首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Although the physiology and metabolism of the growth of yeast strains has been extensively studied, many questions remain unanswered where the induced production of a recombinant protein is concerned. This work addresses the production of a Fusarium solani pisi cutinase by a recombinant Saccharomyces cerevisiae strain induced through the use of a galactose promoter. The strain is able to metabolise the inducer, galactose, which is a much more expensive carbon source than glucose. Both the transport of galactose into the cell-required for the induction of cutinase production-and galactose metabolism are highly repressed by glucose. Different fermentation strategies were tested and the culture behaviour was interpreted in view of the strain metabolism and physiology. A fed-batch fermentation with a mixed feed of glucose and galactose was carried out, during which simultaneous consumption of both hexoses was achieved, as long as the glucose concentration in the medium did not exceed 0.20 g/l. The costs, in terms of hexoses, incurred with this fermentation strategy were reduced to 23% of those resulting from a fermentation carried out using a more conventional strategy, namely a fed-batch fermentation with a feed of galactose.  相似文献   

3.
4.
Sucrose is the major carbon source used by Saccharomyces cerevisiae during production of baker's yeast, fuel ethanol and several distilled beverages. It is generally accepted that sucrose fermentation proceeds through extracellular hydrolysis of the sugar, mediated by the periplasmic invertase, producing glucose and fructose that are transported into the cells and metabolized. In the present work we analyzed the contribution to sucrose fermentation of a poorly characterized pathway of sucrose utilization by S. cerevisiae cells, the active transport of the sugar through the plasma membrane and its intracellular hydrolysis. A yeast strain that lacks the major hexose transporters (hxt1-hxt7 and gal2) is incapable of growing on or fermenting glucose or fructose. Our results show that this hxt-null strain is still able to ferment sucrose due to direct uptake of the sugar into the cells. Deletion of the AGT1 gene, which encodes a high-affinity sucrose-H(+) symporter, rendered cells incapable of sucrose fermentation. Since sucrose is not an inducer of the permease, expression of the AGT1 must be constitutive in order to allow growth of the hxt-null strain on sucrose. The molecular characterization of active sucrose transport and fermentation by S. cerevisiae cells opens new opportunities to optimize yeasts for sugarcane-based industrial processes.  相似文献   

5.
The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism   总被引:1,自引:0,他引:1  
Many yeast species have growth rates on D-xylulose of 25-130% of those on glucose, but for Saccharomyces cerevisiae this ratio is only about 6%. The xylulokinase reaction has been proposed to be the rate-limiting step in the D-xylulose fermentation with S. cerevisiae. Over-expression of xylulokinase encoding XKS1 stimulated growth on D-xylulose in a S. cerevisiae strain to about 20% of the growth rate on glucose and deletion of the gene prevented growth on D-xylulose and D-xylulose metabolism. We have partially purified the xylulokinase and characterised its kinetic properties. It is reversible and will also accept D-ribulose as a substrate.  相似文献   

6.
The efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeast Saccharomyces cerevisiae, the main producer of bioethanol, cannot use this sugar acid. The impact of galacturonic acid on alcoholic fermentation by S. cerevisiae was investigated with anaerobic batch cultures grown on mixtures of glucose and galactose at various galacturonic acid concentrations and on a mixture of glucose, xylose, and arabinose. In cultures grown at pH 5.0, which is well above the pK(a) value of galacturonic acid (3.51), the addition of 10 g · liter(-1) galacturonic acid did not affect galactose fermentation kinetics and growth. In cultures grown at pH 3.5, the addition of 10 g · liter(-1) galacturonic acid did not significantly affect glucose consumption. However, at this lower pH, galacturonic acid completely inhibited growth on galactose and reduced galactose consumption rates by 87%. Additionally, it was shown that galacturonic acid strongly inhibits the fermentation of xylose and arabinose by the engineered pentose-fermenting S. cerevisiae strain IMS0010. The data indicate that inhibition occurs when nondissociated galacturonic acid is present extracellularly and corroborate the hypothesis that a combination of a decreased substrate uptake rate due to competitive inhibition on Gal2p, an increased energy requirement to maintain cellular homeostasis, and/or an accumulation of galacturonic acid 1-phosphate contributes to the inhibition. The role of galacturonic acid as an inhibitor of sugar fermentation should be considered in the design of yeast fermentation processes based on pectin-rich feedstocks.  相似文献   

