首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhodococcus rhodochrous PB1 was isolated from compost soil by selective culture with racemic 3-phenylbutyric acid as the sole carbon and energy source. Growth experiments with the single pure enantiomers as well as with the racemate showed that only one of the two enantiomers, (R)-3-phenylbutyric acid, supported growth of strain PB1. Nevertheless, (S)-3-phenylbutyric acid was cometabolically transformed to, presumably, (S)-3-(2,3-dihydroxyphenyl)butyric acid (the absolute configuration at the C-3 atom is not known yet) by (R)-3-phenylbutyric acid-grown cells of strain PB1, as shown by (sup1)H nuclear magnetic resonance spectroscopy of the partially purified compound and gas chromatography-mass spectrometry analysis of the trimethylsilyl derivative. Oxygen uptake rates suggest that either 3-phenylpropionic acid or cinnamic acid (trans-3-phenyl-2-propenoic acid) is the substrate for aromatic ring hydroxylation. This view is substantiated by the fact that 3-(2,3-dihydroxyphenyl)propionic acid was a substrate for meta cleavage in cell extracts of (R)-3-phenylbutyric acid-grown cells of strain PB1. Gas chromatography-mass spectrometry analysis of trimethylsilane-treated ethyl acetate extracts of incubation mixtures showed that both the meta-cleavage product, 2-hydroxy-6-oxo-2,4-nonadiene-1,9-dicarboxylic acid, and succinate, a hydrolysis product thereof, were formed during such incubations.  相似文献   

2.
Wild type Escherichia coli K-12 cannot grow on xylitol and we have been unsuccessful in isolating a mutant directly which had acquired this new growth ability. However, a mutant had been selected previously for growth on L-1,2-propanediol as the sole source of carbon and energy. This mutant constitutively synthesized a propanediol dehydrogenase. Recently, we have found that this dehydrogenase fortuitously converted xylitol to D-xylose which could normally be metabolized by E. coli K-12. In addition, it was also discovered that the D-xylose permease fortuitously transported xylitol into the cell. A second mutant was thus isolated from the L-1,2-propanediol-growing mutant that was constitutive for the enzymes of the D-xylose pathway. This mutant could indeed grow on xylitol as the sole source of carbon and energy, by utilizing the enzymes normally involved in D-xylose and L-1,2-propanediol metabolism.  相似文献   

3.
The parent Escherichia coli K-12 is constitutive for the enzymes of the glyoxylate bypass and adapts to growth on long-chain fatty acids (C(12) to C(18)). It does not utilize medium-chain (C(6) to C(11)) or short-chain (C(4), C(5)) n-monocarboxylic acids. Several mutants of this strain which grow using short- or medium-chain acids, or both, as the sole carbon source were selected and characterized. One mutant (D(1)) synthesizes the beta-oxidation enzymes constitutively and grows on medium-chain but not on short-chain acids. A second (N(3)) is partially derepressed for synthesis of these enzymes and grows both on medium-chain and on short-chain acids. Secondary mutants (N(3)V(-), N(3)B(-), N(3)OL(-)) were derived from N(3). N(3)V(-) grows on even-chain but not on odd-chain acids and exhibits a lesion in propionate oxidation. N(3)B(-) grows on odd-chain but not on even-chain acids and exhibits no crotonase activity as assayed by hydration of crotonyl-CoA. N(3)OL(-) grows on acetate and propionate but does not utilize fatty acids C(4) to C(18); it exhibits multiple deficiencies in the beta-oxidation pathway. Growth on acetate of N(3), but not of the parent strain, is inhibited by 4-pentenoate. Revertants of N(3) which are resistant to growth inhibition by 4-pentenoate (N(3)PR) exhibit loss of ability to grow on short-chain acids but retain the ability to grow on medium-chain and long-chain acids. The growth characteristics of these mutants suggest that in order to grow at the expense of butyrate and valerate, E. coli must be (i) derepressed for synthesis of the beta-oxidation enzymes and (ii) derepressed for synthesis of a short-chain fatty acid uptake system.  相似文献   

