首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human skeletal natural actomyosin contained actin, tropomyosin, troponin and myosin components as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Purified human myosin contained at least three light chains having molecular weights (+/-2000) of 25 000, 18 000 and 15 000. Inhibitory and calcium binding components of troponin were identified in an actin-tropomyosin-troponin complex extracted from acetone-dried muscle powder at 37 degrees C. Activation of the Mg-ATPase activity of Ca2+-sensitive human natural or reconstituted actomyosin was half maximal at approximately 3.4 muM Ca2+ concentration (CaEGTA binding constant equals 4.4 - 10(5) at pH 6.8). Subfragment 1, isolated from the human heavy meromyosin by digestion with papain, appeared as a single peak after DEAE-cellulose chromatography. In the pH 6-9 range, the Ca2+-ATPase activity of the subfragment 1 was 1.8- and 4-fold higher that the original heavy meromyosin and myosin, respectively. The ATPase activities of human myosin and its fragments were 6-10 fold lower than those of corresponding proteins from rabbit fast skeletal muscle. Human myosin lost approximately 60% of the Ca2+-ATPase activity at pH 9 without a concomitant change in the number of distribution of its light chains. These findings indicate that human skeletal muscle myosin resembles other slow and fast mammalian muscles. Regulation of human skeletal actomyosin by Ca2+ is similar to that of rabbit fast or slow muscle.  相似文献   

2.
The Ca-regulatory system in squid mantle muscle was studied. The findings were as follows. (a) Squid mantle myosin B (squid myosin B) was Ca-sensitive, and its Ca-sensitivity was unaffected by addition of a large amount of rabbit skeletal myosin (skeletal myosin) or rabbit skeletal F-actin (skeletal F-actin). (b) Squid myosin was prepared from the mantle muscle. It showed a heavy chain component and two light chain components in the SDS-gel electrophoretic pattern: the molecular weights of the latter two were 17,000 and 15,000. Actomyosin reconstituted from squid myosin and skeletal (or squid) actin showed Ca-sensitivity in superprecipitation and Mg-ATPase assays. EDTA- treatment had no effect on the Ca-sensitivity of squid myosin. (c) Squid mantle actin (squid actin) was prepared by the method of Spudich and Watt. Hybrid actomyosin reconstituted by using the pure squid actin preparation with skeletal myosin showed no Ca-sensitivity in Mg-ATPase assay, whereas that reconstituted using crude squid actin showed marked Ca-sensitivity. The crude squid actin contained four protein components which were capable of associating with F-actin in 0.1 M KCl, 1 mM MgCl2 and 20 mM Tris-maleate (pH7.5). (d) Native tropomyosin was prepared from squid mantle muscle, and it conferred Ca-sensitivity on skeletal actomyosin as well as on a hybrid actomyosin reconstituted from squid actin and skeletal myosin. (e) Squid native tropomyosin was separated into troponin and tropomyosin fractions by placing it in 0.4 M LiCl at pH 4.7. The troponin fraction was further purified by DEAE-cellulose chromatography. Squid troponin thus obtained was different in mobility from rabbit skeletal or carp dorsal troponin; three bands of squid troponin corresponded to molecular weights of 52,000, 28,000, and 24,000 daltons. It could confer Ca-sensitivity in the presence of tropomyosin on skeletal actomyosin as well as on a hybrid reconstituted from squid actin and skeletal myosin. (f) Squid myosin B, and two hybrid actomyosins were compared as regards Ca and Sr requirements for their Mg-ATPase activities. The myosin-linked regulatory system rather than the thin-filament-linked regulatory system was predominant in squid myosin B. Squid myosin B required higher Ca2+ and Sr2+ concentrations for Mg-ATPase activity; half-maximal activation of Mg-ATPase was obtained at 0.8 micron Ca2+ and 28 micron Sr2+ with skeletal myosin B, and at 2.5 micron Ca2+ and 140 micron Sr2+ with squid myosin B.  相似文献   

