首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Lipid rafts serve as platforms for BCR signal transduction. To better define the molecular basis of these membrane microdomains, we used two-dimensional gel electrophoresis and mass spectrometry to characterize lipid raft proteins from mature as well as immature B cell lines. Of 51 specific raft proteins, we identified a total of 18 proteins by peptide mass fingerprinting. Among them, we found vacuolar ATPase subunits alpha-1 and beta-2, vimentin, gamma-actin, mitofilin, and prohibitin. None of these has previously been reported in lipid rafts of B cells. The differential raft association of three proteins, including a novel potential signaling molecule designated swiprosin-1, correlated with the stage-specific sensitivity of B cells to BCR-induced apoptosis. In addition, MHC class II molecules were detected in lipid rafts of mature, but not immature B cells. This intriguing finding points to a role for lipid rafts in regulating Ag presentation during B cell maturation. Finally, a fraction of the BCR in the B cell line CH27 was constitutively present in lipid rafts. Surprisingly, this fraction was neither expressed at the cell surface nor fully O-glycosylated. Thus, we conclude that partitioning the BCR into lipid rafts occurs in the endoplasmic reticulum/cis-Golgi compartment and may represent a control mechanism for surface transport.  相似文献   

2.
The activity of Bad, a pro-apoptotic protein, is regulated by reversible phosphorylation. Moreover, sequestration of Bad within subcellular compartments may be a new mechanism of apoptosis regulation. In this study, we report that Bad interacts with 14-3-3 protein in WEHI-231 immature B cells. This association is disrupted following BCR stimulation in correlation with Bad translocation to mitochondria and apoptosis. Confocal microscopy was further used to examine the co-localization of Bad with lipid rafts in WEHI-231 and murineex vivoB cells. Bad was found colocalized to lipid rafts in freshly isolated mature B lymphocytes, in contrast to immature cells. Finally, co-immunoprecipitation experiments performed on WEHI-231 B cells revealed that PP1α interacts with Bcl-2 and Bad, and dissociation of the complex was found correlated with appearance of apoptosis. Bcl-2 seemed to be required to assemble the complex which may regulate Bad phosphorylation status and consequently cell survival. Collectively, present data outline the role of Bad trafficking in the BCR-mediated apoptosis and suggest that differences in intracellular Bad trafficking may be involved in the differential outcome of BCR signaling.  相似文献   

3.
Engagement of antigen receptors on immature B cells induces apoptosis, while at the mature stage, it stimulates cell activation and proliferation. The difference in B cell receptor (BCR)-mediated signaling pathways regulating death or survival of B cells is not fully understood. We aimed to characterize the pathway leading to BCR-driven apoptosis. Transitional immature B cells were obtained from the spleen of sublethally irradiated and auto-reconstituted mice. We have detected a short-lived BCR-driven activation of mitogen-activated protein kinases (ERK1/2 and p38 MAPK) and Akt/PKB in transitional immature B cells that correlated with the lack of c-Fos expression, reduced phosphorylation of Akt substrates and a susceptibility for apoptosis. Simultaneous signaling through BCR and CD40 protected immature B cells from apoptosis, however, without inducing Bcl-2 expression. The BCR-induced apoptosis of immature B cells is a result of the collapse of mitochondrial membrane potential and the subsequent activation of caspase-3.  相似文献   

4.
Glycosphingolipid-enriched domains (GEDs) are believed to act as platforms for transduction of B cell Ag receptor (BCR)-induced signals from the cell surface. We sought to study whether differential sequestration of BCR into GEDs may contribute to the described intrinsic signaling differences between mature and immature B cells. In this study we found that mature B cells copolarize the BCR with GEDs following BCR aggregation, whereas transitional immature B cells do not. Although anti-BCR treatment leads to receptor aggregation by immature stage B cells, the aggregated complexes do not colocalize with GEDs. We found this difference to be independent of the isotype of the receptor, thereby associating this difference in BCR-GED colocalization to the developmental stage of the B cell. These findings suggest a structural basis for the developmentally regulated differences observed in Ag receptor-mediated signal transduction.  相似文献   