4.
Escherichia coli K-12 and K-12 hybrid strains constructed to express a polysialic acid capsule, the K1 antigen, were able to efficiently use sialic acid as a sole carbon source. This ability was dependent on induction of at least two activities: a sialic acid-specific transport activity, and an aldolase activity specific for cleaving sialic acids. Induction over basal levels required sialic acid as the apparent inducer, and induction of both activities was repressed by glucose. Induction also required the intracellular accumulation of sialic acid, which could be either added exogenously to the medium or accumulated intracellularly through biosynthesis. Exogenous sialic acid appeared to be transported by an active mechanism that did not involve covalent modification of the sugar. Mutations affecting either the transport or degradation of sialic acid prevented its use as a carbon source and have been designated nanT and nanA, respectively. These mutations were located by transduction near min 69 on the E. coli K-12 genetic map, between argG and glnF. In addition to being unable to use sialic acid as a carbon source, aldolase-negative mutants were growth-inhibited by this sugar. Therefore, the intracellularly accumulated sialic acid was toxic in aldolase-deficient E. coli strains. The dual role of aldolase in dissimilating and detoxifying sialic acids is consistent with the apparent multiple controls on expression of this enzyme.  相似文献   

5.
6.
Degradation of 3-phenylbutyric acid by Pseudomonas sp.   总被引:1,自引:0,他引:1       下载免费PDF全文
Pseudomonas sp. isolated by selective culture with 3-phenylbutyrate (3-PB) as the sole carbon source metabolized the compound through two different pathways by initial oxidation of the benzene ring and by initial oxidation of the side chain. During early exponential growth, a catechol substance identified as 3-(2,3-dihydroxyphenyl)butyrate (2,3-DHPB) and its meta-cleavage product 2-hydroxy-7-methyl-6-oxononadioic-2,4-dienoic acid were produced. These products disappeared during late exponential growth, and considerable amounts of 2,3-DHPB reacted to form brownish polymeric substances. The catechol intermediate 2,3-DHPB could not be isolated, but cell-free extracts were able only to oxidize 3-(2,3-dihydroxyphenyl)propionate of all dihydroxy aromatic acids tested. Moreover, a reaction product caused by dehydration of 2,3-DHPB on silica gel was isolated and identified by spectral analysis as (--)-8-hydroxy-4-methyl-3,4-dihydrocoumarin. 3-Phenylpropionate and a hydroxycinnamate were found in supernatants of cultures grown on 3-PB; phenylacetate and benzoate were found in supernatants of cultures grown on 3-phenylpropionate; and phenylacetate was found in cultures grown on cinnamate. Cells grown on 3-PB rapidly oxidized 3-phenylpropionate, cinnamate, catechol, and 3-(2,3-dihydroxyphenyl)propionate, whereas 2-phenylpropionate, 2,3-dihydroxycinnamate, benzoate, phenylacetate, and salicylate were oxidized at much slower rates. Phenylsuccinate was not utilized for growth nor was it oxidized by washed cell suspensions grown on 3-PB. However, dual axenic cultures of Pseudomonas acidovorans and Klebsiella pneumoniae, which could not grow on phenylsuccinate alone, could grow syntrophically and produced the same metabolites found during catabolism of 3-PB by Pseudomonas sp. Washed cell suspensions of dual axenic cultures also immediately oxidized phenylsuccinate, 3-phenylpropionate, cinnamate, phenylacetate, and benzoate.  相似文献   

7.
1. Two Pseudomonas strains capable of utilizing 2-phenylbutane, 3-phenylpentane and 4-phenylheptane as the sole carbon and energy source were isolated. 2. Two Nocardia strains capable of utilizing only 3-phenyldodecane as the sole carbon and energy source were isolated. 3. All the isolated strains were unable to grow on the corresponding phenylalkane-p-sulphonates. 4. From liquid cultures of Pseudomonas strains utilizing 2-phenylbutane, 2-(2,3-dihydro-2,3-dihydroxyphenyl)butane was isolated and identified. Evidence for a meta cleavage of the benzene ring was also obtained. 5. From liquid cultures of Pseudomonas strains utilizing 3-phenylpentane, 3-(2,3-dihydro-2,3-dihydroxyphenyl)pentane and 2-hydroxy-7-ethyl-6-oxonona-2,4-dienoic acid were isolated and identified. 6. Evidence for the formation of both a diol and a meta-cleavage compound was obtained from liquid cultures of both Pseudomonas strains utilizing 4-phenylheptane. 7. Liquid cultures of both Nocardia strains utilizing 3-phenyldodecane never formed a diol or a semialdehyde-related compound. 2-Phenylbutyric acid, 3-phenylvaleric acid and 4-phenylhexanoic acid were shown to be present in these cultures.  相似文献   