3.
Myosin and actin were purified from ascidian smooth muscle. Ascidian myosin contained two classes of light chains and the pH dependence of Ca2+-activated ATPase and the KCl dependence of actin-activated ATPase of ascidian myosin differed from those of vertebrate skeletal myosin. Troponin-tropomyosin complex from ascidian increased the ATPase activity of ascidian reconstituted actomyosin in a Ca2+-dependent manner. Ascidian myosin provided the reconstituted actomyosin with the responsiveness to calcium ions. Two actin isoforms were present in ascidian, which were distinguished by isoelectric points.  相似文献   

4.
The contractile and regulatory proteins of insect flight muscle   总被引:9,自引:2,他引:7       下载免费PDF全文
1. Myosin, actin and the regulatory proteins were prepared from insect flight muscle. 2. The light subunit composition of the myosin differed from that of vertebrate muscle myosin. The ionic strength and pH dependence of the myosin adenosine triphosphatase (ATPase) were measured. 3. Actin was associated with a protein of subunit molecular weight 55000 and was purified by gel filtration. Impure actin had protein bound at a periodicity of about 40nm. 4. Regulatory protein extracts had tropomyosin and troponin components of subunit molecular weight 18000, 27000 and 30000. Crude extracts of regulatory proteins inhibited the ATPase activity of desensitized or synthetic actomyosin; this inhibition was relatively insensitive to high Ca(2+) concentrations. Purified insect regulatory protein produced as much sensitivity to Ca(2+) as did the rabbit troponin-tropomyosin complex. 5. Synthetic actomyosins were made from rabbit and insect proteins. Actomyosins containing insect myosin had a low ATPase activity that was activated by tropomyosin. The Ca(2+) sensitivity of actomyosins containing insect myosin or actin, with added troponin-tropomyosin complex from rabbit, was comparable with that of rabbit actomyosin.  相似文献   

5.
Gary Bailin 《BBA》1976,449(2):310-326
Human skeletal natural actomyosin contained actin, tropomyosin, troponin and myosin components as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Purified human myosin contained at least three light chains having molecular weights (±2000) of 25 000, 18 000 and 15 000. Inhibitory and calcium binding components of troponin were identified in an actin-tropomyosin-troponin complex extracted from acetone-dried muscle powder at 37°C. Activation of the Mg-ATPase activity of Ca2+-sensitive human natural or reconstituted actomyosin was half maximal at approximately 3.4 μM Ca2+ concentration (CaEGTA binding constant = 4.4 · 105 at pH 6.8). Subfragment 1, isolated from the human heavy meromyosin by digestion with papain, appeared as a single peak after DEAE-cellulose chromatography. In the pH 6–9 range, the Ca2+-ATPase activity of the subfragment 1 was 1.8-and 4-fold higher that the original heavy meromyosin and myosin, respectively. The ATPase activities of human myosin and its fragments were 6–10 fold lower than those of corresponding proteins from rabbit fast skeletal muscle. Human myosin lost approximately 60% of the Ca2+-ATPase activity at pH 9 without a concomitant change in the number of distribution of its light chains. These findings indicate that human skeletal muscle myosin resembles other slow and fast mammalian muscles. Regulation of human skeletal actomyosin by Ca2+ is similar to that of rabbit fast or slow muscle  相似文献   

6.
Ca2+ and tropomyosin are required for activation of ATPase activity of phosphorylated gizzard myosin by gizzard actin at less than 1 mM Mg2+, relatively low Ca2+ concentrations (1 microM), producing half-maximal activation. At higher concentrations, Mg2+ will replace Ca2+, 4 mM Mg2+ increasing activity to the same extent as does Ca2+ and abolishing the Ca2+ dependence. Above about 1 mM Mg2+, tropomyosin is no longer required for activation by actin, activity being dependent on Ca2+ between 1 and 4 mM Mg2+, but independent of [Ca2+] above 4 mM Mg2+. Phosphorylation of the 20,000-Da light chain of gizzard myosin is required for activation of ATPase activity by actin from chicken gizzard or rabbit skeletal muscle at all concentrations of Mg2+ employed. The effect of adding or removing Ca2+ is fully reversible and cannot be attributed either to irreversible inactivation of actin or myosin or to dephosphorylation. After preincubating in the absence of Ca2+, activity is restored either by adding micromolar concentrations of this cation or by raising the concentration of Mg2+ to 8 mM. Similarly, the inhibition found in the absence of tropomyosin is fully reversed by subsequent addition of this protein. Replacing gizzard actin with skeletal actin alters the pattern of activation by Ca2+ at concentrations of Mg2+ less than 1 mM. Full activation is obtained with or without Ca2+ in the presence of tropomyosin, while in its absence Ca2+ is required but produces only partial activation. Without tropomyosin, the range of Mg2+ concentrations over which activity is Ca2+-dependent is restricted to lower values with skeletal than with gizzard actin. The activity of skeletal muscle myosin is activated by the gizzard actin-tropomyosin complex without Ca2+, although Ca2+ slightly increases activity. The Ca2+ sensitivity of reconstituted gizzard actomyosin is partially retained by hybrid actomyosin containing gizzard myosin and skeletal actin, but less Ca2+ dependence is retained in the hybrid containing skeletal myosin and gizzard actin.  相似文献   