7.
Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.  相似文献   

8.
The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and maximal transport rates of yeast's glucose transporters in the control of ethanol production. Here we present a series of strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7, each of which has distinct glucose transport characteristics. The strains display a range of decreasing glycolytic rates resulting in a proportional decrease in ethanol production. Using these strains, we show for the first time that at high glucose levels, the glucose uptake capacity of wild-type S. cerevisiae does not control glycolytic flux during exponential batch growth. In contrast, our chimeric Hxt transporters control the rate of glycolysis to a high degree. Strains whose glucose uptake is mediated by these chimeric transporters will undoubtedly provide a powerful tool with which to examine in detail the mechanism underlying the switch between fermentation and respiration in S. cerevisiae and will provide new tools for the control of industrial fermentations.  相似文献   

9.
The goal of this investigation was to determine the effect of a xylose transport system on glucose and xylose co-consumption as well as total xylose consumption in Saccharomyces cerevisiae. We expressed two heterologous transporters from Arabidopsis thaliana in recombinant xylose-utilizing S. cerevisiae cells. Strains expressing the heterologous transporters were grown on glucose and xylose mixtures. Sugar consumption rates and ethanol concentrations were determined and compared to an isogenic control strain lacking the A. thaliana transporters. Expression of the transporters increased xylose uptake and xylose consumption up to 46% and 40%, respectively. Xylose co-consumption rates (prior to glucose depletion) were also increased by up to 2.5-fold compared to the control strain. Increased xylose consumption correlated with increased ethanol concentration and productivity. During the xylose/glucose co-consumption phase, strains expressing the transporters had up to a 70% increase in ethanol production rate. It was concluded that in these strains, xylose transport was a limiting factor for xylose utilization and that increasing xylose/glucose co-consumption is a viable strategy for improving xylose fermentation.  相似文献   

10.
The yeast Saccharomyces cerevisiae can show different metabolic phenotypes (e.g. fermentation and respiration). Based on data from the literature, we argue that the substrate uptake rate is the core variable in the system that controls the global metabolic phenotype. Consequently the metabolic phenotype that the cell expresses is not dependent on the type of the sugar or its concentration, but only on the rate at which the sugar enters the cell. As this requires the cells to 'measure' metabolic flux, we discuss the existing clues toward a flux-sensing mechanism in this organism and also outline several aspects of the involved flux-dependent regulation system. It becomes clear that the sensing and regulation system that divides the taken up carbon flux into the respiratory or fermentative pathways is complex with many molecular components interacting on multiple levels. To obtain a true understanding about how the global metabolic phenotype of S. cerevisiae is controlled by the glucose uptake rate, different tools and approaches from systems biology will be required.  相似文献   

