首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural change of a phospholipid bilayer in water under the action of a shock wave is numerically studied with unsteady nonequilibrium molecular dynamics simulations. The action of shock waves is modeled by the momentum change of water molecules, and thereby we demonstrate that the resulting collapse and rebound of the bilayer are followed by the penetration of water molecules into the hydrophobic region of the bilayer. The high-speed phenomenon that occurs during the collapse and rebound of the bilayer is analyzed in detail, particularly focusing on the change of bilayer thickness, the acyl chain bend angles, the lateral fluidity of lipid molecules, and the penetration rate of water molecules. The result shows that the high-speed phenomenon can be divided into two stages: in the first stage the thickness of bilayer and the order parameter are rapidly reduced, and then in the second stage they are recovered relatively slowly. It is in the second stage that water molecules are steadily introduced into the hydrophobic region. The penetration of water molecules is enhanced by the shock wave impulse and this qualitatively agrees with a recent experimental result.  相似文献   

2.
A method is described that allows experimental \(S^2\) order parameters to be enforced as a time-averaged quantity in molecular dynamics simulations. The two parameters that characterize time-averaged restraining, the memory relaxation time and the weight of the restraining potential energy term in the potential energy function used in the simulation, are systematically investigated based on two model systems, a vector with one end restrained in space and a pentapeptide. For the latter it is shown that the backbone N–H order parameter of individual residues can be enforced such that the spatial fluctuations of quantities depending on atomic coordinates are not significantly perturbed. The applicability to realistic systems is illustrated for the B3 domain of protein G in aqueous solution.  相似文献   

3.
In conventional force fields, the electrostatic potential is represented by atom-centred point charges. This choice is in principle arbitrary, but technically convenient. Point charges can be understood as the first term of multipole expansions, which converge with an increasing number of terms towards the accurate representation of the molecular potential given by the electron density distribution. The use of multipole expansions can therefore improve the force field accuracy. Technically, the implementation of atomic multipoles is more involved than the use of point charges. Important points to consider are the orientation of the multipole moments during the trajectory, conformational dependence of the atomic moments and stability of the simulations which are discussed here.
Markus MeuwlyEmail:
  相似文献   

4.
The packing and dynamics of lipid bilayers at the phosphocholine headgroup region within the temperature range of -40 to -110 degrees C have been investigated by solid-state nuclear magnetic resonance (NMR) measurements of selectively deuterium-labeled H2O/dimyristoylphosphatidylcholine (DMPC) bilayers. Two coexisting signals with 2H NMR quadrupolar, splittings of 36.1 and 9.3 (or smaller) kHz were detected from the -CD3 of choline methyl group. These two signals have been assigned to two coexisting gel-state headgroup structures with fast rotational motion of -CD3 and -N(CD3)3 group, respectively, with a threefold symmetry. The largest quadrupolar splitting of the NMR signal detected from the -CD2 of C alpha and C beta methylene segment was found to be 115.2 kHz, which is 10% lower than its static value of 128.2 kHz. Thus, there are extensive motions of the entire choline group of gel-state phosphatidylcholine bilayers even at a subzero temperature of -110 degrees C. These results strongly support the previous suggestion (E. J. Dufourc, C. Mayer, J. Stohrer, G. Althoff, and G. Kothe, 1992, Biophys. J. 61:42-57) that 31P chemical shift tensor elements of DMPC determined under similar conditions are not the rigid static values. The free energy difference between the two gel-state headgroup structures was determined to be 26.3 +/- 0.9 kJ/mol for fully hydrated bilayers. Furthermore, two structures with similar free energy difference were also detected for "frozen" phosphorylcholine chloride solution in a control experiment, leading to the conclusion that the two structures may be governed solely by the energetics of fully hydrated phosphocholine headgroup.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The conversion of mechanical stress into a biochemical signal in a muscle cell requires a force sensor. Titin kinase, the catalytic domain of the elastic muscle protein titin, has been suggested as a candidate. Its activation requires major conformational changes resulting in the exposure of its active site. Here, force-probe molecular dynamics simulations were used to obtain insight into the tension-induced activation mechanism. We find evidence for a sequential mechanically induced opening of the catalytic site without complete domain unfolding. Our results suggest the rupture of two terminal beta-sheets as the primary unfolding steps. The low force resistance of the C-terminal relative to the N-terminal beta-sheet is attributed to their different geometry. A subsequent rearrangement of the autoinhibitory tail is seen to lead to the exposure of the active site, as is required for titin kinase activity. These results support the hypothesis of titin kinase as a force sensor.  相似文献   