5.
Recent biochemical evidence indicates that an early event in signal transduction by the B-cell antigen receptor (BCR) is its translocation to specialized membrane subdomains known as lipid rafts. We have taken a microscopic approach to image lipid rafts and early events associated with BCR signal transduction. Lipid rafts were visualized on primary splenic B lymphocytes from wild-type or anti-hen egg lysozyme BCR transgenic mice, and on a mature mouse B-cell line Bal 17 by using fluorescent conjugates of cholera toxin B subunit or a Lyn-based chimeric protein, which targets green fluorescent protein to the lipid raft compartment. Time-lapse imaging of B cells stimulated via the BCR with the antigen hen egg lysozyme, or surrogate for antigen anti-IgM, demonstrated that lipid rafts are highly dynamic entities, which move laterally on the surface of these cells and coalesce into large regions. These regions of aggregated lipid rafts colocalized with the BCR and tyrosine-phosphorylated proteins. Microscopic imaging of live B cells also revealed an inducible colocalization of lipid rafts with the tyrosine kinase Syk and the receptor tyrosine phosphatase CD45. These two proteins play indispensable roles in BCR-mediated signaling but are not detectable in biochemically purified lipid raft fractions. Strikingly, BCR stimulation also induced the formation of long, thread-like filopodial projections, similar to previously described structures called cytonemes. These B-cell cytonemes are rich in lipid rafts and actin filaments, suggesting that they might play a role in long-range communication and/or transportation of signaling molecules during an immune response. These results provide a window into the morphological and molecular organization of the B-cell membrane during the early phase of BCR signaling.  相似文献   

6.
Membrane microdomains (lipid rafts) are enriched in selected signaling molecules and may compartmentalize receptor-mediated signals. Here, we report that in primary human B lymphocytes and in Ramos B cells B cell receptor (BCR) stimulation induces rapid and transient redistribution of a subset of engaged BCRs to lipid rafts and phosphorylation of raft-associated tyrosine kinase substrates. Cholesterol sequestration disrupted the lipid rafts, preventing BCR redistribution, but did not inhibit tyrosine kinase activation or phosphorylation of mitogen-activated protein kinase/extracellular regulated kinase. However, raft disruption enhanced the release of calcium from intracellular stores, suggesting that rafts may sequester early signaling events that down-regulate calcium flux. Consistent with this, BCR stimulation induced rapid and transient translocation of the Src homology 2 domain-containing inositol phosphatase, SHIP, into lipid rafts.  相似文献   

7.
The cross-linking of the B cell Ag receptor (BCR) leads to the initiation of a signal transduction cascade in which the earliest events involve the phosphorylation of the immunoreceptor tyrosine-based activation motifs of Ig alpha and Ig beta by the Src family kinase Lyn and association of the BCR with the actin cytoskeleton. However, the mechanism by which BCR cross-linking initiates the cascade remains obscure. In this study, using various A20-transfected cell lines, biochemical and genetic evidence is provided that BCR cross-linking leads to the translocation of the BCR into cholesterol- and sphingolipid-rich lipid rafts in a process that is independent of the initiation of BCR signaling and does not require the actin cytoskeleton. Translocation of the BCR into lipid rafts did not require the Ig alpha/Ig beta signaling complex, was not dependent on engagement of the FcR, and was not blocked by the Src family kinase inhibitor PP2 or the actin-depolymerizing agents cytochalasin D or latrunculin. Thus, cross-linking or oligomerization of the BCR induces the BCR translocation into lipid rafts, defining an event in B cell activation that precedes receptor phosphorylation and association with the actin cytoskeleton.  相似文献   

8.
Tetraspanins have been hypothesized to facilitate the organization of functional multimolecular membrane complexes. In B cells the tetraspanin CD81 is a component of the CD19/CD21 complex. When coligated to the B cell Ag receptor (BCR), the CD19/CD21 complex significantly enhances BCR signaling in part by prolonging the association of the BCR with signaling-active lipid rafts. In this study CD81 is shown to associate with lipid rafts upon coligation of the BCR and the CD19/CD21 complex. Using B cells from CD81-deficient mice we demonstrate that in the absence of CD81, coligated BCR and CD19/CD21 complexes fail to partition into lipid rafts and enhance BCR signaling from rafts. Furthermore, a chimeric CD19 protein that associates only weakly if at all with CD81 fails to promote the association of coligated BCR with lipid rafts. The requirement for CD81 to promote lipid raft association may define a novel mechanism by which tetraspanins function as molecular facilitators of signaling receptors.  相似文献   

