus subtilis DNA that was cloned in phage lambda charon 4A on the basis of the transforming activity of the chimeric DNA. This lambda clone also was found to contain the sacR and smo loci. Subcloning the sacB-sacR region in plasmid pBR325 resulted in a clone which directed levansucrase synthesis in Escherichia coli. The nucleotide sequence coding for the secreted protein was localized on the physical map of the cloned DNA.  相似文献   

14.
15.
Bacillus subtilis pur operon expression and regulation.   总被引:7,自引:2,他引:7       下载免费PDF全文
  相似文献   

16.
17.
18.
A 10-kb region of the Bacillus subtilis genome that contains genes involved in biotin-biosynthesis was cloned and sequenced. DNA sequence analysis indicated that B. subtilis contains homologs of the Escherichia coli and Bacillus sphaericus bioA, bioB, bioD, and bioF genes. These four genes and a homolog of the B. sphaericus bioW gene are arranged in a single operon in the order bioWAFDR and are followed by two additional genes, bioI and orf2. bioI and orf2 show no similarity to any other known biotin biosynthetic genes. The bioI gene encodes a protein with similarity to cytochrome P-450s and was able to complement mutations in either bioC or bioH of E. coli. Mutations in bioI caused B. subtilis to grow poorly in the absence of biotin. The bradytroph phenotype of bioI mutants was overcome by pimelic acid, suggesting that the product of bioI functions at a step prior to pimelic acid synthesis. The B. subtilis bio operon is preceded by a putative vegetative promoter sequence and contains just downstream a region of dyad symmetry with homology to the bio regulatory region of B. sphaericus. Analysis of a bioW-lacZ translational fusion indicated that expression of the biotin operon is regulated by biotin and the B. subtilis birA gene.  相似文献   

19.
Two DNA fragments which complement the alkaline phosphatase-negative mutation phoP of Bacillus subtilis were cloned from a B. subtilis chromosome with the prophage vector phi CM (a derivative of phi 105). One of the fragments contained the regulatory gene phoR in addition to phoP. Nucleotide sequence analysis of the phoP region revealed that the phoP gene product consists of 241-amino-acid residues and that the sequence of these amino acids is extensively homologous with the sequence of the phoB gene product. This protein is the positive regulator for the phosphate regulon in Escherichia coli. It therefore appears that phoP is a regulatory gene for alkaline phosphatase synthesis in B. subtilis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号