6.
Schizophyllan is a beta(1-->3)-D-glucan polysaccharide with beta(1-->6)-branched lateral glucose residues that presents a very stiff triple-helical structure under most experimental conditions. Despite the remarkable stability of this structure (which persists up to 120 degrees C in aqueous solution), schizophyllan undergoes a major change of state around 7 degrees C in water that has been hypothesized to result from an order-disorder transition in the lateral residues. This hypothesis is only supported by indirect experimental evidence and detailed knowledge (at the atomic level) concerning hydrogen-bonding networks, interactions with the solvent molecules, orientational freedom of the lateral residues, and orientational correlations among them is still lacking. In this study explicit-solvent molecular dynamics simulations of a schizophyllan fragment (complemented by simulations of its tetrasaccharide monomer) are performed at three different temperatures (273 K, 350 K, and 450 K) and with two different types of boundary conditions (finite nonperiodic or infinite periodic fragment) as an attempt to provide detailed structural and dynamical information about the triple-helical conformation in solution and the mechanism of the low-temperature transition. These simulations suggest that three important driving forces for the high stability of the triple helix are i), the limited conformational work involved in its formation; ii), the formation of a dense hydrogen-bonding network at its center; and iii), the formation of interchain hydrogen bonds between main-chain and lateral glucose residues. However, these simulations evidence a moderate and continuous variation of the simulated observables upon increasing the temperature, rather than a sharp transition between the two lowest temperatures (that could be associated with the state transition). Although water-mediated hydrogen-bonded association of neighboring lateral residues is observed, this interaction is not strong enough to promote the formation of an ordered state (correlated motions of the lateral residues), even at the lowest temperature considered.  相似文献   

7.
Outer membrane proteins (OMPs) of Gram-negative bacteria have a variety of functions including passive transport, active transport, catalysis, pathogenesis and signal transduction. Whilst the structures of ∼ 25 OMPs are currently known, there is relatively little known about their dynamics in different environments. The outer membrane protein, OmpA from Escherichia coli has been studied extensively in different environments both experimentally and computationally, and thus provides an ideal test case for the study of the dynamics and environmental interactions of outer membrane proteins. We review molecular dynamics simulations of OmpA and its homologues in a variety of different environments and discuss possible mechanisms of pore gating. The transmembrane domain of E. coli OmpA shows subtle differences in dynamics and interactions between a detergent micelle and a lipid bilayer environment. Simulations of the crystallographic unit cell reveal a micelle-like network of detergent molecules interacting with the protein monomers. Simulation and modelling studies emphasise the role of an electrostatic-switch mechanism in the pore-gating mechanism. Simulation studies have been extended to comparative models of OmpA homologues from Pseudomonas aeruginosa (OprF) and Pasteurella multocida (PmOmpA), the latter model including the periplasmic C-terminal domain.  相似文献   

8.
Confinement effects can lead to drastic changes in the structural and dynamical properties of water molecules. In this work, we have performed classical molecular dynamics simulations of endohedral fullerenes of type (H2O)n@Cm (n = 1, 12, 21, 62, 108 and m = 60, 180, 240, 500 and 720) to explore the effects of spherical confinement on water properties. It is shown that these confined water molecules can form distinct solvation pattern depending upon the available space inside the fullerene cavity. For the systems with smaller diameter, cage-like structure is predominant whereas bulk-like structure is observed for larger fullerenes. The orientational relaxation of these confined water molecules showed slower relaxation as the cavity diameter increases except for the (H2O)21@C240. In this case, stable cage-like structure hinders the overall dynamics of the trapped water molecules. Finally, we have calculated the hydrogen bond lifetimes from the hydrogen bond time correlation functions and compared with that of bulk water.  相似文献   

9.
Molecular dynamics simulations of membrane proteins are making rapid progress, because of new high-resolution structures, advances in computer hardware and atomistic simulation algorithms, and the recent introduction of coarse-grained models for membranes and proteins. In addition to several large ion channel simulations, recent studies have explored how individual amino acids interact with the bilayer or snorkel/anchor to the headgroup region, and it has been possible to calculate water/membrane partition free energies. This has resulted in a view of bilayers as being adaptive rather than purely hydrophobic solvents, with important implications, for example, for interaction between lipids and arginines in the charged S4 helix of voltage-gated ion channels. However, several studies indicate that the typical current simulations fall short of exhaustive sampling, and that even simple protein-membrane interactions require at least ca. 1mus to fully sample their dynamics. One new way this is being addressed is coarse-grained models that enable mesoscopic simulations on multi-mus scale. These have been used to model interactions, self-assembly and membrane perturbations induced by proteins. While they cannot replace all-atom simulations, they are a potentially useful technique for initial insertion, placement, and low-resolution refinement.  相似文献   