9.
A requirement for lipid rafts in B cell receptor induced Ca(2+) flux   总被引:4,自引:0,他引:4  
Although the major biochemical events triggered by ligation of the B-cell receptor (BCR) have been well defined [1] [2], little is known about the spatio-temporal organization of BCR signaling components within the cell membrane and the mechanisms by which signaling specificity is achieved. Partitioning of signaling complexes into specialized domains in the plasma membrane may provide a mechanism for channeling specific stimuli into distinct signaling pathways. Here, we report that multiple tyrosine-phosphorylated proteins accumulate transiently upon BCR activation in detergent-insoluble membrane microdomains known as lipid rafts. We found an activation-dependent translocation to the rafts of the BCR itself, as well as phospholipase Cgamma2 (PLCgamma2), an enzyme critical for BCR-induced Ca(2+) flux in B cells. An intact raft structure was required for BCR-induced tyrosine phosphorylation of PLCgamma2 and the induction of Ca(2+) flux. Taken together, these data provide a functional role for lipid rafts in BCR signaling.  相似文献   

10.
The Ag-specific B cell receptor (BCR) expressed by B lymphocytes has two distinct functions upon interaction with cognate Ag: signal transduction (generation of intracellular second messenger molecules) and Ag internalization for subsequent processing and presentation. While it is known that plasma membrane domains, termed lipid rafts, are involved in BCR-mediated signal transduction, the precise role of plasma membrane lipid rafts in BCR-mediated Ag internalization and intracellular trafficking is presently unclear. Using a highly characterized model system, it was determined that while plasma membrane lipid rafts can be internalized by B lymphocytes, lipid rafts do not represent a major pathway for the rapid and efficient internalization of cell surface Ag-BCR complexes. Moreover, internalized plasma membrane lipid rafts are delivered to intracellular compartments distinct from those to which the bulk of internalized Ag-BCR complexes are delivered. These results demonstrate that B lymphocytes, like other cell types, possess at least two distinct endocytic pathways (i.e., clathrin-coated pits and plasma membrane lipid rafts) that deliver internalized ligands to distinct intracellular compartments. Furthermore, Ag-BCR complexes differentially access these two distinct internalization pathways.  相似文献   

11.
The B cell Ag receptor (BCR) and CD20, a putative calcium channel, inducibly associate with cholesterol-dependent membrane microdomains known as lipid rafts. A functional association between the BCR and CD20 is suggested by the effects of CD20-specific mAbs, which can modulate cell cycle transitions elicited by BCR signaling. Using immunofluorescence microscopy we show here that the BCR and CD20 colocalize after receptor ligation and then rapidly dissociate at the cell surface before endocytosis of the BCR. After separation, surface BCR and CD20 were detected in distinct lipid rafts isolated as low density, detergent-resistant membrane fragments. Pretreatment with methyl-beta-cyclodextrin, which we have previously shown to enhance receptor-mediated calcium mobilization, did not prevent colocalization of the BCR and CD20, but slowed their dissociation. The data demonstrate rapid dynamics of the BCR in relation to CD20 at the cell surface. Activation-dependent dissociation of the BCR from CD20 occurs before receptor endocytosis and appears to require in part the integrity of lipid rafts.  相似文献   

12.
Recent studies argue for an important role for cholesterol in maintaining plasma membrane heterogeneity and influencing a variety of cellular processes, including signaling, adhesion, and permeability. Here, we document that tolerance-sensitive transitional immature B cells maintain significantly lower membrane unesterified cholesterol levels than mature-stage splenic B cells. In addition, the relatively low level of cholesterol in transitional immature B cells impairs compartmentalization of their B cell receptor (BCR) into cholesterol-enriched domains following BCR aggregation and reduces their ability to sustain certain aspects of BCR signaling as compared with mature B cells. These studies establish an unexpected difference in the lipid composition of peripheral transitional immature and mature B cells and point to a determining role for development-associated differences in cholesterol content for the differential responses of these B cells to BCR engagement.  相似文献   

13.
BCR editing in the bone marrow contributes to B cell tolerance by orchestrating secondary Ig rearrangements in self-reactive B cells. We have recently shown that loss of the BCR or a pharmacologic blockade of BCR proximal signaling pathways results in a global "back-differentiation" response in which immature B cells down-regulate genes important for the mature B cell program and up-regulate genes characteristic of earlier stages of B cell development. These observations led us to test the hypothesis that self-Ag-induced down-regulation of the BCR, and not self-Ag-induced positive signals, lead to Rag induction and hence receptor editing. Supporting this hypothesis, we found that immature B cells from xid (x-linked immunodeficiency) mice induce re-expression of a Rag2-GFP bacterial artificial chromosome reporter as well as wild-type immature B cells following Ag incubation. Incubation of immature B cells with self-Ag leads to a striking reversal in differentiation to the pro-/pre-B stage of development, consistent with the idea that back-differentiation results in the reinduction of genes required for L chain rearrangement and receptor editing. Importantly, Rag induction, the back-differentiation response to Ag, and editing in immature and pre-B cells are inhibited by a combination of phorbol ester and calcium ionophore, agents that bypass proximal signaling pathways and mimic BCR signaling. Thus, mimicking positive BCR signals actually inhibits receptor editing. These findings support a model whereby Ag-induced receptor editing is inhibited by BCR basal signaling on developing B cells; BCR down-regulation removes this basal signal, thereby initiating receptor editing.  相似文献   