8.
Wild type Escherichia coli K-12 cannot grow on xylitol and we have been unsuccessful in isolating a mutant directly which had acquired this new growth ability. However, a mutant had been selected previously for growth on -1,2-propanediol as the sole source of carbon and energy. This mutant constitutively synthesized a propanediol dehydrogenase. Recently, we have found that this dehydrogenase fortuitously converted xylitol to -xylose which could normally be metabolized by E. coli K-12. In addition, it was also discovered that the -xylose permease fortuitously transported xylitol into the cell. A second mutant was thus isolated from the -1,2-propanediol-growing mutant that was constitutive for enzymes of the -xylose pathway. This mutant could indeed grow on xylitol as the sole source of carbon and energy, by utilizing the enzymes normally involved in -xylose and -1,2-propanediol metabolism.  相似文献   

9.
Metabolism of D-arabinose: a new pathway in Escherichia coli   总被引:19,自引:16,他引:3       下载免费PDF全文
Several growth characteristics of Escherichia coli K-12 suggest that growth on l-fucose results in the synthesis of all the enzymes necessary for growth on d-arabinose. Conversely, when a mutant of E. coli is grown on d-arabinose, all of the enzymes necessary for immediate growth on l-fucose are present. Three enzymes of the l-fucose pathway in E. coli, l-fucose isomerase, l-fuculokinase, and l-fuculose-l-phospháte aldolase possess activity on d-arabinose, d-ribulose, and d-ribulose-l-phosphate, respectively. The products of the aldolase, with d-ribulose-l-phosphate as substrate, are dihydroxyacetone phosphate and glycolaldehyde. l-Fucose, but not d-arabinose, is capable of inducing these activities in wild-type E. coli. In mutants capable of utilizing d-arabinose as sole source of carbon and energy, these activities are induced in the presence of d-arabinose and in the presence of l-fucose. Mutants unable to utilize l-fucose, selected from strains capable of growth on d-arabinose, are found to have lost the ability to grow on d-arabinose. Enzymatic analysis of cell-free extracts, prepared from cultures of these mutants, reveals that a deficiency in any of the l-fucose pathway enzymes results in the loss of ability to utilize d-arabinose. Thus, the pathway of d-arabinose catabolism in E. coli K-12 is believed to be: d-arabinose right harpoon over left harpoon d-ribulose --> d-ribulose-l-phosphate right harpoon over left harpoon dihydroxyacetone phosphate plus glycolaldehyde. Evidence is presented which suggests that the glycolaldehyde is further oxidized to glycolate.  相似文献   

10.
Wild-type strains of Escherichia coli K-12 cannot grow in media with gamma-aminobutyrate (GABA) as the sole source of carbon or nitrogen. Mutants were isolated which could utilize GABA as the sole source of nitrogen. These mutants were found to have six- to ninefold higher activities of gamma-aminobutyrate-alpha-ketoglutarate transaminase (EC 2.6.1.19) and succinate semialdehyde dehydrogenase (EC 1.2.1.16) than those of the wild-type parent strains. Secondary mutants derived from these GABA-nitrogen-utilizing strains were able to grow on GABA as the sole source of carbon and nitrogen. They also grew faster on a variety of other carbon and nitrogen sources, and their growth was more strongly inhibited by different metabolic inhibitors than was that of the parent strains. The nature of the two mutations and the possible genes involved are discussed. A scheme of the pathway for GABA breakdown in E. coli K-12 is presented.  相似文献   