11.
12.
the accumulation of amethopterin in a Pediococcus cerevisiae strain resistant to this analogue was about 30% of that in P. cerevisiae/PteGlu, the sensitive parent. The uptake in the resistant strain was strictly glucose dependent, whereas in the sensitive parent about 16% accumulation occurred in absence of glucose. The transport in both strains was inhibited by iodoacetate and KF. Amethopterin uptake exhibited saturation kinetics with an apparent Km of 5 muM in P. cerevisiae/AMr and 0.5 muM in P. cerevisiae/PteGlu. The apparent V was 0.2 nmol per min per mg cells (dry weight); the same for both strains. The optimum pH for the uptake of amethopterin by P. cerevisiae/AMr and P. cerevisiae/PteGlu was pH 6.0. Folate and methyltetrahydrofolate competitivity inhibited amethopterin uptake with apparent Ki values of 8 and 0.7 muM, respectively. The uptake of folate exhibited a slightly increased Km value as compared to that of the sensitive strain, whereas the uptake activity velocity was in the same range. Methyltetrahydrofolate accumulated up to about 60-fold higher intracellular concentration than that of the medium, which is a markedly lower accumulation from that in the sensitive strain. The uptake was glucose dependent and inhibited by iodoacetate and KF. The pH optimum for methyltetrahydrofolate uptake in the resistant strain was the same as that in the sensitive parent (pH 5.7--6). In contrast to the increase in the apparent Km value for amethopterin in the resistant strain, the affinity of the carrier for methyltetrahydrofolate was apparently unchanged, whereas the V value was about 16 times lower than that in the sensitive strain. The Ki for amethopterin when added to increasing concentrations of methyltetrahydrofolate was 5.2 muM, a value about the same as that of the Km.  相似文献   

13.
Ethanolic fermentation of lignocellulose raw materials requires industrial xylose-fermenting strains capable of complete and efficient D-xylose consumption. A central question in xylose fermentation by Saccharomyces cerevisiae engineered for xylose fermentation is to improve the xylose uptake. In the current study, the glucose/xylose facilitator Gxf1 from Candida intermedia, was expressed in three different xylose-fermenting S. cerevisiae strains of industrial origin. The in vivo effect on aerobic xylose growth and the initial xylose uptake rate were assessed. The expression of Gxf1 resulted in enhanced aerobic xylose growth only for the TMB3400 based strain. It displayed more than a 2-fold higher affinity for D-xylose than the parental strain and approximately 2-fold higher initial specific growth rate at 4 g/L D-xylose. Enhanced xylose consumption was furthermore observed when the GXF1-strain was assessed in simultaneous saccharification and co-fermentation (SSCF) of pretreated wheat straw. However, the ethanol yield remained unchanged due to increased by-product formation. Metabolic flux analysis suggested that the expression of the Gxf1 transporter had shifted the control of xylose catabolism from transport to the NAD(+) dependent oxidation of xylitol to xylulose.  相似文献   

14.
The MIG1 gene was disrupted in a haploid laboratory strain (B224) and in an industrial polyploid strain (DGI 342) of Saccharomyces cerevisiae. The alleviation of glucose repression of the expression of MAL genes and alleviation of glucose control of maltose metabolism were investigated in batch cultivations on glucose-maltose mixtures. In the MIG1-disrupted haploid strain, glucose repression was partly alleviated; i.e., maltose metabolism was initiated at higher glucose concentrations than in the corresponding wild-type strain. In contrast, the polyploid delta mig1 strain exhibited an even more stringent glucose control of maltose metabolism than the corresponding wild-type strain, which could be explained by a more rigid catabolite inactivation of maltose permease, affecting the uptake of maltose. Growth on the glucose-sucrose mixture showed that the polypoid delta mig1 strain was relieved of glucose repression of the SUC genes. The disruption of MIG1 was shown to bring about pleiotropic effects, manifested in changes in the pattern of secreted metabolites and in the specific growth rate.  相似文献   

