首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method, based on hollow fiber liquid-phase microextraction (HF-LPME) and gas chromatography–tandem mass spectrometry (GC–MSMS), was developed for determination of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) in samples of human hair. Since hair is a solid matrix, the samples were subjected to alkaline digestion using NaOH. The aqueous solutions obtained were extracted using a 6 cm polypropylene fiber (600 μm i.d., 200 μm wall thickness, 0.2 μm pore size) for each extraction. A 25−1 fractional factorial design for screening, and a central composite design for optimization of significant variables, was applied during development of the extraction method. The variables evaluated were the type of extraction solvent, pH, stirring speed, extraction time, and acceptor phase volume. The optimized conditions for the proposed extraction procedure were 10 mg of hair sample; 20 μL of butyl acetate; aqueous (pH 14) donor phase containing 6.8% NaCl; 600 rpm stirring speed; 20 min extraction time. A linear response was obtained in the ranges 1–500 pg mg−1 (CBD and CBN) and 20–500 pg mg−1 (THC), with regression coefficients >0.99. Precision, determined as the relative standard deviation, was 3.3–8.9% (intra-day) and 4.4–13.7% (inter-day). Absolute recoveries varied in the ranges 4.4–4.8% (CBD), 7.6–8.9% (THC) and 7.7–8.2% (CBN). Limits of detection (LOD, S/N = 3) and quantification (LOQ, S/N = 10) were 0.5–15 pg mg−1 and 1–20 pg mg−1, respectively. The method was successfully used to determine CBD, THC and CBN in hair samples from patients in a drug dependency rehabilitation center. Concentrations varied in the ranges 1–18 pg mg−1 (CBD), 20–232 pg mg−1 (THC) and 9–107 pg mg−1 (CBN), confirming the suitability of the method for monitoring studies.  相似文献   

2.
Recent analysis of the cannabinoid content of cannabis plants suggests a shift towards use of high potency plant material with high levels of Δ9-tetrahydrocannabinol (THC) and low levels of other phytocannabinoids, particularly cannabidiol (CBD). Use of this type of cannabis is thought by some to predispose to greater adverse outcomes on mental health and fewer therapeutic benefits. Australia has one of the highest per capita rates of cannabis use in the world yet there has been no previous systematic analysis of the cannabis being used. In the present study we examined the cannabinoid content of 206 cannabis samples that had been confiscated by police from recreational users holding 15 g of cannabis or less, under the New South Wales “Cannabis Cautioning” scheme. A further 26 “Known Provenance” samples were analysed that had been seized by police from larger indoor or outdoor cultivation sites rather than from street level users. An HPLC method was used to determine the content of 9 cannabinoids: THC, CBD, cannabigerol (CBG), and their plant-based carboxylic acid precursors THC-A, CBD-A and CBG-A, as well as cannabichromene (CBC), cannabinol (CBN) and tetrahydrocannabivarin (THC-V). The “Cannabis Cautioning” samples showed high mean THC content (THC+THC-A = 14.88%) and low mean CBD content (CBD+CBD-A = 0.14%). A modest level of CBG was detected (CBG+CBG-A = 1.18%) and very low levels of CBC, CBN and THC-V (<0.1%). “Known Provenance” samples showed no significant differences in THC content between those seized from indoor versus outdoor cultivation sites. The present analysis echoes trends reported in other countries towards the use of high potency cannabis with very low CBD content. The implications for public health outcomes and harm reduction strategies are discussed.  相似文献   

3.
Cannabinoids reduce fertility of sea urchin sperm   总被引:1,自引:0,他引:1  
Cannabinoids are potent pharmacological substances derived from marihuana. The effects of delta 9-tetrahydrocannabinol (THC), cannabinol (CBN), and cannabidiol (CBD) on fertilization in the sea urchin Strongylocentrotus purpuratus were investigated. Insemination of THC-treated eggs (5-400 microM) with excess sperm did not result in polyspermic fertilization. At minimal sperm densities, THC (0.1-10 microM) inhibited fertilization in a dose-dependent manner. Pretreatment of eggs with THC did not reduce their receptivity to sperm. Pretreatment of sperm with THC reduced their fertilizing capacity. The concentration of THC required to reduce sperm fertility by 50% was 1.1 +/- 1.1 microM. The fertilizing capacity of THC-treated sperm depended on concentration of sperm and duration of pretreatment. The fertility of sperm at minimal densities was reduced by 50% at 129.3 +/- 43 s treatment with 10 microM THC. The adverse effect of THC on sperm fertility was reversible. CBN and CBD at comparable concentrations (0.1-10 microM) inhibited fertilization in a manner similar to THC. First division was not delayed in zygotes that were fertilized with sperm pretreated with 10 microM THC. These studies show that cannabinoids directly affect the process of fertilization in sea urchins by reducing the fertilizing capacity of sperm.  相似文献   

