首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Evolutionary Studies (EvoS) Consortium and the academic programs born from its creation have been wildly successful in their initial ventures. These achievements are marked by feedback from across the EvoS campuses, the resultant scholarly work produced by participating students, and faculty collaborations spurred by exposure to the organization. The success of EvoS is probably best marked by the recent National Science Foundation grant (CCLI Award #0817337), awarded jointly to SUNY New Paltz and Binghamton University, with the purpose of expanding EvoS beyond the bounds of these two institutions. A particularly noteworthy element of many EvoS programs is the role of Evolutionary Psychology (EP), a perspective in the behavioral sciences that addresses questions of human behavior from the perspective of evolution. In light of several forms of data, including analyses of a variety of disciplines drawn on from evolutionary psychologists in their work, we argue that evolutionary psychologists may well be the most naturally interdisciplinary scholars within the behavioral sciences, making them highly appropriate for inclusion in EvoS. But our research shows not only promise regarding the relationship between EP and EvoS—challenges are raised as well. We present additional data showing that EP is currently represented disproportionately within the EvoS world—a fact that clearly shows that there are currently limitations to the potential impact of EvoS in modern academia. Scholars from other disciplines, particularly within the humanities and social sciences, seem to be missing the evolution revolution. Implications regarding how EvoS can broaden its scope to be even more powerful in its integrative scope are discussed.  相似文献   

2.
We investigate the evolution of public goods cooperation in a metapopulation model with small local populations, where altruistic cooperation can evolve due to assortment and kin selection, and the evolutionary emergence of cooperators and defectors via evolutionary branching is possible. Although evolutionary branching of cooperation has recently been demonstrated in the continuous snowdrift game and in another model of public goods cooperation, the required conditions on the cost and benefit functions are rather restrictive, e.g., altruistic cooperation cannot evolve in a defector population. We also observe selection for too low cooperation, such that the whole metapopulation goes extinct and evolutionary suicide occurs. We observed intuitive effects of various parameters on the numerical value of the monomorphic singular strategy. Their effect on the final coexisting cooperator–defector pair is more complex: changes expected to increase cooperation decrease the strategy value of the cooperator. However, at the same time the population size of the cooperator increases enough such that the average strategy does increase. We also extend the theory of structured metapopulation models by presenting a method to calculate the fitness gradient in a general class of metapopulation models, and try to make a connection with the kin selection approach.  相似文献   

3.
Our goal is to understand the neural basis of functional impairment in aging and Alzheimer’s disease (AD) to be able to characterize clinically significant decline and assess therapeutic efficacy. We used frequency-tagged ERPs to word and motion stimuli to study the effects of stimulus conditions and selective attention. ERPs to word or motion increase when a task-irrelevant 2nd stimulus is added, but decrease when the task is moved to that 2nd stimulus. Spectral analyses show task effects on response power without 2nd stimulus effects. However, phase coherence shows both 2nd stimulus and task effects. Thus, power and coherence are dissociably modulated by stimulus and task effects. Task-dependent phase coherence successively declines in aging and AD. In contrast, task-dependent spectral power increases in aging, only to decrease in AD. We hypothesize that age-related declines in signal coherence, associated with increased power generation, stresses neurons and contributes to the loss of response power and the development of functional impairment in AD.  相似文献   

4.
It is now well accepted that astrocytes are essential in all major nervous system functions of the rodent brain, including neurotransmission, energy metabolism, modulation of blood flow, ion and water homeostasis, and, indeed, higher cognitive functions, although the contribution of astrocytes in cognition is still in early stages of study. Here we review the most current research findings on human astrocytes, including their structure, molecular characterization, and functional properties. We also highlight novel tools that have been established for translational approaches to the comparative study of astrocytes from humans and experimental animals. Understanding the differences in astrocytes is essential to elucidate the contribution of astrocytes to normal physiology, cognitive processing and diverse pathologies of the central nervous system.  相似文献   

