首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A L Rothman  I Kurane    F A Ennis 《Journal of virology》1996,70(10):6540-6546
The target epitopes, serotype specificity, and cytolytic function of dengue virus-specific T cells may influence their theoretical roles in protection against secondary infection as well as the immunopathogenesis of dengue hemorrhagic fever. To study these factors in an experimental system, we isolated dengue virus-specific CD4+ and CD8+ T-cell clones from dengue-2 virus-immunized BALB/c mice. The T-cell response to dengue virus in this mouse strain was heterogeneous; we identified at least five different CD4+ phenotypes and six different CD8+ phenotypes. Individual T-cell clones recognized epitopes on the dengue virus pre-M, E, NSl/NS2A, and NS3 proteins and were restricted by the I-Ad, I-Ed, Ld, and Kd antigens. Both serotype-specific and serotype-cross-reactive clones were isolated in the CD4+ and CD8+ subsets; among CD8+ clones, those that recognized the dengue virus structural proteins were serotype specific whereas those that recognized the nonstructural proteins were serotype cross-reactive. All of the CD8+ and one of five CD4+ clones lysed dengue virus-infected target cells. Using synthetic peptides, we identified an Ld-restricted epitope on the E protein (residues 331 to 339, SPCKIPFEI) and a Kd-restricted epitope on the NS3 protein (residues 296 to 310, ARGYISTRVEM GEAA). These data parallel previous findings of studies using human dengue virus-specific T-cell clones. This experimental mouse system may be useful for studying the role of the virus serotype and HLA haplotype on T-cell responses after primary dengue virus infection.  相似文献   

2.
Serotype-cross-reactive dengue virus-specific cytotoxic T lymphocytes (CTL) induced during a primary dengue virus infection are thought to play a role in the immunopathogenesis of dengue hemorrhagic fever (DHF) during a secondary dengue virus infection. Although there is no animal model of DHF, we previously reported that murine dengue virus-specific CTL responses are qualitatively similar to human dengue virus-specific CTL responses. We used BALB/c mice to study the specificity of the CTL response to an immunodominant epitope on the dengue virus NS3 protein. We mapped the minimal H-2Kd-restricted CTL epitope to residues 298 to 306 of the dengue type 2 virus NS3 protein. In short-term T-cell lines and clones, the predominant CD8+ CTL to this epitope in mice immunized with dengue type 2 virus or vaccinia virus expressing the dengue type 4 virus NS3 protein were cross-reactive with dengue type 2 or type 4 virus, while broadly serotype-cross-reactive CTL were a minority population. In dengue type 3 virus-immunized mice, the predominant CTL response to this epitope was broadly serotype cross-reactive. All of the dengue virus-specific CTL clones studied also recognized the homologous NS3 sequences of one or more closely related flaviviruses, such as Kunjin virus. The critical contact residues for the CTL clones with different specificities were mapped with peptides having single amino acid substitutions. These data demonstrate that primary dengue virus infection induces a complex population of flavivirus-cross-reactive NS3-specific CTL clones in mice and suggest that CTL responses are influenced by the viral serotype. These findings suggest an additional mechanism by which the order of sequential flavivirus infections may influence disease manifestations.  相似文献   