10.
Abstract

Increasing population growth and industrialization are continuously oppressing the existing energy resources, elevating the pollution and global fuel demand. Various alternate energy resources can be utilized to cope with these problems in an environment-friendly fashion. Currently, bioethanol (sugarcane, corn-derived) is one of the most widely consumed biofuels in the world. Lignocellulosic biomass is yet another attractive resource for sustainable bioethanol production. Pretreatment step plays a crucial role in the lignocellulose to bioethanol conversion by enhancing cellulose susceptibility to enzymatic hydrolysis. However, economical lignocellulose pretreatment still remains a challenging job. Ionic liquids (ILs), especially 1-ethyl-3-methylimidazolium acetate (EmimAc), is an efficient solvent for cellulose dissolution with improved enzymatic saccharification kinetics. To increase the process efficiency as well as recyclability of IL, water is shown as a compatible cosolvent for lignocellulosic pretreatment. The performance analysis of IL–water mixture based on the molecular level understanding may help to design effective pretreatment solvents. In this study, all-atom molecular dynamics simulation has been performed using EmimAc–water mixtures to understand the behavior of cellulose microcrystal containing eight glucose octamers at room and pretreatment temperatures. High-temperature simulation results show effective cellulose chain separation where cellulose–acetate interaction is found to be the driving force behind dissolution. It is also observed that pretreatment with 50 and 80% IL mixture is efficient in decreasing cellulose crystallinity. At a high IL concentration, water exists in a clustered network which gradually spans into the medium with increasing water fraction leading to loss of its cosolvation activity.

Communicated by Ramaswamy H. Sarma  相似文献   

11.
We present results from an extensive molecular dynamics simulation study of water hydrating the protein Ribonuclease A, at a series of temperatures in cluster, crystal, and powder environments. The dynamics of protein hydration water appear to be very similar in crystal and powder environments at moderate to high hydration levels. Thus, we contend that experiments performed on powder samples are appropriate for discussing hydration water dynamics in native protein environments. Our analysis reveals that simulations performed on cluster models consisting of proteins surrounded by a finite water shell with free boundaries are not appropriate for the study of the solvent dynamics. Detailed comparison to available x-ray diffraction and inelastic neutron-scattering data shows that current generation force fields are capable of accurately reproducing the structural and dynamical observables. On the time scale of tens of picoseconds, at room temperature and high hydration, significant water translational diffusion and rotational motion occur. At low hydration, the water molecules are translationally confined but display appreciable rotational motion. Below the protein dynamical transition temperature, both translational and rotational motions of the water molecules are essentially arrested. Taken together, these results suggest that water translational motion is necessary for the structural relaxation that permits anharmonic and diffusive motions in proteins. Furthermore, it appears that the exchange of protein-water hydrogen bonds by water rotational/librational motion is not sufficient to permit protein structural relaxation. Rather, the complete exchange of protein-bound water molecules by translational displacement seems to be required.  相似文献   

12.
The Mn(4)Ca cluster of the oxygen-evolving complex (OEC) of photosynthesis catalyzes the light-driven splitting of water into molecular oxygen, protons, and electrons. The OEC is buried within photosystem II (PSII), a multisubunit integral membrane protein complex, and water must find its way to the Mn(4)Ca cluster by moving through protein. Molecular dynamics simulations were used to determine the energetic barriers for water permeation though PSII extrinsic proteins. Potentials of mean force (PMFs) for water were derived by using the technique of multiple steered molecular dynamics (MSMD). Calculation of free energy profiles for water permeation allowed us to characterize previously identified water channels, and discover new pathways for water movement toward the Mn(4)Ca cluster. Our results identify the main constriction sites in these pathways which may serve as selectivity filters that restrict both the access of solutes detrimental to the water oxidation reaction and loss of Ca(2+) and Cl(-) from the active site.  相似文献   

13.
We present a molecular dynamics study of cytochrome c oxidase from Paracoccus denitrificans in the fully oxidized state, embedded in a fully hydrated dimyristoylphosphatidylcholine lipid bilayer membrane. Parallel simulations with different levels of protein hydration, 1.125 ns each in length, were carried out under conditions of constant temperature and pressure using three-dimensional periodic boundary conditions and full electrostatics to investigate the distribution and dynamics of water molecules and their corresponding hydrogen-bonded networks inside cytochrome c oxidase. The majority of the water molecules had residence times shorter than 100 ps, but a few water molecules are fixed inside the protein for up to 1.125 ns. The hydrogen-bonded network in cytochrome c oxidase is not uniformly distributed, and the degree of water arrangement is variable. The average number of solvent sites in the proton-conducting K- and D-pathways was determined. In contrast to single water files in narrow geometries we observe significant diffusion of individual water molecules along these pathways. The highly fluctuating hydrogen-bonded networks, combined with the significant diffusion of individual water molecules, provide a basis for the transfer of protons in cytochrome c oxidase, therefore leading to a better understanding of the mechanism of proton pumping.  相似文献   

