首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B cell development in the bursa of Fabricius of the chicken was examined. We constructed neonatal bursa cell chimeras (F1 leads to parent, parent leads to F1) and studied the in vivo interaction of these chimeric B cells with host-derived T cells in adoptive cell transfer to determine whether there exists any environmental effect on B cells for MHC-restricted T-B cell interaction. The results indicate that F1 B cells that have developed in a parental host bursa still behave as normal F1 B cells and do not show any change in their MHC-restriction pattern. In addition, parent leads to F1 chimeric B cells were indistinguishable from normal parental B cells. B cells from all constructed chimeras, including fully allogeneic, responded well to the T-independent antigen Brucella. We conclude that the genotype of the B cell, and not the developmental environment, determines the MHC restriction phenotype of mature B cells.  相似文献   

2.
The present study investigates the effect of trinitrophenyl- (TNP) modified H-2Kk (TNP-Kk) antigens on the generation of anti-TNP-Dk restricted cytotoxic T lymphocyte (CTL) responses. C3H.OH mice were primed to TNP-self by skin-painting with trinitrochlorobenzene, and spleen cells from these primed mice were subsequently stimulated in vitro with TNP-self. The effector cells generated exhibited appreciable lysis of TNP-modified C3H.OH blast target cells. Cold target inhibition studies demonstrated the generation of two effector cell populations: one that recognizes TNP in association with unique Dk self determinants, and one that recognizes TNP in association with self determinants shared between TNP-Kk and TNP-Dk. This was in contrast to primed C3H/He spleen cells, which did not generate CTL that recognized TNP in association with unique Dk self determinants. When spleen cells from (C3H/He x C3H.OH)F1 mice primed to TNP were stimulated in vitro with TNP-C3H.OH cells, unique Dk self determinants were recognized in association with TNP. However, in vitro stimulation of the same F1 responding cells with TNP-C3H/He or TNP-F1 cells failed to elicit CTL that utilized these Dk-unique self determinants. The findings of this study demonstrate that unique or shared H-2Dk determinants can be differentially utilized by CTL populations, depending on the H-2 alleles expressed by the stimulator cells.  相似文献   

3.
Identity at the major histocompatibility complex (MHC) of primed T cells and macrophages was essential for the development of a T cell proliferative response to Purified Protein Derivative of tuberculin (PPD) in the presence of macrophage-associated antigen and potential allogeneic effects were eliminated by the use of one-way fetal liver chimeras as a T cell source. By contrast, such MHC restriction could not be shown for the T cell—macrophage interaction when antigen was present in soluble form.It was found that the proliferative response of primed (responder × nonresponder) F1 T cells to the Ir-gene controlled antigen, TNP-18 [Glu-Tyr-Lys (TNP) (Glu-Tyr-Ala)5], could only be restored by responder macrophages with bound antigen, while both responder and nonresponder macrophages reconstituted the response to soluble TNP-18. Supernatants from cultured responder or nonresponder macrophages could at least partially replace viable macrophages in the latter case.These results argue for two distinct antigen presentation mechanisms, depending on the physical state of the antigen rather than its chemical nature: one involves recognition of antigen in association with MHC-coded determinants and shows H-2 restriction, while the other, mediated by soluble factors and antigen, does not.  相似文献   