3.
We analyzed the CD4+ T-lymphocyte responses to dengue, West Nile, and yellow fever viruses 4 months after immunization of a volunteer with an experimental live-attenuated dengue virus type 1 vaccine (DEN-1 45AZ5). We examined bulk culture proliferation to noninfectious antigens, determined the precursor frequency of specific CD4+ T cells by limiting dilution, and established and analyzed CD4+ T-cell clones. Bulk culture proliferation was predominantly dengue virus type 1 specific with a lesser degree of cross-reactive responses to other dengue virus serotypes, West Nile virus, and yellow fever virus. Precursor frequency determination by limiting dilution in the presence of noninfectious dengue virus antigens revealed a frequency of antigen-reactive cells of 1 in 1,686 peripheral blood mononuclear cells (PBMC) for dengue virus type 1, 1 in 9,870 PBMC for dengue virus type 3, 1 in 14,053 PBMC for dengue virus type 2, and 1 in 17,690 PBMC for dengue virus type 4. Seventeen CD4+ T-cell clones were then established by using infectious dengue virus type 1 as antigen. Two patterns of dengue virus specificity were found in these clones. Thirteen clones were dengue virus type 1 specific, and four clones recognized both dengue virus types 1 and 3. Analysis of human leukocyte antigen (HLA) restriction revealed that five clones are HLA-DRw52 restricted, one clone is HLA-DP3 restricted, and one clone is HLA-DP4 restricted. These results indicate that in this individual, the CD4+ T-lymphocyte responses to immunization with live-attenuated dengue virus type 1 vaccine are predominantly serotype specific and suggest that a multivalent vaccine may be necessary to elicit strong serotype-cross-reactive CD4+ T-lymphocyte responses in such individuals.  相似文献   

4.
Stimulation with live dengue virus of peripheral blood mononuclear cells from a dengue virus type 4-immune donor generated virus-specific, serotype-cross-reactive, CD8+, class I-restricted cytotoxic T lymphocytes (CTL) capable of lysing dengue virus-infected cells and cells pulsed with dengue virus antigens of all four serotypes. These CTL lysed autologous fibroblasts infected with vaccinia virus-dengue virus recombinant viruses containing the E gene or several nonstructural dengue virus type 4 genes. These results demonstrate that both dengue virus structural and nonstructural proteins are targets for the cytotoxic T-cell-mediated immune response to dengue virus and suggest that serotype-cross-reactive CD8+ CTL may be important mediators of viral clearance and of virus-induced immunopathology during secondary dengue virus infections.  相似文献   

5.
T-cell responses to dengue viruses may be important in both protective immunity and pathogenesis. This study of 48 Vietnamese adults with secondary dengue virus infections defined the breadth and magnitude of peripheral T-cell responses to 260 overlapping peptide antigens derived from a dengue virus serotype 2 (DV2) isolate. Forty-seven different peptides evoked significant gamma interferon enzyme-linked immunospot (ELISPOT) assay responses in 39 patients; of these, 34 peptides contained potentially novel T-cell epitopes. NS3 and particularly NS3200-324 were important T-cell targets. The breadth and magnitude of ELISPOT responses to DV2 peptides were independent of the infecting dengue virus serotype, suggesting that cross-reactive T cells dominate the acute response during secondary infection. Acute ELISPOT responses were weakly correlated with the extent of hemoconcentration in individual patients but not with the nadir of thrombocytopenia or overall clinical disease grade. NS3556-564 and Env414-422 were identified as novel HLA-A*24 and B*07-restricted CD8+ T-cell epitopes, respectively. Acute T-cell responses to natural variants of Env414-422 and NS3556-564 were largely cross-reactive and peaked during disease convalescence. The results highlight the importance of NS3 and cross-reactive T cells during acute secondary infection but suggest that the overall breadth and magnitude of the T-cell response is not significantly related to clinical disease grade.  相似文献   