7.
Bovine aortic tropomyosin has been isolated by DEAE-Sepharose chromatography following isoelectric precipitation and ammonium sulfate fractionation. A single polypeptide [Mr 36 000 on a sodium dodecyl sulfate (SDS)-polyacrylamide gel] was obtained under different electrophoretic conditions. The amino acid composition of bovine tropomyosin was very similar to that of rabbit skeletal muscle; the amino-terminal residue is blocked. The molecular weight of the native tropomyosin (76 000), which is twice that calculated from the SDS-polyacrylamide gel, suggests that the molecule is a dimer. The diffusion coefficient of 3.4 X 10(-7) cm2 s-1 and the frictional coefficient of 1.7 indicate that the molecule is asymmetric. Comparative high-pressure liquid chromatography peptide mapping of rabbit skeletal and bovine aortic tropomyosins shows primary structure variation. Bovine aortic tropomyosin binds calcium under physiological conditions of pH and ionic strength (22 mol of Ca2+/mol of tropomyosin with a Kd of 1.4 mM). Such a property is not shared by skeletal tropomyosin. In low Mg2+ concentration, both skeletal and aortic actin activations of the skeletal myosin ATPase activity are calcium independent. Addition of aortic tropomyosin to a hybrid actomyosin (aortic actin, skeletal myosin) yields an enhancement of the actin activation of the myosin ATPase activity, but the addition of skeletal tropomyosin yields a decrease of this activity. However, both the enhancement and decrease are calcium dependent. Addition of skeletal or aortic tropomyosin to an actomyosin system, where both actin and myosin come from skeletal muscle, yields only an enhancement of the actin activation of the myosin ATPase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A contractile protein closely resembling natural actomyosin (myosin B) of rabbit skeletal muscle was extracted from plasmodia of the slime mold, Physarum polycephalum, by protecting the SH-groups with beta-mercaptoethanol or dithiothreitol. Superprecipitation of the protein induced by Mg2+-ATP at low ionic strength was observed only in the presence of very low concentrations of free Ca2+ ions, and the Mg2+-ATPase [EC 3.6.1.3] reaction was activated 2- to 6-fold by 1 muM of free Ca2+ ions. Crude myosin and actin fractions were separated by centrifuging plasmodium myosin B in the presence of Mg2+-PPi at high ionic strength. The crude myosin showed both EDTA- and Ca2+-activated ATPase activities. The Mg2+-ATPase activity of crude myosin from plasmodia was markedly activated by the addition of pure F-actin from rabbit skeletal muscle. Addition of the F-action-regulatory protein complex prepared from rabbit skeletal muscle as well as the actin fraction of plasmodium caused the same degree of activation as the addition of pure F-actin only in the presence of very low concentrations of Ca2+ ion  相似文献   