5.
Fangchinoline is a bisbenzylisoquinoline alkaloid isolated from Radix Stephaniae tetrandrae S. Moore. Fangchinoline and its structure analogue, tetrandrine, exhibited direct binding affinity with recombinant human proteasome β1 subunit and also inhibited its activity in vitro. In cultured prostate PC-3 cells and LnCap cells, fangchinoline could dose-dependently inhibit cell proliferation and caspase-like activity of cellular proteasome which was mediated by proteasome β1 subunit. The inhibitive effect of fangchinoline on caspase-like activity of proteasome was also observed in purified human erythrocyte 20S proteasome. In PC-3 cells, fangchinoline induced cell cycle arrest at G0/G1 phase and apoptosis. Treatment of PC-3 tumor-bearing nude mice with fangchinoline inhibited tumor growth, induced apoptosis and also caused decrease in proteasome activities in tumor xenografts. Dose-dependent and time-dependent accumulation of ubiquitinated proteins and important proteasome substrates such as p27, Bax and IκB-α were observed in fangchinoline-treated cells. Over-expression of proteasome β1 subunit by plasmid transfection increased sensitivity of cells to the cytotoxicity of fangchinoline while knockdown of proteasome β1 subunit ameliorated cytotoxicity of fangchinoline in PC-3 cells. Results of the present study suggested that proteasome inhibition was involved in the anti-cancer effects of fangchinoline. Fangchinoline and its structure analogues might be new natural proteasome inhibitors targeting β1 subunit.  相似文献   

6.
Theoretical and experimental evidences support the hypothesis that the genomes and the epigenomes may be different in the somatic cells of complex organisms. In the genome, the differences range from single base substitutions to chromosome number; in the epigenome, they entail multiple postsynthetic modifications of the chromatin. Somatic genome variations (SGV) may accumulate during development in response both to genetic programs, which may differ from tissue to tissue, and to environmental stimuli, which are often undetected and generally irreproducible. SGV may jeopardize physiological cellular functions, but also create novel coding and regulatory sequences, to be exposed to intraorganismal Darwinian selection. Genomes acknowledged as comparatively poor in genes, such as humans', could thus increase their pristine informational endowment. A better understanding of SGV will contribute to basic issues such as the "nature vs nurture" dualism and the inheritance of acquired characters. On the applied side, they may explain the low yield of cloning via somatic cell nuclear transfer, provide clues to some of the problems associated with transdifferentiation, and interfere with individual DNA analysis. SGV may be unique in the different cells types and in the different developmental stages, and thus explain the several hundred gaps persisting in the human genomes "completed" so far. They may compound the variations associated to our epigenomes and make of each of us an "(epi)genomic" mosaic. An ensuing paradigm is the possibility that a single genome (the ephemeral one assembled at fertilization) has the capacity to generate several different brains in response to different environments.  相似文献   

7.
One of the most pressing challenges for the next 50 years is to reduce the impact of chronic disease. Unhealthy eating is an increasing problem and underlies much of the increase in mortality from chronic diseases that is occurring worldwide. Diets rich in plant-based foods are strongly associated with reduced risks of major chronic diseases, but the constituents in plants that promote health have proved difficult to identify with certainty. This, in turn, has confounded the precision of dietary recommendations. Plant biochemistry can make significant contributions to human health through the identification and measurement of the many metabolites in plant-based foods, particularly those known to promote health (phytonutrients). Plant genetics and metabolic engineering can be used to make foods that differ only in their content of specific phytonutrients. Such foods offer research tools that can provide significant insight into which metabolites promote health and how they work. Plant science can reduce some of the complexity of the diet-health relationship, and through building multidisciplinary interactions with researchers in nutrition and the pathology of chronic diseases, plant scientists can contribute novel insight into which foods reduce the risk of chronic disease and how these foods work to impact human health.  相似文献   

8.
9.
Barton NH 《Current biology : CB》2006,16(16):R647-R650
A recent analysis has shown that divergence between human and chimpanzee varies greatly across the genome. Although this is consistent with "hybridisation" between the diverging human and chimp lineages, such observations can be explained more simply by the null model of allopatric speciation.  相似文献   

10.
11.
12.
13.

Introduction

Acellular scaffolds are increasingly used for the surgical repair of tendon injury and ligament tears. Despite this increased use, very little data exist directly comparing acellular scaffolds and their native counterparts. Such a comparison would help establish the effectiveness of the acellularization procedure of human tissues. Furthermore, such a comparison would help estimate the influence of cells in ligament and tendon stability and give insight into the effects of acellularization on collagen.

Material and Methods

Eighteen human iliotibial tract samples were obtained from nine body donors. Nine samples were acellularized with sodium dodecyl sulphate (SDS), while nine counterparts from the same donors remained in the native condition. The ends of all samples were plastinated to minimize material slippage. Their water content was adjusted to 69%, using the osmotic stress technique to exclude water content-related alterations of the mechanical properties. Uniaxial tensile testing was performed to obtain the elastic modulus, ultimate stress and maximum strain. The effectiveness of the acellularization procedure was histologically verified by means of a DNA assay.

Results

The histology samples showed a complete removal of the cells, an extensive, yet incomplete removal of the DNA content and alterations to the extracellular collagen. Tensile properties of the tract samples such as elastic modulus and ultimate stress were unaffected by acellularization with the exception of maximum strain.