6.
Proinflammatory cytokines secreted by memory CD8+ and CD4+ T cells are thought to play a direct role in the pathogenesis of dengue virus infection by increasing vascular permeability and thereby inducing the pathophysiologic events associated with dengue hemorrhagic fever and dengue shock syndrome. Severe disease is frequently observed in the setting of secondary infection with heterologous dengue virus serotypes, suggesting a role for cross-reactive memory T cells in the immunopathogenesis of severe disease. We used a large panel of well-characterized dengue virus-specific CD8+ T-cell clones isolated from Pacific Islanders previously infected with dengue virus 1 to examine effector memory function, focusing on a novel dominant HLA-B*5502-restricted NS5(329-337) epitope, and assessed T-cell responses to stimulation with variant peptides representing heterologous serotypes. Variant peptides were differentially recognized by dengue virus 1-specific effector CD8+ cytotoxic T lymphocytes (CTL) in a heterogeneous and clone-specific manner, in which cytolytic function and cytokine secretion could be enhanced, diminished, or abrogated compared with cognate peptide stimulation. Dengue virus-specific CTL stimulated with cognate and variant peptides demonstrated a cytokine response hierarchy of gamma IFN (IFN-gamma) > tumor necrosis factor alpha (TNF-alpha) > interleukin-2 (IL-2), and a subset of clones also produced IL-4 and IL-6. Individual clones demonstrated greater avidity for variant peptides representing heterologous serotypes, including serotypes previously encountered by the subject, and IFN-gamma and TNF-alpha secretion was enhanced by stimulation with these heterologous peptides. Altered antiviral T-cell responses in response to stimulation with heterologous dengue virus serotypes have implications for control of virus replication and for disease pathogenesis.  相似文献   

7.
Dengue virus presents a growing threat to public health in the developing world. Four major serotypes of dengue virus have been characterized, and epidemiological evidence shows that dengue hemorrhagic fever (DHF), the more serious manifestation of the disease, occurs more frequently upon reinfection with a second serotype. We have studied dengue virus-specific T-cell responses in Thai children. During acute infection, few dengue-responsive CD8+ T cells were recovered; most of those present showed an activated phenotype and were undergoing programmed cell death. Many dengue-specific T cells were of low affinity for the infecting virus and showed higher affinity for other, probably previously encountered strains. Profound T-cell activation and death may contribute to the systemic disturbances leading to DHF, and original antigenic sin in the T-cell responses may suppress or delay viral elimination, leading to higher viral loads and increased immunopathology.  相似文献   

8.
We have constructed a recombinant baculovirus containing a 4.0-kilobase dengue virus cDNA sequence that codes for the three virus structural proteins, capsid (C) protein, premembrane (PreM) protein, and envelope glycoprotein (E), and nonstructural proteins NS1 and NS2a. Infection of cultured Spodoptera frugiperda cells with this recombinant virus resulted in the production of E and NS1 proteins that were similar in size to the corresponding viral proteins expressed in dengue virus-infected simian cells. Other dengue virus-encoded proteins such as PreM and C were also synthesized. Rabbits immunized with the dengue virus protein products of the recombinant virus developed antibodies to PreM, E, and NS1, although the titers were low, especially to PreM and E. Nevertheless, the dengue virus antigens produced by the recombinant virus induced resistance in mice to fatal dengue encephalitis.  相似文献   

9.
Thirteen dengue virus-specific, cytotoxic CD4+ CD8- T-cell clones were established from a donor who was infected with dengue virus type 3. These clones were examined for virus specificity and human leukocyte antigen (HLA) restriction in cytotoxic assays. Six patterns of virus specificities were determined. Two serotype-specific clones recognized only dengue virus type 3. Two dengue virus subcomplex-specific clones recognized dengue virus types 2, 3, and 4, and one subcomplex-specific clone recognized dengue virus types 1, 2, and 3. Four dengue virus serotype-cross-reactive clones recognized dengue virus types 1, 2, 3, and 4. One flavivirus-cross-reactive clone recognized dengue virus types 1, 2, 3, and 4 and West Nile virus (WNV), but did not recognize yellow fever virus (YFV), whereas three flavivirus-cross-reactive clones recognized dengue virus types 1, 2, 3, and 4, WNV, and YFV. HLA restriction in the lysis by these T-cell clones was also heterogeneous. HLA-DP, HLA-DQ, and HLA-DR were used as restriction elements by various T-cell clones. We also examined the recognition of viral nonstructural protein NS3, purified from cells infected with dengue virus type 3 or WNV, by these T-cell clones. One serotype-specific clone, two dengue virus subcomplex-specific clones, and three dengue virus serotype-cross-reactive clones recognized NS3 of dengue virus type 3. One flavivirus-cross-reactive clone recognized NS3 of dengue virus type 3 and WNV. These results indicate that heterogeneous dengue virus-specific CD4+ cytotoxic T cells are stimulated in response to infection with a dengue virus and that a nonstructural protein, NS3, contains multiple dominant T-cell epitopes.  相似文献   