14.
Based on molecular dynamics simulations, an analysis of structure and dynamics is performed on interfacial water at a liquid crystalline dipalmitoylphosphatidycholine/water system. Water properties relevant for understanding NMR relaxation are emphasized. The first and second rank orientational order parameters of the water O-H bonds were calculated, where the second rank order parameter is in agreement with experimental determined quadrupolar splittings. Also, two different interfacial water regions (bound water regions) are revealed with respect to different signs of the second rank order parameter. The water reorientation correlation function reveals a mixture of fast and slow decaying parts. The fast (ps) part of the correlation function is due to local anisotropic water reorientation whereas the much slower part is due to more complicated processes including lateral diffusion along the interface and chemical exchange between free and bound water molecules. The 100-ns-long molecular dynamics simulation at constant pressure (1 atm) and at a temperature of 50 degrees C of 64 lipid molecules and 64 x 23 water molecules lack a slow water reorientation correlation component in the ns time scale. The (2)H(2)O powder spectrum of the dipalmitoylphosphatidycholine/water system is narrow and consequently, the NMR relaxation time T(2) is too short compared to experimental results.  相似文献   

15.
The molecular dynamics of binary dispersions of plasmenylcholine/cholesterol and phosphatidylcholine/cholesterol were quantified by electron spin resonance (ESR) and deuterium magnetic resonance (2H NMR) spectroscopy. The order parameter of both 5-doxylstearate (5DS) and 16-doxylstearate (16DS) was larger in vesicles comprised of plasmenylcholine in comparison to phosphatidylcholine at all temperatures studied (e.g., S = 0.592 vs. 0.487 for 5DS and 0.107 vs. 0.099 for 16DS, respectively, at 38 degrees C). Similarly, the order parameter of plasmenylcholine vesicles was larger than that of phosphatidylcholine vesicles utilizing either spin-labeled phosphatidylcholine or spin-labeled plasmenylcholine as probes of molecular motion. The ratio of the low-field to the midfield peak height in ESR spectra of 16-doxylstearate containing moieties (i.e., spin-labeled plasmenylcholine and phosphatidylcholine) was lower in plasmenylcholine vesicles (0.93 +/- 0.01) in comparison to phosphatidylcholine vesicles (1.03 +/- 0.01). 2H NMR spectroscopy demonstrated that the order parameter of plasmenylcholine was greater than that of phosphatidylcholine for one of the two diastereotopic deuterons located at the C-2 carbon of the sn-2 fatty acyl chain. The spin-lattice relaxation times for deuterated plasmenylcholine and phosphatidylcholine in binary mixtures containing 0-50 mol % cholesterol varied nonmonotonically as a function of cholesterol concentration and were different for each phospholipid subclass. Taken together, the results indicate that the vinyl ether linkage in the proximal portion of the sn-1 aliphatic chain of plasmenylcholine has substantial effects on the molecular dynamics of membrane bilayers both locally and at sites spatially distant from the covalent alteration.  相似文献   

16.
Major histocompatibility complex (MHC) II proteins bind peptide fragments derived from pathogen antigens and present them at the cell surface for recognition by T cells. MHC proteins are divided into Class I and Class II. Human MHC Class II alleles are grouped into three loci: HLA-DP, HLA-DQ, and HLA-DR. They are involved in many autoimmune diseases. In contrast to HLA-DR and HLA-DQ proteins, the X-ray structure of the HLA-DP2 protein has been solved quite recently. In this study, we have used structure-based molecular dynamics simulation to derive a tool for rapid and accurate virtual screening for the prediction of HLA-DP2-peptide binding. A combinatorial library of 247 peptides was built using the "single amino acid substitution" approach and docked into the HLA-DP2 binding site. The complexes were simulated for 1 ns and the short range interaction energies (Lennard-Jones and Coulumb) were used as binding scores after normalization. The normalized values were collected into quantitative matrices (QMs) and their predictive abilities were validated on a large external test set. The validation shows that the best performing QM consisted of Lennard-Jones energies normalized over all positions for anchor residues only plus cross terms between anchor-residues.  相似文献   