11.
The human intestinal microbiota may influence the fate of bioactive polyphenols, such as the isoflavone puerarin (daidzein 8-C-glucoside), following their oral intake. Faecal suspensions from 19 healthy subjects were tested for their ability to C-deglycosylate puerarin. Only one of these catalysed this reaction. A rod-shaped Gram-positive bacterium, strain CG19-1, capable of deglycosylating puerarin to daidzein was isolated from the corresponding suspension. However, the strictly anaerobic isolate was unable to utilize puerarin as sole carbon and energy source nor any of the tested carbohydrates. Comparative 16S rRNA gene sequence analysis indicated that strain CG19-1 is a new species of the Lachnospiraceae. Strain CG19-1 also converted other aromatic C-glucosides in addition to puerarin. The xanthone C-glucoside mangiferin was deglycosylated to norathyriol. The flavone C-glucosides homoorientin and vitexin were degraded to 3-(3,4-dihydroxyphenyl)propionic acid via luteolin and 3-(4-hydroxyphenyl)propionic acid respectively. In addition, strain CG19-1 converted flavonoid O-glucosides, but at rates that were lower than those of the C-glucosides tested. The isolate deglycosylated the isoflavone O-glucosides daidzin and genistin to daidzein and genistein respectively. Several O-glucosides of the flavones luteolin and apigenin undergoing deglycosylation were subsequently cleaved to 3-(3,4-dihydroxyphenyl)propionic acid and 3-(4-hydroxyphenyl)propionic acid respectively. Moreover, strain CG19-1 cleaved both O-desmethylangolensin and 6'-hydroxy-O-desmethylangolensin to yield 2-(4-dihydroxyphenyl)propionic acid. The corresponding cleavage product, resorcinol, was only observed for O-desmethylangolensin.  相似文献   

12.
The ability of selected bacterial cultures to synthesize ethylene during growth in nutrient broth supplemented with methionine or 2-oxo-4-methylthiobutyric acid (KMBA) was examined. Although most cultures transformed KMBA into ethylene, only those of Escherichia coli SPAO and Chromobacterium violaceum were able to convert exogenously added methionine to ethylene. In chemically defined media, E. coli SPAO produced the highest amounts of ethylene from methionine and KMBA. This capability was affected by the nature of the carbon source and the type and amount of nitrogen source used for growth. When glutamate was used as sole source of carbon and nitrogen for growth, the activity of the ethylenogenic enzymes was reduced to 25% of that observed with cultures grown with glucose and NH4Cl. Neither methionine nor KMBA significantly affected the ethylenogenic capacity of E. coli SPAO. Menadione and paraquat, compounds that generate superoxide radicals, stimulated ethylene synthesis by harvested cells, but not by cell-free extracts of E. coli SPAO. In addition, cells of Pseudomonas aeruginosa, which produced no ethylene in culture in the presence of exogenously added KMBA, yet possessed the necessary enzymes in an active form, were able to synthesize ethylene from KMBA when incubated with menadione or paraquat.  相似文献   

13.
The carbon skeleton of glucose is extensively randomized during conversion to cell wall glucosamine by Escherichia coli K-12. Exogenous glucosamine-1-(14)C is selectively oxidized, and isotope incorporation into cellular glucosamine is greatly diluted during assimilation. A mutant unable to grow with N-acetylglucosamine as a carbon and energy source was isolated from E. coli K-12. This mutant was found to be defective in glucosamine-6-phosphate deaminase. Glucosamine-1-(14)C and N-acetylglucosamine-1-(14)C were assimilated during the growth of mutant cultures without degradation or carbon randomization. Assimilated isotopic carbon resided entirely in cell wall glucosamine and muramic acid. Some isotope dilution occurred from biosynthesis, but at high concentrations (0.2 mm) of added N-acetylglucosamine nearly all cellular amino sugar was derived from the exogenous source. Growth of the mutant was inhibited with 1 mmN-acetylglucosamine.  相似文献   

14.
For the purpose of assessing in vivo the importance of 2,4-dienoyl-CoA reductase (EC 1.3.1.34) in the beta-oxidation of unsaturated fatty acids, reductase mutants of Escherichia coli were isolated by selecting cells that were able to grow on oleate but not on petroselinic acid (6-cis-octadecenoic acid). One mutant (fadH) exhibited 12% of the 2,4-dienoyl-CoA reductase activity present in the parental strain with other beta-oxidation enzymes being essentially unaffected. Antireductase antibodies were used to show that the mutant contains a fadH gene product at a level similar to that observed in the parental strain. Thus, the mutation seems to have resulted in the synthesis of a fadH gene product with lower specific activity. The mutation was mapped in the 71-75-min region of the E. coli chromosome where no other gene for beta-oxidation enzymes has so far been located. Complementation of the mutation by F'141, which carries the 67-75.5-min region of the E. coli genome, resulted in an increase in the 2,4-dienoyl-CoA reductase activity to 80% of the level found in the parental strain. Measurements of respiration with petroselinic acid as the substrate showed rates to be linearly dependent on the 2,4-dienoyl-CoA reductase activity up to levels found in wild-type E. coli. 2,4-Dienoyl-CoA reductase, like other enzymes of beta-oxidation, was induced when E. coli was grown on a long chain fatty acid as the sole carbon source. It is concluded that 2,4-dienoyl-CoA reductase is required in vivo for the beta-oxidation of unsaturated fatty acids with double bonds extending from even-numbered carbon atoms.  相似文献   