4.
Immunization of mice with the ABA-GAT conjugate stimulates GAT-specific T helper cells in GAT-responder animals and ABA-specific helpers in nonresponders. Unexpectedly, immunization of (responder X nonresponder) F1 mice, which have the GAT-responder phenotype, leads to the recruitment of both ABA- and GAT-specific clones of T helper lymphocytes. The GAT-reactive population is restricted to the haplotype of the responder parent (Iak), whereas ABA-specific T cells are mostly restricted to the nonresponder one (Ias). This is demonstrated by the ability of monoclonal antibodies to parental la antigens to inhibit T cell proliferation to GAT or ABA-Tyr in vitro. Consistently, ABA-GAT-primed F1 T cells can only activate nonresponder B cells to proliferate in the presence of ABA-Tyr and responder B lymphocytes in the presence of GAT. Furthermore, F1 T cells seem to recognize both ABA and GAT epitopes only in association with molecules encoded by the I-A subregion. Analysis of ABA-specific F1 T cell lines generated by in vitro stimulation with ABA-Tyr or ABA-GAT demonstrates a competition between GAT- and ABA-specific T cells present in the hybrid T cell repertoire and restricted to the same parental I-Ak molecule. The results indicate that F1 macrophages can present both ABA and GAT epitopes to T cells in association with the two parental and hybrid Ia determinants. It seems unlikely that the absence of GAT-specific T cells restricted to the nonresponder I-A in the F1 is due to suppressor T cells. Thus, the competition model that we propose, to explain the selective F1 T cell response to ABA-GAT, leads us to believe that GAT nonresponder animals may lack clones capable of recognizing, with a high affinity, I-As + GAT.  相似文献   

5.
Previous studies, in which fine specificity analysis of CTL clones specific for the H-2Kb alloantigen was used to identify and distinguish the receptor of each clone, demonstrated that the composition of the CTL repertoire is influenced by at least two polymorphic genetic regions, the MHC and the IgH. By using double parent radiation chimeras of the type A + B----(A X B)F1, in which A and B differ at the MHC, it was found that the specificity repertoires of A and B, which normally differ in conventional mice of these strains, were very similar when CTLp were obtained from double parent chimeras. Therefore, the influence of MHC on repertoire was attributable to the environment in which the T cell developed rather than to an intracellular event. In the current study, this same strategy was used to determine whether IgH exerts its influence on the CTL repertoire at the environmental level as well. Double parent chimeras where constructed by using stem cells of BALB/c and B10.BR origin. Not only do these cells differ at the MHC, they also differ polymorphically at a large number of genetic regions including IgH and possibly T alpha structural genes. The results indicated that despite these genetic differences, the specificity repertoires of CTLp representative of the two different genotypes in the chimeras were very similar. Therefore, T cell repertoire differences that arise due to IgH polymorphism are determined by the developing environment. Additionally, these results suggest further that any genetic polymorphism which may exist within the T alpha gene complexes of these strains does not result in differences that can be detected within the CTL response to the Kb alloantigen.  相似文献   

6.
The autologous mixed lymphocyte reaction (AMLR) in mice measures the proliferative response of T cells to determinants on syngeneic non-T spleen cells. Normally, cytotoxic T lymphocytes (CTL) are not generated in this reaction. However, the addition of trinitrophenyl-modified mitomycin C-treated syngeneic T cells (TNP-Tm) to the AMLR results in the generation of TNP-specific CTL but does not alter the proliferative response. Significant cytotoxic activity is not detectable against TNP in association with Ia unless TNP is present on cells bearing those determinants. Thus, if unselected spleen cells are TNP-modified and used as stimulators in the AMLR, the proliferative response is enhanced and CTL are generated that recognize TNP in association with K, D, and I region-encoded determinants. The CTL generated in the AMLR are H-2 restricted and dependent on the presence of adherent cells in the sensitization cultures. The experiments presented here suggest that the AMLR can provide the help necessary for generating cytotoxic T cells in vitro.  相似文献   