9.
Calcium regulation of porcine aortic myosin   总被引:1,自引:0,他引:1  
Calcium regulation of actin-activated porcine aortic myosin MgATPase was studied. The MgATPase of the purified actomyosin was stimulated about 10-fold by 0.1 mM Ca2+. The 20,000 molecular weight light chain subunit (LC20) of myosin was phosphorylated by an endogenous kinase that required Ca2+. Half-maximal activation of both kinase and ATPase occurred at about 0.9 microM Ca2+. Phosphorylated and unphosphorylated myosins, free of actin, kinase, and phosphatase, were purified by gel filtration. The MgATPase of phosphorylated myosin was activated by rabbit skeletal muscle actin; unphosphorylated myosin was actin activated to a much lesser extent. Actin activation was maximal in the presence of Ca2+. Regulation of the aortic myosin MgATPase seems to involve both direct interaction of calcium with phosphorylated myosin and calcium activation of the myosin kinase. The MgATPase of trypsin-treated actomyosin did not require Ca2+ for full activity. The trypsin-treated actomyosin was devoid of LC20. When purified unphosphorylated aortic myosin was treated with trypsin, the LC20, was cleaved and the MgATPase, which was not appreciably actin activated before exposure to protease, was increased and was activated by skeletal muscle actin. After incubation of this light chain-depleted myosin with light chain from rabbit skeletal muscle myosin, the actin activation but not the increased activity, was abolished. Unphosphorylated LC20 seems to inhibit actin activation in this smooth muscle.  相似文献   

10.
Dinitrophenylated reconstituted or natural actomyosin effected changes in the Ca2+ sensitivity which were dependent upon the ionic strength of the reaction medium. Dinitrophenylation of reconstituted actomyosin in 0.6 M KCl led to the incorporation of 2-6 mol of the reagent per 5-10(5) g of protein and it possessed considerable Ca2+ sensitivity. Dinitrophenylated natural actomyosin under the same conditions lost most of its Ca2+ sensitivity when 1.3-5.4 mol of the dinitrophenyl group were bound. The myosin from these modified actomyosins did not lose Ca2+ sensitivity and the myosin was labeled only with 0.4-1.7 mol of the dinitrophenyl group. Dinitrophenylation of both kinds of actomyosin in 0.06 M KCl abolished the Ca2+ sensitivity; the myosin from the modified actomyosins also lost Ca2+ sensitivity. Myosin alone was more susceptible to a loss of Ca2+ sensitivity than myosin in actomyosin. Actin protected the ability of myosin to sense Ca2+ regulated actin in modified actomyosin at 0.6 M KCl but not at 0.06 M KCl. Actomyosin dinitrophenylated in the presence of ATP lost Ca2+ sensitivity. However, the myosin from this actomyosin possessed Ca2+ sensitivity. Thiolysis of the dinitrophenylated actomyosin by 2-mercaptoethanol at low ionic strength did not restore the Ca2+ sensitivity of this actomyosin or its myosin although there was a significant loss of the dinitrophenyl group.  相似文献   

11.
A human skeletal actin.tropomyosin.troponin complex was phosphorylated in the presence of [gamma-32 P]ATP, Mg2+, adenosine 3':5'-monophosphate (cyclic AMP) and cyclic AMP-dependent protein kinase (protein kinase). Phosphorylation was not observed when the actin complex was incubated in the absence of protein kinase or 1 microM cyclic AMP. In the presence of 10(-7) M Ca2+ and protein kinase 0.1 mole of [32P]phosphate per 196 000 g of protein was incorporated. This was two-fold higher than the [32P]phosphate content of a rabbit skeletal actin complex but two-fold lower than that of a bovine cardiac actin complex. At high Ca2+, 5.10(-5) M, little change in the phosphorylation of a human skeletal actin complex occurred. Phosphoserine and phosphothreonine were identified in the [32P]phosphorylated actin complex. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate showed that 60% of the label was associated with the tropomyosin binding component of troponin. The inhibitory component of troponin contained 16% of the bound [32P]phosphate. Increasing the Ca2+ concentration did not significantly decrease the [32P]phosphate content of the phosphorylated proteins in the actin complex. No change in the distribution of phosphoserine or phosphothreonine was observed. Half maximal calcium activation of the ATPase activity of reconstitute human skeletal actomyosin made with the [32P] phosphorylated human skeletal actin complex was the same as a reconstituted actomyosin made with an actin complex incubated in the absence of protein kinase at low or high Ca2+.  相似文献   