15.
Wild type Escherichia coli K-12 cannot grow on xylitol and we have been unsuccessful in isolating a mutant directly which had acquired this new growth ability. However, a mutant had been selected previously for growth on L-1,2-propanediol as the sole source of carbon and energy. This mutant constitutively synthesized a propanediol dehydrogenase. Recently, we have found that this dehydrogenase fortuitously converted xylitol to D-xylose which could normally be metabolized by E. coli K-12. In addition, it was also discovered that the D-xylose permease fortuitously transported xylitol into the cell. A second mutant was thus isolated from the L-1,2-propanediol-growing mutant that was constitutive for enzymes of the D-xylose pathway. This mutant could indeed grow on xylitol as the sole source of carbon and energy, by utilizing the enzymes normally involved in D-xylose and L-1,2-propanediol metabolism.  相似文献   

16.
d-Arabinose isomerase (EC 5.3.1.3) has been isolated from l-fucose-induced cultures of Escherichia coli K-12 and d-arabinose-induced cultures of E. coli B/r. Both enzymes were homogeneous in an ultracentrifuge and migrated as single bands upon disc electrophoresis in acrylamide gels. The s(20,w) was 14.5 x 10(-13) sec for the E. coli K-12 enzyme and 14.3 x 10(-13) sec for the E. coli B/r enzyme. The molecular weight, determined by high-speed sedimentation equilibrium, was 3.55 +/- 0.06 x 10(5) for the E. coli K-12 enzyme and 3.42 +/- 0.04 x 10(5) for the enzyme isolated from E. coli B/r. Both enzyme preparations were active wth l-fucose or d-arabinose as substrates and showed no activity on any of the other aldopentoses or aldohexoses tested. With the E. coli K-12 enzyme, the K(m) was 2.8 x 10(-1)m for d-arabinose and 4.5 x 10(-2)m for l-fucose; with the E. coli B/r enzyme, the K(m) was 1.7 x 10(-1)m for d-arabinose and 4.2 x 10(-2)m for l-fucose. Both enzymes were inhibited by several of the polyalcohols tested, ribitol, l-arabitol, and dulcitol being the strongest. Both enzymes exhibited a broad plateau of optimal catalytic activity in the alkaline range. Both enzymes were stimulated by the presence of Mn(2+) or Co(2+) ions, but were strongly inhibited by the presence of Cd(2+) ions. Both enzymes were precipitated by antisera prepared against either enzyme preparation. The amino acid composition for both proteins has been determined; a striking similarity has been detected. Both enzymes could be dissociated, by protonation at pH 2 or by dialysis against buffer containing 8 m urea, into subunits that were homogeneous in an ultracentrifuge and migrated as single bands on disc electrophoresis in acrylamide gels containing urea. The molecular weight of the subunit, determined by high-speed sedimentation equilibrium, was 9.09 +/- 0.2 x 10(4) for the enzyme from E. coli K-12 and 8.46 +/- 0.1 x 10(4) for the enzyme from E. coli B/r. On the basis of biophysical studies, both isomerases appear to be oligomeric proteins consisting of four identical subunits.  相似文献   