14.
The molecular basis of B cell receptor (BCR)-induced apoptosis during the negative selection of immature B cells is largely unknown. We use transitional immature B cells that are highly susceptible to BCR-induced apoptosis to show that Pten is selectively required for BCR-mediated initiation of the mitochondrial death pathway. Specifically, deleting Pten, but not other pro-apoptotic molecules, abrogates BCR-elicited apoptosis and improves viability in wild-type immature B cells. We further identify a physiologically and significantly higher intracellular Pten level in immature B cells, as compared to mature B cells, which is responsible for low AKT activity and the propensity towards death in immature B cells. Restoration of AKT activity using a constitutive form of AKT or reduction of Pten to a level comparable with that seen in mature B cells rescues immature B cells from BCR-induced apoptosis. Thus, we provide evidence that Pten is an essential mediator of BCR-induced cell death, and that differential regulation of intracellular Pten levels determines whether BCR ligation promotes cell death or survival. Our findings provide a valuable insight into the mechanisms underlying negative selection and clonal deletion of immature B cells.  相似文献   

15.
Signaling through the Ag receptor is required for peripheral B lymphocyte maturation and maintenance. Defects in components of the B cell receptor (BCR) signalosome result in developmental blocks at the transition from immature (heat-stable Ag (HSA)(high)) to mature (HSA(low)) B cells. Recent studies have subdivided the immature, or transitional, splenic B cells into two subsets, transitional 1 (T1) and transitional 2 (T2) cells. T1 and T2 cells express distinct surface markers and are located in distinct anatomic locations. In this report, we evaluated the BCR signaling capacity of T1 and T2 B cell subsets. In response to BCR engagement, T2 cells rapidly entered cell cycle and resisted cell death. In contrast, T1 cells did not proliferate and instead died after BCR stimulation. Correlating with these results, T2 cells robustly induced expression of the cell cycle regulator cyclin D2 and the antiapoptotic factors A1/Bfl-1 and Bcl-x(L) and exhibited activation of Akt. In contrast, T1 cells failed to up-regulate these markers. BCR stimulation of T2 cells also led to down-regulation of CD21 and CD24 (HSA) expression, resulting in a mature B cell phenotype. In addition, T2 cells from Bruton's tyrosine kinase-deficient Xid mice failed to generate these proliferative and survival responses, suggesting a requirement for the BCR signalosome specifically at the T2 stage. Taken together, these data clearly demonstrate that T2 immature B cells comprise a discrete developmental subset that mediates BCR-dependent proliferative, prosurvival, and differentiation signals. Their distinct BCR-dependent responses suggest unique roles for T1 vs T2 cells in peripheral B cell selection.  相似文献   

16.
The adaptive unfolded protein response (UPR) is essential for the development of antibody-secreting plasma cells. B cells induced by lipopolysaccharide (LPS) to differentiate into plasma cells exhibit a nonclassical UPR reported to anticipate endoplasmic reticulum stress prior to immunoglobulin production. Here we demonstrate that activation of a physiologic UPR is not limited to cells undergoing secretory cell differentiation. We identify B cell receptor (BCR) signaling as an unexpected physiologic UPR trigger and demonstrate that in mature B cells, BCR stimulation induces a short lived UPR similar to the LPS-triggered nonclassical UPR. However, unlike LPS, BCR stimulation does not induce plasma cell differentiation. Furthermore, the BCR-induced UPR is not limited to cells in which BCR induces activation, since a UPR is also induced in transitional immature B cells that respond to BCR stimulation with a rapid apoptotic fate. This response involves sustained up-regulation of Chop mRNA indicative of a terminal UPR. Whereas sustained Chop expression correlates with the ultimate fate of the BCR-triggered B cell and not its developmental stage, Chop-/- B cells undergo apoptosis, indicating that CHOP is not required for this process. These studies establish a system whereby a terminal or adaptive UPR can be alternatively triggered by physiologic stimuli.  相似文献   