4.
H N Bhargava  A Gulati 《Peptides》1988,9(4):771-775
The effect of naturally occurring cannabinoids, delta 9-tetrahydrocannabinol (THC), cannabinol (CBN) and cannabidiol (CBD), on the brain receptors for thyrotropin releasing hormone (TRH) was investigated. TRH receptors were labeled with 3H-(3-MeHis2)TRH (3H-MeTRH). 3H-MeTRH bound specifically to rat brain membranes at a single high affinity site with a Bmax value of 49.2 +/- 0.96 fmol per mg protein and a Kd value of 3.83 +/- 0.12 nM. The binding of 3H-MeTRH to whole brain membranes was inhibited when rats were injected intraperitoneally with 3 to 30 mg/kg of THC. The extent of inhibition in the binding at 10 and 30 mg/kg was similar. THC (10 mg/kg) significantly inhibited the binding of 3H-MeTRH to amygdala membranes but did not affect the binding to membranes prepared from hippocampus, septum, cortex, striatum and the rest of the brain. THC, CBN and CBD in doses of 3 to 30 mg/kg did not affect the binding of 3H-MeTRH to hypothalamic membranes. All the three cannabinoids at 30 mg/kg inhibited the binding of 3H-MeTRH to amygdala membranes. The inhibition in the binding of 3H-MeTRH by the cannabinoids was due to changes in the Kd values but the Bmax values remained unchanged. It is concluded that both psychotomimetic and nonpsychotomimetic cannabinoids inhibit the binding of 3H-MeTR to amygdala membranes selectively, which is accomplished by decreases in the affinity of the ligand to receptors, and the amygdala may be an important brain area in some of the actions of cannabinoids.  相似文献   

5.
Opiates were extracted from sixteen hair samples of drug addicts using a supercritical fluid extraction method with supercritical carbon dioxide and a modifier solution of methanol-triethylamine-water (2:2:1, v/v). The concentrations, as determined by GC-MS, ranged from 1.22 to 21.73 (mean 7.60 ng/mg), 0.17 to 1.54 (mean 0.69 ng/mg) and 0.15 to 14.09 ng/mg hair (mean 3.78 ng/mg) for codeine, morphine and 6-monoacetylmorphine, respectively. The reproducibility of the total procedure had a relative standard deviation of 13%, 17% and 14% for codeine, morphine and 6-monoacetylmorphine, respectively. By this method, concentrations of 0.3, 0.2 and 0.1 ng/mg hair for codeine, morphine and 6-monoacetylmorphine, respectively, could be detected. Relative extraction recoveries were 61%, 53% and 96% for codeine, morphine and 6-monoacetylmorphine, respectively.  相似文献   

6.
Blood coagulation studies were conducted to determine the possible anti-/prothrombotic effect of an organic cannabis extract and the three major cannabinoids, THC, CBD and CBN. The in vitro effect of the cannabis extract on thrombin activity produced an IC50 value of 9.89 mg/ml, compared to THC at 1.79 mg/ml. It was also found that the extract, THC and CBN showed considerable inhibition of thrombin-induced clot formation in vitro with IC50 values of 600, 87 and 83 microg/ml for the extract, THC and CBN respectively. In an in vivo model used to determine clotting times of lean and obese rats treated with a cannabis extract, 50% clotting times were found to be 1.5 and 2 fold greater than their respective control groups, supporting the results obtained in the in vitro model. The study thus shows that Cannabis sativa and the cannabinoids, THC and CBN, display anticoagulant activity and may be useful in the treatment of diseases such as type 2 diabetes in which a hypercoagulable state exists.  相似文献   