10.
Reactivation of serotype cross-reactive CD8+ memory T lymphocytes is thought to contribute to the immunopathogenesis of dengue disease during secondary infection by a heterologous serotype. Using cytokine flow cytometry, we have defined four novel HLA-A*02-restricted dengue viral epitopes recognized by up to 1.5% of circulating CD8+ T cells in four donors after primary vaccination. All four donors had the highest cytokine response to the epitope NS4b 2353. We also studied the effect of sequence differences in heterologous dengue serotypes on dengue-reactive CD8+ memory T cell cytokine and proliferative responses. The D3 variant of a different NS4b epitope 2423 and the D2 variant of the NS4a epitope 2148 induced the largest cytokine response, compared with their respective heterologous sequences in all donors regardless of the primary vaccination serotype. Stimulation with variant peptides also altered the relative frequencies of the various subsets of cells that expressed IFN-gamma, TNF-alpha, MIP-1beta, and combinations of these cytokines. These results indicate that the prior infection history of the individual as well as the serotypes of the primary and heterologous secondary viruses influence the nature of the secondary response. These differences in the effector functions of serotype cross-reactive memory T cells induced by heterologous variant epitopes, which are both quantitative and qualitative, may contribute to the clinical outcome of secondary dengue infection.  相似文献   

11.
The present paper analyzes the influence of major histocompatibility complex (MHC) class II (Ir) genes on MHC class II-restricted T-cell responses to West Nile virus (WNV) and recombinant vaccinia virus-derived Kunjin virus antigens and identifies the immunodominant Kunjin virus antigens. Generally, mice were primed by intravenous infection with WNV or Kunjin virus, and their CD4+ T cells were stimulated in vitro 14 days later with WNV or Kunjin virus antigens to pulse macrophage or B-cell antigen-presenting cells (APC). WNV-specific in vitro T-cell responses from H-2b mice were higher than those from H-2d, H-2k, and H-2q mice. When recombinant vaccinia virus-derived Kunjin virus antigen preparations were tested in vitro, Kunjin virus-immune T cells of H-2b haplotype responded most strongly to structural (prM, C, E) and membrane-associated nonstructural (NS1) proteins encoded by VKV 1031 and showed weaker responses to cytosolic nonstructural protein NS5 (VKV 1022), whereas the responders of H-2k haplotype responded most strongly to the antigens encoded by VKV 1022 and gave lesser responses to VKV 1031. H-2d T cells gave weaker responses than either H-2b or H-2k cells, with responses to VKV 1031 generally being higher than those to VKV 1022. Responses to VKV 1023 or VKV 1024 encoding all of the NS3 to NS5 gene sequence or to VKV 1023 encoding all of NS3 were weak or absent. Within a given inbred strain, B cells and macrophages differed in their abilities to present recombinant vaccinia virus-derived Kunjin virus antigens, both in terms of magnitude of T-cell responses induced and the particular Kunjin virus protein presented. T cells from different non-MHC genetic backgrounds varied in their requirements of macrophage numbers as APC for maximum reactivity, suggesting that the concentration of class II MHC antigens and other molecules affecting APC-T-cell interaction varied in mice with different genetic backgrounds. Regardless of MHC haplotype, responses to VKV 1024, which encompasses VKV 1023 and VKV 1022, were either absent or lower than those to VKV 1022, possibly reflecting differences in the processing requirements of these two proteins. When mice were primed intravenously with recombinant vaccinia virus and when their CD4+ T cells were stimulated in vitro with native Kunjin virus antigens, VKV 1031 primed more efficiently than Kunjin virus and VKV 1022 primed similarly to Kunjin virus.  相似文献   