15.
16.
Glucose transport in crabtree-positive and crabtree-negative yeasts   总被引:8,自引:0,他引:8  
The kinetic parameters of glucose transport in four Crabtree-positive and four Crabtree-negative yeasts were determined. The organisms were grown in aerobic glucose-limited chemostats at a dilution rate of 0.1 h-1. The results show a clear correlation between the presence of high-affinity glucose transport systems and the absence of aerobic fermentation upon addition of excess glucose to steady-state cultures. The presence of these H+-symport systems could be established by determination of intracellular accumulation of 6-deoxy-[3H]glucose and alkalinization of buffered cell suspensions upon addition of glucose. In contrast, the yeasts that did show aerobic alcoholic fermentation during these glucose pulse experiments had low-affinity facilitated-diffusion carriers only. In the yeasts examined the capacity of the glucose transport carriers was higher than the actual glucose consumption rates during the glucose pulse experiments. The relationship between the rate of sugar consumption and the rate of alcoholic fermentation was studied in detail with Saccharomyces cerevisiae. When S. cerevisiae was pulsed with low amounts of glucose or mannose, in order to obtain submaximal sugar consumption rates, fermentation was already occurring at sugar consumption rates just above those which were maintained in the glucose-limited steady-state culture. The results are interpreted in relation with the Crabtree effect. In Crabtree-positive yeasts, an increase in the external glucose concentration may lead to unrestricted glucose uptake by facilitated diffusion and hence, to aerobic fermentation. In contrast, Crabtree-negative yeasts may restrict the entry of glucose by their regulated H+-symport systems and thus prevent the occurrence of overflow metabolism.  相似文献   

17.
The rate of fermentation of glucose by a polyploid strain of Saccharomyces cerevisiae growing in a defined salts medium depends on the availability of NH4++. Its decline after exhaustion of the nitrogen source corresponded with the ability of the cells to accumulate the glucose analogue 2-deoxyglucose. Addition of NH4++to a nitrogen-depleted culture stimulated both glucose utilization and 2-deoxyglucose uptake. Since stimulation was inhibited by cycloheximide, maintenance of glucose transport during fermentation is dependent on protein synthesis.  相似文献   

18.
Some yeasts, such as Saccharomyces cerevisiae, produce ethanol at fully aerobic conditions, whereas other yeasts, such as Kluyveromyces lactis, do not. In this study we investigated the occurrence of aerobic alcoholic fermentation in the petite-negative yeast Saccharomyces kluyveri that is only distantly related to S. cerevisiae. In aerobic glucose-limited continuous cultures of S. kluyveri, two growth regimens were observed: at dilution rates below 0.5 h(-1) the metabolism was purely respiratory, and at dilution rates above 0.5 h(-1) the metabolism was respiro-fermentative. The dilution rate at which the switch in metabolism occurred, i.e. the critical dilution rate, was 66% higher than the typical critical dilution rate of S. cerevisiae. The maximum specific oxygen consumption rate around the critical dilution rate was found to 13.6 mmol (g dry weight)(-1) h(-1) and the capacity of the pyruvate dehydrogenase-bypass pathway was estimated to be high from in vitro enzyme activities; especially the specific activity of acetyl-CoA synthetase was much higher than in S. cerevisiae at all tested conditions. Addition of glucose to respiring cells of S. kluyveri led to ethanol formation after a delay of 20-50 min (depending on culture conditions prior to the pulse), which is in contrast to S. cerevisiae that ferments immediately after glucose addition.  相似文献   

19.
A strain of Saccharomyces cerevisiae has been constructed which is deficient in the four alcohol dehydrogenase (ADH) isozymes known at present. This strain (adh0), being irreversibly mutated in the genes ADH1, ADH3, and ADH4 and carrying a point mutation in the gene ADH2 coding for the glucose-repressible isozyme ADHII, still produces up to one third of the theoretical maximum yield of ethanol in a homofermentative conversion of glucose to ethanol. Analysis of the glucose metabolism of adh0 cells shows that the lack of all known ADH isozymes results in the formation of glycerol as a major fermentation product, accompanied by a significant production of acetaldehyde and acetate. Treatment of glucose-growing adh0 cells with the respiratory-chain inhibitor antimycin A leads to an immediate cessation of ethanol production, demonstrating that ethanol production in adh0 cells is dependent on mitochondrial electron transport. Reduction of acetaldehyde to ethanol in isolated mitochondria could also be demonstrated. This reduction is apparently linked to the oxidation of acetaldehyde to acetate. Preliminary data suggest that this novel type of ethanol formation in S. cerevisiae is associated with the inner mitochondrial membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号