7.
GC is commonly used for the analysis of cannabis samples, e.g. in forensic chemistry. However, as this method is based on heating of the sample, acidic forms of cannabinoids are decarboxylated into their neutral counterparts. Conversely, HPLC permits the determination of the original composition of plant cannabinoids by direct analysis. Several HPLC methods have been described in the literature, but most of them failed to separate efficiently all the cannabinoids or were not validated according to general guidelines. By use of an innovative methodology for modelling chromatographic responses, a simple and accurate HPLC/DAD method was developed for the quantification of major neutral and acidic cannabinoids present in cannabis plant material: Δ9-tetrahydrocannabinol (THC), THC acid (THCA), cannabidiol (CBD), CBD acid (CBDA), cannabigerol (CBG), CBG acid (CBGA) and cannabinol (CBN). Δ8-Tetrahydrocannabinol (Δ8-THC) was determined qualitatively. Following the practice of design of experiments, predictive multilinear models were developed and used in order to find optimal chromatographic analytical conditions. The method was validated following an approach using accuracy profiles based on β-expectation tolerance intervals for the total error measurement, and assessing the measurements uncertainty. This analytical method can be used for diverse applications, e.g. plant phenotype determination, evaluation of psychoactive potency and control of material quality.  相似文献   

8.
Repeated oral administration of the non-psychoactive cannabinol (CBN; 5 or 50 mg/kg) significantly reduced the concentration of norepinephrine (NE) in median eminence and greatly reduced NE levels 1 and 2 hrs after administration of alpha-methylparatyrosine (alpha-MPT). The levels of dopamine (DA) in median eminence were significantly different, as indicated by the differences in slopes obtained in CBN- treated and control mice before and after alpha-MPT. Plasma levels of luteinizing hormone (LH) were significantly reduced in CBN-exposed mice before alpha-MPT, elevated at 1 hr post-injection, but were also reduced 2 hrs post-injection at 50 mg/kg CBN. Follicle-stimulating hormone (FSH) levels were increased at 1 hr post-alpha-MPT in mice receiving 50 mg/kg CBN. Oral administration of CBN at 50 mg/kg for 4 days enhanced testicular testosterone (T) production in response to intratesticular in vivo injection of 2.5 or 25 mIU human chorionic gonadotropin (hCG). A single oral dose of the psychoactive delta 9-tetrahydrocannabinol (THC) enhanced the production of T 15 min after intratesticular LH (10 ng) injection. However, at 45 or 60 min post-THC treatment, the response to LH was significantly attenuated. These studies demonstrate that both psychoactive and non-psychoactive components of marihuana alter testicular responsiveness to gonadotropins in vivo. These effects may be biphasic, involving stimulation and inhibition of responsiveness, and appear to be correlated with alterations in plasma LH levels. Alterations in plasma gonadotropins may be mediated by cannabinoid effects on catecholamine concentrations in median eminence and THC-induced alterations in testicular responsiveness to gonadotropin probably also involve direct effects of THC at the gonadal level.  相似文献   