Discussion

The data indicate that cells influence the mechanical properties of ligaments and tendons in vitro to a negligible extent. Moreover, acellularization with SDS alters material properties to a minor extent, indicating that this method provides a biomechanical match in ligament and tendon reconstruction. However, the given protocol insufficiently removes DNA. This may increase the potential for transplant rejection when acellular tract scaffolds are used in soft tissue repair. Further research will help optimize the SDS-protocol for clinical application.  相似文献   

14.
Ten years ago, the Chinese National Human Genome Center at Shanghai (South Center,hereafter) was established in the Zhangjiang HiTech  相似文献   

15.
The mammalian CatSper ion channel family consists of four sperm-specific voltage-gated Ca2+ channels that are crucial for sperm hyperactivation and male fertility. All four CatSper subunits are believed to assemble into a heteromultimeric channel complex, together with an auxiliary subunit, CatSperβ. Here, we report a comprehensive comparative genomics study and evolutionary analysis of CatSpers and CatSperβ, with important correlation to physiological significance of molecular evolution of the CatSper channel complex. The development of the CatSper channel complex with four CatSpers and CatSperβ originated as early as primitive metazoans such as the Cnidarian Nematostella vectensis. Comparative genomics revealed extensive lineage-specific gene loss of all four CatSpers and CatSperβ through metazoan evolution, especially in vertebrates. The CatSper channel complex underwent rapid evolution and functional divergence, while distinct evolutionary constraints appear to have acted on different domains and specific sites of the four CatSper genes. These results reveal unique evolutionary characteristics of sperm-specific Ca2+ channels and their adaptation to sperm biology through metazoan evolution.  相似文献   

16.
Evolutionary and clinical neocentromeres: two faces of the same coin?   总被引:1,自引:1,他引:1  
It has been hypothesized that human clinical neocentromeres and evolutionary novel centromeres (ENC) represent two faces of the same phenomenon. However, there are only two reports of loci harboring both a novel centromere and a clinical neocentromere. We suggest that only the tip of the iceberg has been scratched because most neocentromerization events have a very low chance of being observed. In support of this view, we report here on a neocentromere at 9q33.1 that emerged in a ring chromosome of about 12 Mb. The ring was produced by a balanced rearrangement that was fortuitously discovered because of its malsegregation in the propositus. Chromatin-immunoprecipitation-on-chip experiments using anti-centromere protein (CENP)-A and anti-CENP-C antibodies strongly indicated that a novel centromeric domain was present in the ring, in a chromosomal domain where an ENC emerged in the ancestor to Old World monkeys.  相似文献   

17.
For decades, the entire pharmaceutical industry has focused on a limited number of drug targets. Owing to advances in molecular biology and genome technology at the beginning of the 1990s, discovery and isolation of a large number of genes from the human genome became feasible. This triggered a multi billion US dollars investment by both biotechnology and pharmaceutical companies to gain access to and patent as many potential drug targets as possible. Although the combined effort of publicly funded projects and private investments resulted in rapid identification of essentially all genes of the human genome, harnessing this information to enable drug discovery has turned out to be more challenging and time consuming than initially anticipated.  相似文献   

18.
The decade since the publication of the Human Genome Project draft has ended with the discovery of hundreds of genomic markers related to diseases and phenotypes. However, the project has not yet delivered on its promise to tailor treatments for individuals. The number of genomic markers in clinical practice is very small. The number of markers to guide treatment decisions is even smaller. In order to speed up discovery and validation of genomic treatment selection markers, we call for considering the brilliant potential of randomized clinical trials. If biomedical research community can collaborate in organizing large-scale consortium of clinical trials associated with well-designed biobanks, these studies would soon act as huge laboratories for investigating genomic medicine; a big step forward towards personalizing medicine.  相似文献   

19.
20.
Mexico is a megadiverse country, but less than 54 % of its original vegetation still remains. In particular Mexican deserts and arid and semiarid ecosystems harbor a large number of endemic taxa, and the genus Agave is an outstanding example. Agave is one of the largest genera of the Mexican flora, including a total estimated number of 200 species, 74 % of them endemic to the country. Agave is also one of the Mexican plant genera with more population genetic studies. We describe here studies in 22 Agave species using different genetic markers. For the genus we found on average a high level of genetic variation, H s ?=?0.19, and a low genetic differentiation, F st ?=?0.15. We identify some species that should be subject to special conservation genetic efforts, in particular the endangered A. victoriae-reginae and both wild populations and landraces of A. angustifolia, including the cultivated A. tequilana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号