12.
Dengue virus (DENV) is the principal arthropod-borne viral pathogen afflicting human populations. While repertoires of antibodies to DENV have been linked to protection or enhanced infection, the role of T lymphocytes in these processes remains poorly defined. This study provides a comprehensive overview of CD4+ and CD8+ T cell epitope reactivities against the DENV 2 proteome in adult patients experiencing secondary DENV infection. Dengue virus-specific T cell responses directed against an overlapping 15mer peptide library spanning the DENV 2 proteome were analyzed ex vivo by enzyme-linked immunosorbent spot assay, and recognition of individual peptides was further characterized in specific T cell lines. Thirty novel T cell epitopes were identified, 9 of which are CD4+ and 21 are CD8+ T cell epitopes. We observe that whereas CD8+ T cell epitopes preferentially target nonstructural proteins (NS3 and NS5), CD4+ epitopes are skewed toward recognition of viral components that are also targeted by B lymphocytes (envelope, capsid, and NS1). Consistently, a large proportion of dengue virus-specific CD4+ T cells have phenotypic characteristics of circulating follicular helper T cells (CXCR5 expression and production of interleukin-21 or gamma interferon), suggesting that they are interacting with B cells in vivo. This study shows that during a dengue virus infection, the protein targets of human CD4+ and CD8+ T cells are largely distinct, thus highlighting key differences in the immunodominance of DENV proteins for these two cell types. This has important implications for our understanding of how the two arms of the human adaptive immune system are differentially targeted and employed as part of our response to DENV infection.  相似文献   

13.
Small-animal models are needed to test human immunodeficiency virus (HIV) vaccine efficacy following viral challenge. To this end, we examined HIV-1-specific immune responses following immunization of nonobese diabetic-severe combined immunodeficient mice that were repopulated with human peripheral blood lymphocytes (hu-PBL-NOD/SCID mice). Autologous dendritic cells (DC) were transduced ex vivo with replication-defective, helper virus-free, herpes simplex virus type 1 (HSV-1) amplicons that expressed HIV-1 gp120 and were then injected into the hu-PBL-NOD/SCID mice. This resulted in primary HIV-1-specific humoral and cellular immune responses. Serum samples from vaccinated animals contained human immunoglobulin G that reacted with HIV-1 Env proteins by enzyme-linked immunosorbent assay and neutralized the infectivity of HIV-1 LAI and ADA strains. T cells isolated from the mice responded to viral antigens by producing gamma interferon when analyzed by enzyme-linked immunospot assay. Importantly, exposure of the vaccinated animals to infectious HIV-1 demonstrated partial protection against infectious HIV-1 challenge. This was reflected by a reduction in HIV-1(ADA) and by protection of the engrafted human CD4(+) T lymphocytes against HIV-1(LAI)-induced cytotoxicity. These data demonstrate that transduction of DC by HSV amplicon vectors expressing HIV-1 gp120 induce virus-specific immune responses in hu-PBL-NOD/SCID mice. This mouse model may be a useful tool to evaluate human immune responses and protection against viral infection following vaccination.  相似文献   