9.
delta 9-Tetrahydrocannabinol (THC) and two other major cannabinoids derived from marihuana--cannabidiol (CBD) and cannabinol (CBN)--inhibit fertilization in the sea urchin Strongylocentrotus purpuratus by reducing the fertilizing capacity of sperm (Schuel et al., 1987). Sperm fertility depends on their motility and on their ability to undergo the acrosome reaction upon encountering the egg's jelly coat. Pretreatment of S. purpuratus sperm with THC prevents triggering of the acrosome reaction by solubilized egg jelly in a dose (0.1-100 microM) and time (0-5 min)-dependent manner. Induction of the acrosome reaction is inhibited in 88.9 +/- 2.3% of sperm pretreated with 100 microM THC for 5 min, while motility of THC-treated sperm is not reduced compared to solvent (vehicle) and seawater-treated controls. The acrosome reaction is inhibited 50% by pretreatment with 6.6 microM THC for 5 min and with 100 microM THC after 20.8 sec. CBN and CBD at comparable concentrations inhibit the acrosome reaction by egg jelly in a manner similar to THC. THC does not inhibit the acrosome reaction artificially induced by ionomycin, which promotes Ca2+ influx, and nigericin, which promotes K+ efflux. THC partially inhibits (20-30%) the acrosome reaction induced by A23187, which promotes Ca2+ influx, and NH4OH, which raises the internal pH of the sperm. Addition of monensin, which promotes Na+ influx to egg jelly or to A23187, does not overcome the THC inhibition. Inhibition of the egg jelly-induced acrosome reaction by THC produces a corresponding reduction in the fertilizing capacity of the sperm. The adverse effects of THC on the acrosome reaction and sperm fertility are reversible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A novel high-performance liquid chromatographic separation method with tandem-mass spectrometry detection was developed for the simultaneous determination of Delta(9)-tetrahydrocannabinol (THC) and its major metabolites 11-hydroxy-Delta(9)-tetrahydrocannabinol (11-OH-THC) and 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) as well as the components cannabidiol (CBD) and cannabinol (CBN) in human EDTA-plasma and urine. Run time was 25 min. Lower limit of quantification was 0.2 ng/ml. The coefficients of variation of all inter- and intra-assay determinations were between 1.3 and 15.5%. The method was successfully applied to the determination of cannabinoids in human plasma and human urine after administration of Delta(9)-tetrahydrocannabinol or Cannabis sativa extracts.  相似文献   

11.
新疆洋海古代大麻叶的大麻酚分析(英文)   总被引:1,自引:0,他引:1  
为了检测新疆吐鲁番地区洋海古墓中2500年前大麻叶中两个大麻酚:四氢大麻酚(THC)与大麻二酚(CBD),采用高压液相分析技术(HPLC)测定26.716 g大麻叶中THC与CBD的含量分别为0.2928 mg与0.2830 mg,占叶重量的(0.110%)%与(0.106%)%。THC与CBD标准品从现代大麻叶中分离得到,通过波谱分析鉴定。  相似文献   

12.
A simple determination method of amphetamine (AP) and methamphetamine (MA) in biological materials was developed using on-column derivatization and gas chromatography-mass spectrometry (GC-MS). AP and MA in biological materials were adsorbed on the surface of Extrelut and then extracted and derivatized simultaneously on the Extrelut column. AP and MA were derivatized to the N-propoxycarbonyl derivatives using propylchloroformate. Pentadeuterated MA was used as an internal standard. The recoveries of AP and MA from urine were 88.2 and 92.5%, and those from blood were 89.7 and 90.3%, respectively. The calibration curves showed linearity in the range of 12.5-2000 ng/ml (ng/g) for AP and MA in urine and blood, and 0.25-20 ng/mg in hair. When urine samples containing two different concentrations (200 and 1000 ng/ml) of AP and MA, blood samples containing two different concentrations (200 and 1000 ng/g) of AP and MA, hair samples containing two different concentrations (0.5 and 5.0 ng/mg) of AP and MA, the coefficients of variation of intra-day and inter-day were 0.68-3.60% in urine, 0.42-4.58% in blood, and 1.20-13.1% in hair. Furthermore, this proposed method was applied to a medico-legal case of MA intoxication.  相似文献   

13.
Pretreatment of Strongylocentrotus purpuratus sperm with delta 9-tetrahydrocannabinol (THC) prevents the triggering of the acrosome reaction by egg jelly. Examination of THC-treated sperm by transmission electron microscopy reveals that the membrane fusion reaction between the sperm plasma membrane and the acrosomal membrane is completely blocked. Electron-dense deposits are present in the subacrosomal fossa and in the centriolar fossa. The nuclear envelope is fragmented in close proximity to the electron-dense deposits. The electron-dense deposits are not bound by a limiting membrane, stain positively for lipid with thymol and farnesol, and disappear from THC-treated sperm that are extracted with chloroform:methanol (2:1) after glutaraldehyde fixation. The electron-dense deposits are lipid in nature and may be a hydrolytic product of the nuclear envelope. Electron-dense deposits are seen in sperm after 1-10 min treatment with 5-100 microM THC. The electron-dense deposits disappear after removal of THC from the sperm by washing, but the fragmented nuclear envelope in the subacrosomal fossa persists. Cannabidiol (CBD) and cannabinol (CBN) also inhibit the triggering of the acrosome reaction by egg jelly and produce ultrastructural changes in the sperm identical to those elicited by THC. Enhanced phospholipase activity stimulated by THC, CBD, and CBN may be the cause of the accumulation of lipid deposits in the sperm. Metabolites derived from this modification of membrane phospholipids may prevent triggering of the acrosome reaction by egg jelly and thereby inhibit fertilization.  相似文献   