12.
J. D'Haese  H. Hinssen 《Protoplasma》1978,95(4):273-295
Summary The isolated contractile proteins of the slime mouldPhysarum polycephalum and of rabbit skeletal muscle were investigated by using actomyosin thread models. The actomyosins were compared with respect to contraction behaviour, fine structure, and ATPase activity. Thread models were made of natural and synthetic actomyosins of both systems.The natural actomyosins differ considerably: The actin filament length ofPhysarum actomyosin is only about one fourth, the ATPase activity and actin/myosin ratio are much lower compared to natural muscle actomyosin. The contraction rate of the natural slime mould actomyosin is remarkably slower than that of the natural muscle actomyosin.The synthetic actomyosins were formed from separately isolated actins and myosins with a constant actin/myosin ratio and comparable actin filament lengths. The thread models of either recombined and hybridized actomyosins of both systems contract with nearly identical rates. The comparison of the synthetic actomyosins shows that under comparable conditions a) the actomyosins of both systems perform work with the same efficiency, b) the actin and myosin component is freely exchangeable without any change in the rate of actomyosin contraction. These results indicate that in both skeletal muscle and slime mould the force generation is based on the same mechanism of actin-myosin interaction.

Ein Teil dieser Ergebnisse wurde als Symposiumsvortrag auf dem 9th Meeting of the Federation of the European Biochemical Societies, Budapest vorgetragen.  相似文献   

13.
To define the mechanism responsible for the slow rate of calcium transport by cardiac sarcoplasmic reticulum, the kinetic properties of the Ca2+-dependent ATPase of canine cardiac microsomes were characterized and compared with those of a comparable preparation from rabbit fast skeletal muscle. A phosphoprotein intermediate (E approximately P), which has the stability characteristics of an acyl phosphate, is formed during ATP hydrolysis by cardiac microsomes. Ca2+ is required for the E approximately P formation, and Mg2+ accelerates its decomposition. The Ca2+ concentration required for half-maximal activation of the ATPase is 4.7 +/- 0.2 muM for cardiac microsomes and 1.3 +/- 0.1 muM for skeletal microsomes at pH 6.8 and 0 degrees. The ATPase activities at saturating concentrations of ionized Ca2+ and pH 6.8, expressed as ATP hydrolysis per mg of protein, are 3 to 6 times lower for cardiac microsomes than for skeletal microsomes under a variety of conditions tested. The apparent Km value for MgATP at high concentrations in the presence of saturating concentrations of ionized Ca2+ is 0.18 +/- 0.03 ms at pH 6.8 and 25 degrees. The maximum velocity of ATPase activity under these conditions is 0.45 +/- 0.05 mumol per mg per min for cardiac microsomes and 1.60 +/- 0.05 mumol per mg per min for skeletal microsomes. The maximum steady state level of E approximately P for cardiac microsomes, 1.3 +/- 0.1 nmol per mg, is significantly less than the value of 4.9 +/- 0.2 nmol per mg for skeletal microsomes, so that the turnover number of the Ca2+-dependent ATPase of cardiac microsomes, calculated as the ratio of ATPase activity to the E approximately P level is similar to that of the skeletal ATPase. These findings indicate that the relatively slow rate of calcium transport by cardiac microsomes, whem compared to that of skeletal microsomes, reflects a lower density of calcium pumping sites and lower Ca2+ affinity for these sites, rather than a lower turnover rate.  相似文献   

14.
C Y Wang  P K Ngai  M P Walsh  J H Wang 《Biochemistry》1987,26(4):1110-1117
Fodrin, a spectrin-like actin and calmodulin binding protein, was purified to electrophoretic homogeneity from a membrane fraction of bovine brain. The effect of fodrin on smooth muscle actomyosin Mg2+-ATPase activity was examined by using a system reconstituted from skeletal muscle actin and smooth muscle myosin and regulatory proteins. The simulation of actomyosin Mg2+-ATPase by fodrin showed a biphasic dependence on fodrin concentration and on the time of actin and myosin preincubation at 30 degrees C. Maximal stimulation (50-70%) was obtained at 3 nM fodrin following 10 min of preincubation of actin and myosin. This stimulation was also dependent on the presence of tropomyosin. In the absence of myosin light chain kinase, the fodrin stimulation of Mg2+-ATPase could not be demonstrated with normal actomyosin but could be demonstrated with acto-thiophosphorylated myosin, suggesting that fodrin stimulation depends on the phosphorylation of myosin. Fodrin stimulation was shown to require the presence of both Ca2+ and calmodulin when acto-thiophosphorylated myosin was used. These observations suggest a possible functional role of fodrin in the regulation of smooth muscle contraction and demonstrate an effect on Ca2+ and calmodulin on fodrin function.  相似文献   

