首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the continuous systems, such as continuous beer fermentation, immobilized cells are kept inside the bioreactor for long periods of time. Thus an important factor in the design and performance of the immobilized yeast reactor is immobilized cell viability and physiology. Both the decreasing specific glucose consumption rate (q(im)) and intracellular redox potential of the cells immobilized to spent grains during continuous cultivation in bubble-column reactor implied alterations in cell physiology. It was hypothesized that the changes of the physiological state of the immobilized brewing yeast were due to the aging process to which the immobilized yeast are exposed in the continuous reactor. The amount of an actively growing fraction (X(im)act) of the total immobilized biomass (X(im)) was subsequently estimated at approximately X(im)act = 0.12 g(IB) g(C)(-1) (IB = dry immobilized biomass, C = dry carrier). A mathematical model of the immobilized yeast biofilm growth on the surface of spent grain particles based on cell deposition (cell-to-carrier adhesion and cell-to-cell attachment), immobilized cell growth, and immobilized biomass detachment (cell outgrowth, biofilm abrasion) was formulated. The concept of the active fraction of immobilized biomass (X(im)act) and the maximum attainable biomass load (X(im)max) was included into the model. Since the average biofilm thickness was estimated at ca. 10 microm, the limitation of the diffusion of substrates inside the yeast biofilm could be neglected. The model successfully predicted the dynamics of the immobilized cell growth, maximum biomass load, free cell growth, and glucose consumption under constant hydrodynamic conditions in a bubble-column reactor. Good agreement between model simulations and experimental data was achieved.  相似文献   

2.
By monitoring cell yield and fermentation products during fed-batch and continuous growth, Pfaffia rhodozyma was shown to exhibit the Crabtree effect. In fed-batch culture at feed concentrations of 27 and 55 g glucose/l there was good agreement between the observed biomass formation and that predicted by a mass balance model. At 125 g glucose/l in the feed, biomass formation was less than predicted and fermentation products such as ethanol and acetic acid accumulated in the culture medium. In continuous culture with a feed concentration of 10 g glucose/l, the Crabtree effect became apparent at a dilution rate of 0.1 h -1 . Aerobic fermentation did not occur provided the sugar substrate was maintained at a concentration of less than 0.5 g/l. Although the cell yield coefficient was reduced from 0.5 g/g to 0.16 g/g during aerobic fermentation, the carotenoid content of the cells was unaffected.  相似文献   

3.
AIMS: To study the effect of sugars and sugar mixtures on the growth kinetics of Oenococcus oeni NCIMB 11648 in batch culture with the aim of producing a high cell productivity system for starter cultures. METHODS AND RESULTS: The growth of O. oeni was investigated on single sugars (glucose, fructose or sucrose) and their mixtures (glucose-fructose, glucose-sucrose or fructose-sucrose). Better growth was obtained on sugar mixtures compared with growth on a single sugar. The production system of O. oeni biomass was investigated in batch culture with or without pH control with respect to kinetics, specific growth rate and biomass yield. The effect of pH and substrate concentration on fermentation balances and ATP yield were determined. The optimal growth of O. oeni was achieved on the glucose-fructose mixture (9 g l(-1), 1 : 1) at pH 4.5 and 25 degrees C with pH control, with highest cell volumetric productivity (7.9 mg cell l(-1) h(-1)), biomass yield (0.041 g cell g(-1) sugar) and specific growth rate (0.066 h(-1)). CONCLUSIONS: The limitations to the growth of O. oeni were pH and inhibition by end product resulting in poor utilization of the medium with low cell yields. The cell productivity of the system can be improved by the appropriate use of mixed sugar growth medium. SIGNIFICANCE AND IMPACT OF THE STUDY: This study uniquely showed that appropriate sugar mixtures with the correct environmental conditions can significantly improve the productivity of O. oeni cultures.  相似文献   

4.
The influence of dilution rate on the production of biomass, ethanol, and invertase in an aerobic culture of Saccharomyces carlsbergensis was studied in a glucose-limited chemostat culture. A kinetic model was developed to analyze the biphasic growth of yeast on both the glucose remaining and the ethanol produced in the culture. The model assumes a double effect where glucose regulates the flux of glucose catabolism (respiration and aerobic fermentation) and the ethanol utilization in yeast cells. The model could successfully demonstrate the experimental results of a chemostat culture featuring the monotonic decrease of biomass concentration with an increase of dilution rate higher than 0.2 hr?1 as well as the maximum ethanol concentration at a particular dilution rate around 0.5 hr?1. Some supplementary data were collected from an ethanol-limited aerobic chemostat culture and a glucose-limited anaerobic chemostat culture to use in the model calculation. Some parametric constants of cell growth, ethanol production, and invertase formation were determined in batch cultures under aerobic and anaerobic states as summarized in a table in comparison with the chemostat data. Using the constants, a prediction of the optimal control of a glucose fed-batch yeast culture was conducted in connection with an experiment for harvesting a high yield of yeast cells with high invertase activity.  相似文献   