17.
Molecular dynamics simulations have been carried out with four polypeptides, Ala13, Val(13), Ser13, and Ala4Gly5Ala4, in vacuo and with explicit hydration. The unfolding of the polypeptides, which are initially fully alpha-helix in conformation, has been monitored during trajectories of 0.3 ns at 350 K. A rank of Ala < Val < Ser < Gly is found in the order of increasing rate of unwinding. The unfolding of Ala13 and Val(13) is completed in hundreds of picoseconds, while that of Ser13 is about one order of magnitude faster. The helix content of the peptide containing glycine residues falls to zero within a few picoseconds. Ramachandran plots indicate quite distinct equilibrium distributions and time evolution of dihedral angles in water and in vacuum for each residue type. The unfolding of polyalanine and polyvaline helices is accelerated due to solvation. In contrast, polyserine is more stable in water compared to vacuum, because its side chains can form intramolecular hydrogen bonds with the backbone more readily in vacuum, which disrupts the helix. Distribution functions of the spatial and angular position of water molecules in the proximity of the polypeptide backbone polar groups reveal the stabilization of the coiled structures by hydration. The transition from helix to coil is characterized by the appearance of a new peak in the probability distribution at a specific location characteristic of hydrogen bond formation between water and backbone polar groups. No significant insertion of water molecules is observed at the precise onset of unwinding, while (i, i+3) hydrogen bond formation is frequently detected at the initiation of alpha-helix unwinding.  相似文献   

18.
Ribonucleotide reductase (RNR) is necessary for production of the precursor deoxyribonucleotides for DNA synthesis. Class Ia RNR functions via a stable free radical in one of the two components protein R2. The enzyme mechanism involves long range (proton coupled) electron transfer between protein R1 and the tyrosyl radical in protein R2. Earlier experimental studies showed that p-alkoxyphenols inhibit RNR. Here, molecular docking and molecular dynamics simulations involving protein R2 suggest an inhibition mechanism for p-alkoxyphenols . A low energy binding pocket is identified in protein R2. The preferred configuration provides a structural basis explaining their specific binding to the Escherichia coli and mouse R2 proteins. Trp48 (E. coli numbering), on the electron transfer pathway, is involved in the interactions with the inhibitors. The relative order of the binding energies calculated for the phenol derivatives to protein R2 is correlated with earlier experimental data on inhibition efficiency, in turn related to increasing size of the hydrophobic alkyl substituents. Using the configuration identified by molecular docking as a starting point for molecular dynamics simulations, we find that the p-allyloxyphenol interrupts the catalytic electron transfer pathway of the R2 protein by forming hydrogen bonds with Trp48 and Asp237, thus explaining the inhibitory activity of p-alkoxyphenols.  相似文献   

19.
We have recently completed systematic molecular dynamics simulations of 807 different proteins representing 95% of the known autonomous protein folds in an effort we refer to as Dynameomics. Here we focus on the analysis of side chain conformations and dynamics to create a dynamic rotamer library. Overall this library is derived from 31,000 occurrences of each of 86,217 different residues, or 2.7 × 10(9) rotamers. This dynamic library has 74% overlap of rotamer distributions with rotamer libraries derived from static high-resolution crystal structures. Seventy-five percent of the residues had an assignable primary conformation, and 68% of the residues had at least one significant alternate conformation. The average correlation time for switching between rotamers ranged from 22 ps for Met to over 8 ns for Cys; this time decreased 20-fold on the surface of the protein and modestly for dihedral angles further from the main chain. Side chain S(2) axis order parameters were calculated and they correlated well with those derived from NMR relaxation experiments (R = 0.9). Relationships relating the S(2) axis order parameters to rotamer occupancy were derived. Overall the Dynameomics rotamer library offers a comprehensive depiction of side chain rotamer preferences and dynamics in solution, and more realistic distributions for dynamic proteins in solution at ambient temperature than libraries derived from crystal structures, in particular charged surface residues are better represented. Details of the rotamer library are presented here and the library itself can be downloaded at http://www.dynameomics.org.  相似文献   

20.
The condensation of the 10 nm chromatin filament in the 30 nm fiber by monovalent cations, polyamines and bivalent cations was studied with light scattering at 90 degrees and flow linear dichroism methods. It was found that monovalent cation- and polyamine-induced folding was a two-step process: a precondensation, when a rotation of nucleosomes takes place only, and a condensation step without changes in nucleosome orientation. Divalent cations affected the structure of chromatin in one step only -- condensation of the chromatin filament being accompanied by nucleosome reorientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号