15.
Contractile and regulatory proteins were prepared from bovine aortic intima, and actin from bovine stomach smooth and rabbit skeletal muscles. In the desensitized and reconstituted actomyosin system, the superprecipitation activity was measured by the turbidity method. Superprecipitation of each system was not exhibited even in the presence of Ca ions, but was observable only in the presence of tropomyosin and Ca ions, while 20,000-dalton light chain of myosin remained dephosphorylated during the reaction. Addition of tropomyosin to the reconstituted acto-myosin digest system (trypsin-digested myosin was devoid of 20,000-dalton light chain) also restored the Ca2+-sensitivity. These results indicate that the phosphorylation of myosin light chain is not a crucial step in the contraction of aortic intima smooth muscle. For full activation of the actin-myosin-ATP interaction, additional factors other than the myosin light chain kinase are required, although some contribution of the kinase to the full activation cannot be ruled out.  相似文献   

16.
Amphidinolide B caused a concentration-dependent increase in the contractile force of skeletal muscle skinned fibers. The concentration-contractile response curve for external Ca2+ was shifted to the left in a parallel manner, suggesting an increase in Ca2+ sensitivity. Amphidinolide B stimulated the superprecipitation of natural actomyosin. The maximum response of natural actomyosin to Ca2+ in superprecipitation was enhanced by it. Amphidinolide B increased the ATPase activity of myofibrils and natural actomyosin. The ATPase activity of actomyosin reconstituted from actin and myosin was enhanced in a concentration-dependent manner in the presence or absence of troponin-tropomyosin complex. Ca2+-, K+-EDTA- or Mg2+-ATPase of myosin was not affected by amphidinolide B. These results suggest that amphidinolide B enhances an interaction of actin and myosin directly and increases Ca2+ sensitivity of the contractile apparatus mediated through troponin-tropomyosin system, resulting in an increase in the ATPase activity of actomyosin and thus enhances the contractile response of myofilament.  相似文献   

17.
Calcium-Dependent Myosin from Insect Flight Muscles   总被引:2,自引:0,他引:2       下载免费PDF全文
Calcium regulation of the insect actomyosin ATPase is associated with the thin filaments as in vertebrate muscles, and also with the myosin molecule as in mollusks. This dual regulation is demonstrated using combinations of locust thin filaments with rabbit myosin and locust myosin with rabbit actin; in each case the ATPase of the hybrid actomyosin is calcium dependent. The two regulatory systems are synergistic, the calcium dependency of the locust actomyosin ATPase being at least 10 times that of the hybrid actomyosins described above. Likewise Lethocerus myosin also contains regulatory proteins. The ATPase activity of Lethocerus myosin is labile and is stabilized by the presence of rabbit actin. Tropomyosin activates the ATPase of insect actomyosin and the activation occurs irrespective of whether the myosin is calcium dependent or rendered independent of calcium.  相似文献   