5.
A novel feeding strategy in fedbatch recombinant yeast fermentation was developed to achieve high plasmid stability and protein productivity for fermentation using low-cost rich (non-selective) media. In batch fermentations with a recombinant yeast, Saccharomyces cerevisiae, which carried the plasmid pSXR125 for the production of beta-galactosidase, it was found that the fraction of plasmid-carrying cells decreased during the exponential growth phase but increased during the stationary phase. This fraction increase in the stationary phase was attributed to the death rate difference between the plasmid-free and plasmid-carrying cells caused by glucose starvation in the stationary phase. Plasmid-free cells grew faster than plasmid-carrying cells when there were plenty of growth substrate, but they also lysed or died faster upon the depletion of the growth substrate. Thus, pulse additions of the growth substrate (glucose) at appropriate time intervals allowing for significant starvation period between two consecutive feedings during fedbatch fermentation should have positive effects on stabilizing plasmid and enhancing protein production. A selective medium was used to grow cells in the initial batch fermentation, which was then followed with pulse feeding of concentrated non-selective media in fedbatch fermentation. Both experimental data and model simulation show that the periodic glucose starvation feeding strategy can maintain a stable plasmid-carrying cell fraction and a stable specific productivity of the recombinant protein, even with a non-selective medium feed for a long operation period. On the contrary, without glucose starvation, the fraction of plasmid-carrying cells and the specific productivity continue to drop during the fedbatch fermentation, which would greatly reduce the product yield and limit the duration that the fermentation can be effectively operated. The new feeding strategy would allow the economic use of a rich, non-selective medium in high cell density recombinant fedbatch fermentation. This new feeding strategy can be easily implemented with a simple IBM-PC based control system, which monitors either glucose or cell concentration in the fermentation broth.  相似文献   

6.
Moderate electric fields (MEF), applied across microbial growth media may potentially affect the permeability of cell membranes. We investigated the effects of MEF on bacteriocin (lacidin A) production during fermentation and on microbial growth kinetics of Lactobacillus acidophilus OSU 133. We comparatively investigated the following treatments: conventional, MEF (1 V/cm, 60 Hz, for 40 h), combinations of MEF (1 V/cm, 60 Hz, for the first 5 h) and conventional fermentation (for 35 h), and discrete MEF (1 V/cm, 2 min on and off, for 40 h). In all treatments, except as noted below, temperature was set at 30 degrees C. The two exceptions were control (conventional) and discrete MEF treatment, which were conducted both at 30 and 37 degrees C. MEF treatments at the early stage of fermentation at 30 degrees C showed the maximum bacteriocin activity. Minimum bacteriocin production was observed under conventional fermentation at 37 degrees C. A mathematical model based on Monod growth kinetics was used to predict bacteriocin production and showed results consistent with conventional treatment data. MEF did not have a significant effect on the lag time, maximum specific growth rate, biomass production and pH change under the different experimental conditions at each specific temperature. Based on the observations, bacteriocin activity under the presence of MEF at the early stage of fermentation increased without significant change in the final biomass.  相似文献   

7.
温度对谷胱甘肽分批发酵的影响及动力学模型   总被引:16,自引:2,他引:16  
研究了24~32℃范围内产朊假丝酵母生产谷胱甘肽的分批发酵过程,发现较高温度对细胞生长有促进作用,而较低温度则更有利于谷胱甘肽产量的提高。应用改进的Logistic和LuedekingPiret方程分别对细胞生长动力学和谷胱甘肽合成动力学进行了模拟,得到不同温度下各种动力学参数。在此基础上,进一步研究了温度同细胞生长动力学参数之间的内在联系,得到谷胱甘肽分批发酵过程中细胞浓度的变化同温度以及底物浓度之间的一般关系式:dX-dt=[0.0224(T+1.7)]2X(1-X/Xmax)1+S{8.26×10.6×exp[-31477/R/(T+273)]}。验证实验结果表明,该模型具有很好的适用性。  相似文献   