14.
A validated method for the quantification of Delta(9)-tetrahydrocannabinol (THC) and its main metabolites 11-hydroxy-tetrahydrocannabinol (OH-THC) and 11-nor-9-carboxy-tetrahydrocannabinol (THC-COOH) in serum is presented. The substances were isolated by solid-phase extraction, derivatised by methylation, and analysed by means of GC-MS in the selected ion monitoring mode. Quantitation was achieved by the addition of deuterated analogues as internal standards. The method was linear up to 10 ng/ml for THC and OH-THC, and up to 50 ng/ml for THC-COOH. The limits of quantification were 0.62 ng/ml for THC, 0.68 ng/ml for OH-THC and 3.35 ng/ml for THC-COOH. The limits of detection for the least intensive ions were 0.52 ng/ml for THC, 0.49 ng/ml for OH-THC and 0.65 ng/ml for THC-COOH. The method was validated according to the requirements of the Journal of Chromatography B. The method has been routinely used on samples from drivers suspected of "driving under the influence". In addition to the forensic application, a cross-validation was carried out by applying the method developed for serum to human liver microsomal preparation samples.  相似文献   

15.
The major psychoactive Δ9-tetrahydrocannabinol (THC) and the non-psychoactive cannabinol (CBN) of cannabidiol (CBD) can both stimulate and inhibit testicular testosterone (T) production in vitro and in vivo. At nanomolar concentrations, these cannabinoids stimulate T production by decapsulated mouse testes while, in micromolar amounts, the effects are markedly inhibitory.  相似文献   

16.
A Langendorff perfused rat heart preparation was designed to process dose-response effects of cardioactive drugs on rate, coronary flow, and supraaortic differential pressure (delta P; an index of cardiac performance). In this preparation, delta 9- -tetrahydrocannabinol (THC) 2 X 10(-6) M to 10(-5) M induces in the isolated perfused rat heart a biphasic increase in rate (maximal at 8 X 10(-6) M). Tachycardia is associated with decreases in (delta P) and no change or decreased coronary flow. Cardiac toxicity is observed with 3 X 10(-5) M. Cannabidiol (CBD) at concentrations of 9 X 10(-6) M to 10(-4) M has limited effect on rate while increasing delta P and coronary flow. Cannabinol (CBN) 8 X 10(-6) M to 3 X 10(-4) M depresses rate and delta P while coronary flow remains constant. Simultaneous equimolar administration of THC with CBD antagonizes or mitigates the cardiac effects of THC on rate, delta P, and coronary flow.  相似文献   

17.
Hair samples were obtained at various time periods from male Sprague-Dawley rats following the injection of cocaine hydrochloride in doses of 5, 10, and 20 mg/kg, ip, for 28 days. Hair samples were also taken continually after the dosing was stopped until the presence of cocaine and benzoylecgonine were no longer detected in hair. Cocaine and benzoylecgonine in hair and plasma were analyzed by gas chromatography/mass spectrometry. Both cocaine and benzoylecgonine were found in hair samples 4 days after the initiation of cocaine administration. When cocaine dosing was stopped after 28 days, approximately 25 to 30 days were required for cocaine and benzoylecgonine to disappear from rat hair in the group of animals that received the highest dose of cocaine. The disappearance of cocaine and benzoylecgonine followed first-order kinetics. The mean rate constant and mean half-life for cocaine disappearance from hair were 0.212 +/- 0.005 day-1 and 3.31 +/- 0.09 days, respectively, and the mean rate constant and mean half-life for benzoylecgonine disappearance from hair were 0.098 +/- 0.006 day-1 and 6.90 +/- 0.28 days, respectively. The mean plasma concentrations of cocaine on Day 25 for the 5, 10, and 20 mg/kg doses of cocaine were 508 +/- 42, 852 +/- 95, and 2027 +/- 75 ng/mL, respectively, and the mean plasma benzoylecgonine levels for the 5, 10, and 20 mg/kg doses of cocaine were 49.9 +/- 7.0, 103.3 +/- 9.3, and 191.0 +/- 16.0 ng/mL, respectively. There was a positive correlation between the doses of cocaine hydrochloride administered and the plasma levels of both cocaine and benzoylecgonine. This study showed that cocaine and benzoylecgonine can be measured in rat hair following the administration of cocaine and that it was possible to correlate the concentrations of cocaine and benzoylecgonine found in hair with the doses of cocaine that were administered.  相似文献   