18.
The interactions were analyzed between actin, myosin, and a recently discovered high molecular weight actin-binding protein (Hartwig, J. H., and Stossel, T. P. (1975) J. Biol Chem.250,5696-5705) of rabbit alveolar macrophages. Purified rabbit alveolar macrophage or rabbit skeletal muscle F-actins did not activate the Mg2+ATPase activity of purified rabbit alveolar macrophage myosin unless an additional cofactor, partially purified from macrophage extracts, was added. The Mg2+ATPase activity of cofactor-activated macrophage actomyosin was as high as 0.6 mumol of Pi/mg of myosin protein/min at 37 degrees. The macrophage cofactor increased the Mg2+ATPase activity of rabbit skeletal muscle actomyosin, and calcium regulated the Mg2+ATPase activity of cofactor-activited muscle actomyosin in the presence of muscle troponins and tropomyosin. However, the Mg2+ATPase activity of macrophage actomyosin in the presence of the cofactor was inhibited by muscle control proteins, both in the presence and absence of calcium. The Mg2+ATPase activity of the macrophage actomyosin plus cofactor, whether assembled from purified components or studied in a complex collected from crude macrophage extracts, was not influenced by the presence of absence of calcium ions. Therefore, as described for Acanthamoeba castellanii myosin (Pollard, T. D., and Korn, E. D. (1973) J. Biol. Chem. 248, 4691-4697), rabbit alveolar macrophage myosin requires a cofactor for activation of its Mg2+ATPase activity by F-actin; and no evidence was found for participation of calcium ions in the regulation of this activity.In macrophage extracts containing 0.34 M sucrose, 0.5 mM ATP, and 0.05 M KCl at pH 7.0,the actin-binding protein bound F-actin into bundles with interconnecting bridges. Purified macrophage actin-binding protein in 0.1 M KCl at pH 7.0 also bound purified macrophage F-actin into filament bundles. Macrophage myosin bound to F-actin in the absence but not the presence of Mg2+ATP, but the actin-binding protein did not bind to macrophage myosin in either the presence or absence of Mg2+ATP.  相似文献   

19.
Gary Bailin   《BBA》1977,462(3):689-699
A human skeletal actin · tropomyosin · troponin complex was phosphorylated in the presence of [γ-32P]ATP, Mg2+, adenosine 3′:5′-monophosphate (cyclic AMP) and cyclic AMP-dependent protein kinase (protein kinase). Phosphorylation was not observed when the actin complex was incubated in the absence of protein kinase or 1 μM cyclic AMP. In the presence of 10−7 M Ca2+ and protein kinase 0.1 mole of [32P]phosphate per 196 000 g of protein was incorporated. This was two-fold higher than the [32P]phosphate content of a rabbit skeletal actin complex but two-fold lower than that of a bovine cardiac actin complex. At high Ca2+, 5 · 10−5 M, little change in the phosphorylation of a human skeletal actin complex occurred. Phosphoserine and phosphothreonine were identified in the [32P]phosphorylated actin complex. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate showed that 60% of the label was associated with the tropomyosin binding component of troponin. The inhibitory component of troponin contained 16% of the bound [32P]phosphate. Increasing the Ca2+ concentration did not significantly decrease the [32P]phosphate content of the phosphorylated proteins in the actin complex. No change in the distribution of phosphoserine or phosphothreonine was observed. Half maximal calcium activation of the ATPase activity of reconstituted human skeletal actomyosin made with the [32P]phosphorylated human skeletal actin complex was the same as a reconstituted actomyosin made with an actin complex incubated in the absence of protein kinase at low or high Ca2+.  相似文献   

20.
Incubation of rabbit skeletal myosin with an extract of light chain kinase plus ATP phosphorylated the L2 light chain and modified the steady state kinetics of the actomyosin ATPase. With regulated actin, the ATPase activity of phosphorylated myosin (P-myosin) was 35 to 181% greater than that of unphosphorylated myosin when assayed with 0.05 to 5 micro M Ca2+. Phosphorylation had no effect on the Ca2+ concentration required for half-maximal activity, but it did increase the ATPase activity at low Ca2+. With pure actin, the percentage of increase in the actomyosin ATPase activity correlated with the percentage of phosphorylation of myosin. Steady state kinetic analyses of the actomyosin system indicated that 50 to 82% phosphorylation of myosin decreased significantly the Kapp of actin for myosin with no significant effect on the Vmax. Phosphorylaton of heavy meromyosin similarly modified the steady state kinetics of the acto-heavy meromyosin system. Both the K+/EDTA- and Mg-ATPase activities of P-myosin and phosphorylated heavy meromyosin were within normal limits indicating that phosphorylaiion had not altered significantly the hydrolytic site. Phosphatase treatment of P-myosin decreased both the level of phosphorylation of L2 and the actomyosin ATPase activity to control levels for unphosphorylated myosin. It is concluded levels for unphosphorylated myosin. It is concluded from these results that the ability of P-myosin to modify the steady state kinetics of the actomyosin ATPase was: 1) specific for phosphorylation; 2) independent of the thin filament regulatory proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号