8.
To yield high concentrations of protein expressed by genetically modified Escherichia coli, it is important that the bacterial strains are cultivated to high cell density in industrial bioprocesses. Since the expressed target protein is mostly accumulated inside the E. coli cells, the cellular product formation can be directly correlated to the bacterial biomass concentration. The typical way to determine this concentration is to sample offline. Such manual sampling, however, wastes time and is not efficient for acquiring direct feedback to control a fedbatch fermentation. An E. coli K12-derived strain was cultivated to high cell density in a pressurized stirred bioreactor on a pilot scale, by detecting biomass concentration online using a capacitance probe. This E. coli strain was grown in pure minimal medium using two carbon sources (glucose and glycerol). By applying exponential feeding profiles corresponding to a constant specific growth rate, the E. coli culture grew under carbon-limited conditions to minimize overflow metabolites. A high linearity was found between capacitance and biomass concentration, whereby up to 85 g/L dry cell weight was measured. To validate the viability of the culture, the oxygen transfer rate (OTR) was determined online, yielding maximum values of 0.69 mol/l/h and 0.98 mol/l/h by using glucose and glycerol as carbon sources, respectively. Consequently, online monitoring of biomass using a capacitance probe provides direct and fast information about the viable E. coli biomass generated under aerobic fermentation conditions at elevated headspace pressures.  相似文献   

9.
Dry weight biomass is an important parameter in algaculture. Direct measurement requires weighing milligram quantities of dried biomass, which is problematic for small volume systems containing few cells, such as laboratory studies and high throughput assays in microwell plates. In these cases indirect methods must be used, inducing measurement artefacts which vary in severity with the cell type and conditions employed. Here, we utilise flow cytometry pulse width data for the estimation of cell density and biomass, using Chlorella vulgaris and Chlamydomonas reinhardtii as model algae and compare it to optical density methods. Measurement of cell concentration by flow cytometry was shown to be more sensitive than optical density at 750 nm (OD750) for monitoring culture growth. However, neither cell concentration nor optical density correlates well to biomass when growth conditions vary. Compared to the growth of C. vulgaris in TAP (tris-acetate-phosphate) medium, cells grown in TAP + glucose displayed a slowed cell division rate and a 2-fold increased dry biomass accumulation compared to growth without glucose. This was accompanied by increased cellular volume. Laser scattering characteristics during flow cytometry were used to estimate cell diameters and it was shown that an empirical but nonlinear relationship could be shown between flow cytometric pulse width and dry weight biomass per cell. This relationship could be linearised by the use of hypertonic conditions (1 M NaCl) to dehydrate the cells, as shown by density gradient centrifugation. Flow cytometry for biomass estimation is easy to perform, sensitive and offers more comprehensive information than optical density measurements. In addition, periodic flow cytometry measurements can be used to calibrate OD750 measurements for both convenience and accuracy. This approach is particularly useful for small samples and where cellular characteristics, especially cell size, are expected to vary during growth.  相似文献   

10.
模拟青霉素发酵过程中菌体生长动态的细胞自动机模型   总被引:4,自引:1,他引:3  
在青霉素发酵生产机理及其动力学微分方程模型的基础上,建立了模拟青霉素分批发酵过程中菌体生长动态的细胞自动机模型(CABGM)。CABGM采用三维细胞自动机作为菌体生长空间,采用Moore型邻域作为细胞邻域,其演化规则根据青霉素分批发酵过程中菌体生长机理和动力学微分方程模型设计。CABGM中的每一个细胞既可代表单个的青霉素产生菌,又可代表特定数量的青霉素产生菌,它具有不同的状态。对CABGM进行了统计特性的理论分析和仿真实验,理论分析和仿真实验结果均证明了CABGM能一致地复现动力学微分方程模型所描述的青霉素分批发酵菌体生长过程。最后,对所建模型在实际生产过程中的应用问题进行了分析,指出了需要进一步研究的问题。  相似文献   