14.
Dengue virus (DENV) is spread through most tropical and subtropical areas of the world and represents a serious public health problem. At present, the control of dengue disease is mainly hampered by the absence of antivirals or a vaccine, which results in an estimated half worldwide population at risk of infection. The immune response against DENV is not yet fully understood and a better knowledge of it is now recognized as one of the main challenge for vaccine development. In previous studies, we reported that a DNA vaccine containing the signal peptide sequence from the human tissue plasminogen activator (t-PA) fused to the DENV2 NS1 gene (pcTPANS1) induced protection against dengue in mice. In the present work, we aimed to elucidate the contribution of cellular and humoral responses elicited by this vaccine candidate for protective immunity. We observed that pcTPANS1 exerts a robust protection against dengue, inducing considerable levels of anti-NS1 antibodies and T cell responses. Passive immunization with anti-NS1 antibodies conferred partial protection in mice infected with low virus load (4 LD50), which was abrogated with the increase of viral dose (40 LD50). The pcTPANS1 also induced activation of CD4+ and CD8+ T cells. We detected production of IFN-γ and a cytotoxic activity by CD8+ T lymphocytes induced by this vaccine, although its contribution in the protection was not so evident when compared to CD4+ cells. Depletion of CD4+ cells in immunized mice completely abolished protection. Furthermore, transfer experiments revealed that animals receiving CD4+ T cells combined with anti-NS1 antiserum, both obtained from vaccinated mice, survived virus infection with survival rates not significantly different from pcTPANS1-immunized animals. Taken together, results showed that the protective immune response induced by the expression of NS1 antigen mediated by the pcTPANS1 requires a cooperation between CD4+ T cells and the humoral immunity.  相似文献   

15.
Induction of virus-specific T-cell responses in mucosal as well as systemic compartments of the immune system is likely to be a critical feature of an effective AIDS vaccine. We investigated whether virus-specific CD8(+) lymphocytes induced in rhesus macaques by immunization with attenuated simian immunodeficiency virus (SIV), an approach that is highly effective in eliciting protection against mucosal challenge, express the mucosa-homing receptor alpha4beta7 and traffic to the intestinal mucosa. SIV-specific CD8(+) T cells expressing alpha4beta7 were detected in peripheral blood and intestine of macaques infected with attenuated SIV. In contrast, virus-specific T cells in blood of animals immunized cutaneously by a combined DNA-modified vaccinia virus Ankara regimen did not express alpha4beta7. These results demonstrate the selective induction of SIV-specific CD8(+) T lymphocytes expressing alpha4beta7 by a vaccine approach that replicates in mucosal tissue and suggest that induction of virus-specific lymphocytes that are able to home to mucosal sites may be an important characteristic of a successful AIDS vaccine.  相似文献   

16.
A mouse model for immunization with ex vivo virus-infected dendritic cells   总被引:3,自引:0,他引:3  
Dendritic cells (DCs) have been demonstrated to be an important if not essential inducer of cellular immune responses. The ability to grow these cells in vitro may open up new avenues for protective immunizations. In this study we have analyzed the virus-specific memory response generated following immunization with ex vivo-infected bone marrow-derived dendritic cells. We demonstrate that mouse DCs are efficiently infected with influenza virus but do not release infectious progeny virus. Ex vivo-infected DCs secrete interleukin-12 (IL-12) and induce a potent T helper (Th)1-like immune response when injected into mice. This was demonstrated by the generation of cytotoxic T lymphocytes, the production of high levels of gamma-interferon, and undetectable levels of IL-4 upon in vitro restimulation of splenocytes from immunized animals. In addition, the virus-specific antibody response is primarily of the IgG2a isotype, consistent with the expansion of Th1 cells. Animals immunized with DCs infected with X-31 influenza virus and challenged with PR8 influenza virus cleared the infection faster than animals not vaccinated. Thus, infected DCs efficiently activate the cellular immune response and induce heterosubtypic immunity in mice.  相似文献   

17.
A recombinant vaccinia virus containing cloned DNA sequences coding for the three structural proteins and nonstructural proteins NS1 and NS2a of dengue type 4 virus was constructed. Infection of CV-1 cells with this recombinant virus produced dengue virus structural proteins as well as the nonstructural protein NS1. These proteins were precipitated by specific antisera and exhibited the same molecular size and glycosylation patterns as authentic dengue virus proteins. Infection of cotton rats with the recombinant virus induced NS1 antibodies in 1 of 11 animals. However, an immune response to the PreM and E glycoproteins was not detected. A reduced level of gene expression was probably the reason for the limited serologic response to these dengue virus antigens.  相似文献   