17.
The Escherichia coli phn (psiD) locus encodes genes for phosphonate (Pn) utilization, for phn (psiD) mutations abolish the ability to use as a sole P source a Pn with a substituted C-2 or unsubstituted hydrocarbon group such as 2-aminoethylphosphonate (AEPn) or methylphosphonate (MPn), respectively. Even though the E. coli K-12 phosphate starvation-inducible (psi) phn (psiD) gene(s) shows normal phosphate (Pi) control, Pn utilization is cryptic in E. coli K-12, as well as in several members of the E. coli reference (ECOR) collection which are closely related to K-12. For these bacteria, an activating mutation near the phn (psiD) gene is necessary for growth on a Pn as the sole P source. Most E. coli strains, including E. coli B, are naturally Phn+; a few E. coli strains are Phn- and are deleted for phn DNA sequences. The Phn+ phn(EcoB) DNA was molecularly cloned by using the mini-Mu in vivo cloning procedure and complementation of an E. coli K-12 delta phn mutant. The phn(EcoB) DNA hybridized to overlapping lambda clones in the E. coli K-12 gene library (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987) which contain the 93-min region, thus showing that the phn (psiD) locus was itself cloned and verifying our genetic data on its map location. The cryptic phn(EcoK) DNA has an additional 100 base pairs that is absent in the naturally Phn+ phn(EcoB) sequence. However, no gross structural change was detected in independent Phn+ phn(EcoK) mutants that have activating mutations near the phn locus.  相似文献   

18.
Bacteria were enriched from soil samples with succinate as carbon source and racemic 2-phenylpropionitrile as sole source of nitrogen. One of the isolates, strain d3, converted (R,S)-2-phenylpropionitrile with high enantioselectivity to (S)-2-phenylpropionic acid. Strain d3 was identified as Agrobacterium tumefaciens. Resting cells hydrolysed 2-phenylpropionitrile via 2-phenylpropionamide to 2-phenylpropionic acid. Racemic 2-phenylpropionitrile as well as 2-phenylpropionamide were converted to (S)-2-phenylpropionic acid with an enantiometric excess above 96%. The nitrile hydratase and the amidase were both shown to convert preferentially the S enantiomer of their respective substrate. These two enzymes were induced in the presence of (R,S)-2-phenylpropionitrile but only in the absence of ammonia. In addition to 2-phenylpropionitrile strain d3 could utilize various aliphatic and aromatic nitriles as nitrogen sources. Resting cells of strain d3 also converted (R,S)-2-phenylbutyronitrile, ibuprofen nitrile, ketoprofen nitrile and -aminophenylacetonitrile with high enantioselectivity. The nitrile- and amide-converting enzyme activities were also found in cell-free extracts.  相似文献   

19.
Long chain fatty acids are converted to acyl-CoAs by acyl-CoA synthetase (fatty acid CoA ligase: AMP forming, E.C. 6.2.1.3; ACS). Escherichia coli has a single ACS, FadD, that is essential for growth when fatty acids are the sole carbon and energy source. Rodents have five ACS isoforms that differ in substrate specificity, tissue expression, and subcellular localization and are believed to channel fatty acids toward distinct metabolic pathways. We expressed rat ACS isoforms 1-5 in an E. coli strain that lacked FadD. All rat ACS isoforms were expressed in E. coli fadD or fadDfadR and had ACS specific activities that were 1.6-20-fold higher than the wild type control strain expressing FadD. In the fadD background, the rat ACS isoforms 1, 2, 3, 4 and 5 oxidized [(14)C]oleate at 5 to 25% of the wild type levels, but only ACS5 restored growth on oleate as the sole carbon source. To ensure that enzymes of beta-oxidation were not limiting, assays of ACS activity, beta-oxidation, fatty acid transport, and phospholipid synthesis were also examined in a fadD fadR strain, thereby eliminating FadR repression of the transporter FadL and the enzymes of beta-oxidation. In this strain, fatty acid transport levels were low but detectable for ACS1, 2, 3, and 4 and were nearly 50% of wild type levels for ACS5. Despite increases in beta-oxidation, only ACS5 transformants were able to grow on oleate. These studies show that although ACS isoforms 1-4 variably supported moderate transport activity, beta-oxidation, and phospholipid synthesis and although their in vitro specific activities were greater than that of chromosomally encoded FadD, they were unable to substitute functionally for FadD regarding growth. Thus, membrane composition and protein-protein interactions may be critical in reconstituting bacterial ACS function.  相似文献   

20.
Resolution of 2-(3-indolyl)propionic acid was achieved via biocatalytic hydrolysis of its chloroethyl ester. Of the enzymes tested, Mucor javanicus lipase (R selectivity) and -chymotrypsin (S selectivity) had high reactivity and enantioselectivity (E value > 50). Neither enzyme showed enantioselectivity (E value = 1) for 2-phenylpropionic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号