11.
Response surface methodology was applied to optimize the growth of the yeast Phaffia rhodozyma in continuous fermentation using peat hydrolysates as substrate. A second-order, complete, factorial design of the experiments was used to develop empirical models providing a quantitative interpretation of the relationships between the two variables studied, dilution rate and pH. Maximum biomass concentration in the fermentor was obtained by employing the following predicted optimum fermentation conditions: a dilution rate of 0.017/h and a pH level of 7.19. A verification experiment, conducted at previously optimized conditions for maximum biomass volumetric productivity (a dilution rate of 0.022/h, and a pH level of 6.90), produced values for biomass concentration, residual substrate concentration, biomass yield, and biomass volumetric productivity that were very close to the predicted values, indicating the reliability of the empirical model. The concentration of the pigment astaxanthin produced by the yeast under the optimized growth conditions was found to be 544 mg astaxanthin/kg dry cell biomass.  相似文献   

12.
Recombinant ovine interferon-tau (r-oIFN-tau) production by Pichia pastoris was studied using methanol as the sole carbon source during induction. The cells were grown on glycerol up to a certain cell density before induction of the AOX1 promoter by methanol for expression of the recombinant protein. Cell growth on methanol has been modeled using a substrate-feed equation, which served as the basis for an effective computer control of the process. The r-oIFN-tau concentration in the culture began to decline despite continued cell growth after 50 (+/- 6) h of induction, which was associated with an increase in proteolytic activity of the fermentation broth. A specific growth rate of 0.025 h(-1) was found to be optimal for r-oIFN-tau production. No significant improvement in r-oIFN-tau production was observed when the specific growth rate was stepped up before the critical point when r-oIFN-tau concentration started decreasing during fermentation. However, best results were obtained when the specific growth rate was stepped down from 0.025 to 0.02 h(-1) at 38 h of induction, whereby the active production period was prolonged until 70 h of induction and the broth protease activity was correspondingly reduced. The corresponding maximum protein yield was 391.7 mg x L(-1) after 70 h of fermentation. The proteolytic activity could be reduced by performing fermentations at specific growth rates of 0.025 h(-1) or below. The recombinant protein production can be performed at an optimal yield by directly controlling the methanol feed rate by a computer-controlled model. The production profile of r-oIFN-tau was found to be significantly different from other secreted and intracellular recombinant protein processes, which is an indication that recombinant protein production in Pichia pastoris needs to be optimized as individual processes following established principles.  相似文献   

13.
Pichia stipitis NRRL Y-7124 has potential application in the fermentation of xylose-rich waste streams, produced by wood hydrolysis. Kinetic models of cell growth, death, and oxygen uptake were investigated in batch and oxygen-limited continuous cultures fed a rich synthetic medium. Variables included rates of dilution (D) and oxygen transfer (K(1)a) and concentrations of xylose (X), ethanol (E), and dissolved oxygen (C(ox)). Sustained cell growth required the presence of oxygen. Given excess xylose, specific growth rate (micro) was a Monod function of C(ox). Specific oxygen uptake rate was proportional to mu by a yield coefficient relating biomass production to oxygen consumption; but oxygen uptake for maintenance was negligible. Thus steady-state C(OX) depended only on D, while steady-state biomass concentration was controlled by both D and K(1)a. Given excess oxygen, cells grew subject to Monod limitation by xylose, which became inhibitory above 40 g/L. Ethanol inhibition was consistent with Luong's model, and 64. 3 g/L was the maximum ethanol concentration allowing growth. Actively growing cells died at a rate that was 20% of micro. The dying portion increased with E and X.  相似文献   

14.
The influence of glucose concentration in nutrient media on the specific growth rate and biomass yield in the course of continuous fermentation ofSaccharomyces cerevisiae was investigated. An increase of glucose content in media decreased the specific growth rate and the biomass yield. Glucose concentration had significant effects on protein and phosphate contents of cells. However, an increased glucose concentration increased the fermentative power ofS. cerevisiae (SJA-method). An increase of the dilution rate decreased the cell concentration in the fermentor. Specific growth rate approached the values of the dilution rate. The best agreement has been obtained at a dilution rate of 0.20/h. This dilution rate proved to be most convenient for the investigated microorganism and cultivation conditions (media composition, pH, aeration intensity and temperature). Biomass yield proved to be decreased by an increase of the dilution rate.  相似文献   