18.
Syngeneic, semiallogeneic, or allogeneic spleen lymphocytes were transferred intonu/nu BALB/c mice, which were infected with vaccinia virus. Specific Sensitization of transferred thymus-derived cells was determined in vivo by mean survival time and virus titer in the spleen six days after infection, and in vitro by cell-mediated cytolysis of vaccinia virus-infected syngeneic target cells. Virus-specific Sensitization took place only after transfer of syngeneic or semiallogeneic spleen lymphocytes; allogeneic lymphocytes had no influence on mean survival time or virus titer and showed no virus-specific cytolytic activity in vitro. Infection of mice with vaccinia virus-strain WR, Elstree, DIs, or DIs-infected syngeneic fibroblasts resulted in the generation of virus-specific effector cells, while injection of a high amount of inactivated virus particles caused no Sensitization. These results suggest H-2 homology for production of virus-specific effector cells. Propagation of virus is not necessary, since early surface antigens, combined with syngeneic H-2 antigens, suffice for Sensitization of cytolytic T lymphocytes.Abbreviations used in this paper are as follows CMC cell-mediated cytolysis - CTL cytolytic T lymphocyte - LCM lymphocytic choriomeningitis - MHC major histocompatibility complex - MST mean survival time - T cell thymus-derived cell - TCID50 50 percent tissue culture infective dose  相似文献   

19.
Broad immune responses, in particular specific for the NS3 protein and mediated by both CD8+ and CD4+T lymphocytes, are thought to play a critical role in the control of hepatitis C virus (HCV) infection. In this study, we searched for novel HLA-B*0702 NS3 restricted epitopes following an optimized NS3NS4 immunization protocol in transgenic mice expressing HLA-B*0702 molecule. Combining predicted and overlapping peptides, we identified two novel epitopes, WPA10 (aa 1111-1120) and LSP10 (aa 1153-1162), which triggered significant IFN-gamma-producing T cell frequencies and high CTL responses. Both epitopes were shown to be immunogenic when used as synthetic peptides to immunize mice. The relevance of these epitopes to humans was demonstrated, as both were able in vitro to recall specific IFN-gamma and IL10-producing cells from peripheral blood mononuclear cells of HCV infected patients. Such epitopes enlarge the pool of NS3-specific CD8+T cell epitopes available to perform immunomonitoring of HCV infection and to develop vaccines.  相似文献   

20.
Heterosubtypic immunity (HSI) is defined as cross-protection against influenza virus of a different serotype than the virus initially encountered and is thought to be mediated by influenza virus-specific cytotoxic T lymphocytes (CTL). Since gamma interferon (IFN-gamma) stimulates cytotoxic cells, including antigen-specific CTL which may control virus replication by secretion of antiviral cytokines such as tumor necrosis factor alpha and IFN-gamma, we have investigated the mechanism of HSI by analyzing the role of IFN-gamma for HSI in IFN-gamma gene-deleted (IFN-gamma(-/-)) mice. It has been reported that IFN-gamma is not required for recovery from primary infection with influenza virus but is important for HSI. Here, we conclusively show that IFN-gamma is not required for induction of secondary influenza virus-specific CTL responses in mediastinal lymph nodes and HSI to lethal influenza A virus infection. Although T helper 2 (Th2)-type cytokines were upregulated in the lungs of IFN-gamma(-/-) mice after virus challenge, either Th1- or Th2-biased responses could provide heterosubtypic protection. Furthermore, titers of serum-neutralizing and cross-reactive antibodies to conserved nucleoprotein in IFN-gamma(-/-) mice did not differ significantly from those in immunocompetent mice. These results indicate that lack of IFN-gamma does not impair cross-reactive virus-specific immune responses and HSI to lethal infection with influenza virus. Our findings provide new insight for the mechanisms of HSI and should be valuable in the development of protective mucosal vaccines against variant virus strains, such as influenza and human immunodeficiency virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号