17.
One type of membrane microdomain, enriched in glycosphingolipids and cholesterol and referred to as lipid rafts, has been implicated in the generation of activating signals triggered by a variety of stimuli. Several laboratories, including ours, have recently demonstrated that the B cell receptor (BCR) inducibly localizes to the rafts upon activation and that functional lipid rafts are important for BCR-mediated "positive" signaling. In the later phases of the immune response, coligation of the BCR and the inhibitory receptor Fc gamma RIIB1 leads to potent inhibition of BCR-induced positive signaling through the recruitment of the inositol phosphatase SHIP to Fc gamma RIIB1. One potential model is that the Fc gamma RIIB1 itself might be excluded from the rafts basally and that destabilization of raft-dependent BCR signaling might be part of the mechanism for the Fc gamma RIIB1-mediated negative regulation. We tested this hypothesis and observed that preventing BCR raft localization is not the mechanism for this inhibition. Surprisingly, a fraction of Fc gamma RIIB1 is constitutively localized in the rafts and increases further after BCR + FcR coligation. SHIP is actively recruited to lipid rafts under negative stimulation conditions, and the majority of Fc gamma RIIB1-SHIP complexes localize to lipid rafts compared with non-raft regions of the plasma membrane. This suggested that this negative feedback loop is also initiated in the lipid rafts. Despite its basal localization to the rafts, Fc gamma RIIB1 did not become phosphorylated after BCR alone cross-linking and did not colocalize with the BCR that moves to rafts upon BCR engagement alone (positive signaling conditions), perhaps suggesting the existence of different subsets of rafts. Taken together, these data suggest that lipid rafts play a role in both the positive signaling via the BCR as well as the inhibitory signaling through Fc gamma RIIB1/SHIP.  相似文献   

18.
Ligand-induced BCR association with detergent-resistant plasma membrane compartments (lipid rafts) has been argued to be essential for initiating and/or sustaining Igalpha/Igbeta-dependent BCR signaling. Because a fraction of the BCR and an even larger fraction of the preBCR associates with lipid rafts in the apparent absence of ligand stimulation, it has been proposed that raft-associated receptor complexes mediate the ligand-independent basal signaling events observed in resting B lineage cells. However, there is no direct evidence that localization of Igalpha/Igbeta-containing complexes to detergent-resistant membrane compartments is absolutely required for the signaling events that drive B cell development. To address these issues we have designed surrogate preBCR/Igalpha/Igbeta complexes that are incapable of ligand-induced aggregation and that are preferentially targeted to either raft or nonraft compartments. An analysis of their ability to promote the preBCR-dependent proB-->preB cell transition of murine B cell progenitors revealed that expression of these surrogate receptor complexes at levels that approximate that of the conventional preBCR can drive B cell development in a manner independent of both aggregation and lipid raft localization.  相似文献   

19.
B-cell receptor (BCR) signals are essential for B-cell differentiation, homeostasis and negative selection, which are regulated by the strength and quality of BCR signals. Recently, we identified a new adaptor protein, Swiprosin-1, in lipid rafts of B-cell lines that undergo apoptosis after BCR stimulation. During murine B-cell development, Swiprosin-1 exhibited highest expression in immature B cells of the bone marrow, but was also expressed in resting and activated splenic B cells and in non-lymphoid tissue, especially in the brain. Ectopic expression of Swiprosin-1 in the immature murine B-cell line WEHI231 enhanced spontaneous and BCR-induced apoptosis. In contrast, short hairpin RNA (shRNA)-mediated downregulation of Swiprosin-1 impaired specifically spontaneous and BCR-elicited apoptosis, but not BCR-induced G1 cell cycle arrest and upregulation of the cell cycle inhibitor p27(Kip1). In accordance, Swiprosin-1 abundance regulated net cell growth of WEHI231 cell populations through reciprocal regulation of Bcl-xL, but not Bim, thereby controlling spontaneous apoptosis. Swiprosin-1-enhanced apoptosis was blocked through nuclear factor kappaB-activating stimuli, namely B-cell-activating factor of the TNF family, anti-CD40 and lipopolysaccharide (LPS). This correlated with enhanced BCR-induced IkappaB-alpha phosphorylation and degradation in cells expressing a Swiprosin-1-specific shRNA. Finally, ectopic Swiprosin-1 expression enhanced BCR-induced cell death in primary, LPS-stimulated splenic B cells. Hence, Swiprosin-1 may regulate lifespan and BCR signaling thresholds in immature B cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号