15.
The plasmid stability under the repressed state of cloned gene was studied theoretically as well as experimentally using recombinant E. coli K12DeltaH1Deltatrp/pPLc23trpA1 as a "host-vector" model system. The important kinetic parameters studied were the plasmid loss rate (theta) describing the rate at which the plasrnid-harboring cells lose plas-mids and the plasmid-free cells are generated per unit time and the difference in growth rates (Delta) between the two genotypes. These parameters were carefully defined, studied, and compared with other key kinetic parameters involved in the recombinant fermentation to further our understanding of metabolism of recombinants. The ratio of the concentration of plasmid-free cells to plasmid-harboring cells (Omega) was introduced, and the mathematical model was derived and used for the determination of the kinetic parameters associated with plasmid instability. These methods developed based on the theoretical considerations were tested experimentally. The results of these methods were compared, and the best method was selected and recommended. The effect of temperature and dilution rate on kinetic parameters theta and Delta were also studied in continuous culture, in order to provide some practical information related to the operation and control of recombinant fermentation processes.  相似文献   

16.
研究了金龟子绿僵菌IMI330189的液体发酵动力学。利用Sigmoid函数构建了该菌株液体发酵过程中的菌体生长和底物消耗的动力学模型,并运用Origin7.5软件拟合求解出各模型参数。结果表明,模型能够较好地拟合绿僵菌IMI330189液体发酵过程,其比生长速率在发酵第22.8h达到最大值,为0.084h-1;总糖比消耗速率在第9.6h达到最大值,为0.246h-1;总氮比消耗速率在第10.3h达到最大值,为0.007h-1;菌体对总糖的得率系数在39.8h达到最高,为0.861g/g。模型拟合和实验数据具有良好的适应性,基本反映了绿僵菌IMI330189液体发酵过程的动力学特征,为其液体发酵工艺的优化和发展奠定了基础。  相似文献   

17.
A data-driven model is presented that can serve two important purposes. First, the specific growth rate and the specific product formation rate are determined as a function of time and thus the dependency of the specific product formation rate from the specific biomass growth rate. The results appear in form of trained artificial neural networks from which concrete values can easily be computed. The second purpose is using these results for online estimation of current values for the most important state variables of the fermentation process. One only needs online data of the total carbon dioxide production rate (tCPR) produced and an initial value x of the biomass, i.e., the size of the inoculum, for model evaluation. Hence, given the inoculum size and online values of tCPR, the model can directly be employed as a softsensor for the actual value of the biomass, the product mass as well as the specific biomass growth rate and the specific product formation rate. In this paper the method is applied to fermentation experiments on the laboratory scale with an E. coli strain producing a recombinant protein that appears in form of inclusion bodies within the cells’ cytoplasm.  相似文献   

18.
The mathematical model introduced by Okazaki & Tanaka (J. Ferment Technol. 1980, 58: 471–476) for estimating fungal growth in solid state fermentations by CO2 evolution, was incorporated into a relationship developed to estimate biomass growth from dry matter weight loss. The proposed equation fitted experimental data very well (R2=0.987, P<0.0001) and allowed accurate predictions of fungal specific growth rate and maximal biomass in the solid substrate fermentation system.  相似文献   

19.
Polyhydroxyalkanoate (PHA) production via mixed microbial cultures (MMCs) can potentially decrease process operational costs as compared to conventional pure culture techniques. However, the volumetric productivity of PHA by MMCs must be augmented to increase its cost competitiveness. For this purpose, a three‐stage bioreactor system was operated in this study, with (i) anaerobic fermentation of molasses, (ii) culture selection, and (iii) PHA accumulation and harvesting stages. In stage 2, bioreactor operation with pH control at 8 led to twice the biomass concentration (up to 8 g VSS L?1, where VSS is the volatile suspended solids) as compared to operation without pH control (maximum pH 9). No loss in the specific PHA storage efficiency was observed (PHA content up to 57.5% and PHA storage rate up to 0.27 Cmol PHA Cmol X?1 h?1, where X is the active biomass), thereby resulting in twice the volumetric PHA production rate. The limited biomass growth at the higher pH level was not due to nutrient limitation, but likely to a shift in the microbial community. It is hypothesized that the increased enrichment of Azoarcus at pH 8 led to higher PHA productivity. pH control in the culture selection stage can lead to enhanced PHA production from MMCs, improving the viability of the process.  相似文献   

20.
随着现代生物技术的快速发展,生物发酵过程在工业生产中的重要性日益增加。为获得质量稳定的发酵产品,通常需要对发酵过程进行监测与调控。生物量可以直接反映生物反应器中细胞代谢的主体——细胞的生长状况,因此实现生物量的在线监测对发酵过程的调控具有重要意义。原位显微镜是一项非侵入式的、基于图像分析的技术,可以实时监测生物过程中的细胞量。文中就原位显微镜的发展及其在细胞生物量实时监测中的应用进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号