18.
In the present work, a method was developed aiming at the serial detection of tetrahydrocannabinol (THC), amphetamine, methamphetamine, cocaine and ethanol in saliva. Saliva samples were submitted to an initial headspace procedure for ethanol determination by gas chromatography/flame ionization detector (GC-FID). After this step, two consecutive solid-phase micro-extractions (SPME) were carried out: THC was extracted by submersing a polydimethylsiloxane fiber (100 micro m) in the vial for 20 min; amphetamine, methamphetamine and cocaine were subsequently extracted after alkalinization. Derivatization of the amphetamines was carried out directly in the solution by adding 2 micro l of butylchloroformate. Gas chromatography-mass spectrometry (GC-MS) was used to identify the analytes in selected ion monitoring (SIM) mode. Confidence parameters of validation of the method were: recovery, linearity, intra- and inter-assay precision as well as limits of detection and quantification of the analytes. The limits of quantification (LOQ) obtained were: ethanol (0.010 g/l); amphetamine (5.0 ng/ml); methamphetamine (0.5 ng/ml); cocaine (5 ng/ml) and THC (5 ng/ml). The method proved to be highly precise (coefficient of variation<8%) for all detected substances.  相似文献   

19.
A method is described for the simultaneous identification and quantification of opiates, amphetamines, cocainics, diazepam and nordiazepam from one hair extract (typically 10-50mg hair). After decontamination by washing with shampoo, dichloromethane, isopropanol and acetone, drugs were extracted using 0.1M HCl followed by SPE clean-up using mixed-mode extraction cartridges. The SPE extracts were submitted to a two-step derivatisation using MBTFA and MSTFA+1% TCMS and analysis was performed by GC-MS using both SIM and scan modes. Four deuterated standards were used to monitor 14 compounds. The limit of quantification was the total drug detected from the sample. This was 5 ng for amphetamines and 10 ng for remaining drugs which is equivalent to 0.1 and 0.2 ng/mg from a 50mg sample. Standard curves for the range 5-400 ng total drug concentration for all drugs had regression coefficients greater than 0.98. An authentic hair sample was used to validate the method and gave R.S.D.s <25% for both inter and intra-day reproducibility. The results of the analysis of hair taken from four patients attending a drug treatment clinic and six hair samples including head hair, pubic hair, axial hair and beard taken at post-mortem are presented.  相似文献   

20.
7-dehydrocholesterol (7-DHC) and cholesterol (CHOL) are biomarkers of Smith-Lemli-Opitz Syndrome (SLOS), a congenital autosomal recessive disorder characterized by elevated 7-DHC level in patients. Hair samples have been shown to have great diagnostic and research value, which has long been neglected in the SLOS field. In this study, we sought to investigate the feasibility of using hair for SLOS diagnosis. In the presence of antioxidants (2,6-ditert-butyl-4-methylphenol and triphenylphosphine), hair samples were completely pulverized and extracted by micro-pulverized extraction in alkaline solution or in n-hexane. After microwave-assisted derivatization with N,O-Bis(trimethylsilyl)trifluoroacetamide, the analytes were measured by GC-MS. We found that the limits of determination for 7-DHC and CHOL were 10 ng/mg and 8 ng/mg, respectively. In addition, good linearity was obtained in the range of 50–4000 ng/mg and 30–6000 ng/mg for 7-DHC and CHOL, respectively, which fully meets the requirement for SLOS diagnosis and related research. Finally, by applying the proposed method to real hair samples collected from 14 healthy infants and two suspected SLOS patients, we confirmed the feasibility of hair analysis as a diagnostic tool for SLOS. In conclusion, we present an optimized and validated analytical method for the simultaneous determination of two SLOS biomarkers using human hair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号