7.
The influence of T cell genotype and T cell maturation environment on the generation of the T cell alloreactive repertoire was evaluated in the H-2b cytotoxic T lymphocyte response to Kb mutant determinants expressed by the strain B6-H-2bm6. Specifically, by constructing radiation bone marrow chimeras with B6 or B10 (H-2b) donor cells and B10.BR, B10.A(4R), B10.MBR, and B6.C-H-2bm1 irradiated mice as recipients, it was possible to investigate the major histocompatibility complex (MHC)-encoded gene products of the host environment required for the generation of a bm6-specific H-2b CTL response. The results of such experiments confirmed the previous finding that the alloreactive T cell repertoire is influenced both by T cell MHC genotype and by the MHC gene products of the T cell maturation environment. In addition, the results of the present study further demonstrated that in the chimeric donor and host genetic combinations used, it was both necessary and sufficient that there be a homology of K region-encoded determinants for the generation of a bm6-specific CTL response. Experiments utilizing a mixed responder population of unresponsive B6----B10.D2 spleen cells and responsive Lyt-2 congenic B6.Lyt-2.1 spleen cell suggested that the cellular defect(s) underlying the unresponsiveness of the chimeric cells to bm6-encoded determinants was at the level of the CTL precursor. Together, these findings indicate that an interaction of the K region-encoded gene products of the T cell and its maturation environment play a critical role in the generation of the CTL repertoire specific for bm6 mutant determinants. We discuss here the possibility that this interaction may reflect a requirement that T cells recognize such mutant allodeterminants in association with self restriction elements present on the same mutant K region-encoded molecule.  相似文献   

8.
In an attempt to resolve the issue of whether H-2-restricted T cell specificity is controlled by thymic epithelial cells or by cells of the macrophage/dendritic cell (M phi/DC) lineages, long-term F1----parent chimeras were subjected to secondary irradiation and reconstitution with F1 marrow cells. The rationale was that if F1 M phi/DC enter the thymus only quite slowly after irradiation, as claimed by other investigators, leaving F1----parent chimeras for a period of several months before re-irradiation would ensure that the new wave of T cells generated in the thymus of the chimeras would have no difficulty in making contact with donor-derived F1 M phi/DC. According to the view that M phi/DC rather than epithelial cells control H-2 restriction, the T cells differentiating in these chimeras would be expected to show H-2 restriction to both parental strains. In practice, T cells from twice-irradiated (1000 + 800 rad) chimeras showed strong restriction to host (thymic) H-2 determinants, the degree of restriction to host determinants being as marked as with T cells from once-irradiated chimeras. This finding applied both to T proliferative responses to KLH assayed in vitro and to T helper function for sheep erythrocytes measured in vivo. Preliminary experiments established that the initial dose of irradiation used for preparing the chimeras (1000 rad) resulted in almost total replacement of intrathymic M phi/DC by donor-derived cells within 4 wk of irradiation; M phi/DC were typed by determining their capacity to stimulate mixed-lymphocyte reactions. Collectively, the data imply that, at least under the conditions used, H-2-restricted T cell specificity is controlled by epithelial cells rather than by M phi/DC.  相似文献   

9.
In this paper we have examined the influence of MHC (major histocompatibility complex) on neonatal tolerance to Mlsa (minor lymphocyte stimulating). By employing a novel approach we have shown that tolerance to Mlsa is restricted by shared MHC determinants. Thus, neonatal Mlsb mice, injected at birth with spleen cells from Mlsa mice, were tested as adults for Mlsa specific responses by interleukin-2 limiting dilution analysis, a technique which allows us to discriminate between responses to MHC + Mlsa and to MHC alone. Tolerance to Mlsa was in the context of any MHC type examined--donor, host, and third-party MHC products. These results show that tolerance to Mlsa is restricted by shared MHC determinants and extend previous studies indicating that activation of Mlsa responses is similarly restricted.  相似文献   

10.
S Aizawa  T Sado 《Cellular immunology》1988,117(1):199-208
To better understand the factors described previously as influencing the manifestation of H-2 restriction specificity and Ir phenotype of T cells from radiation bone marrow chimeras, we also examined H-2 restriction specificity (Ir phenotype) of antigen (DNP-OVA, (T, G)-A-L, (H, G)-A-L)-specific proliferative T cells generated in various types of H-2 incompatible radiation chimeras prepared under our specific-pathogen-free (SPF) condition. The results indicated the following: (a) T cells generated in F1----parent bone marrow chimeras preferentially manifested host-type H-2 restriction specificity and Ir phenotype, regardless of the radiation dose (8.70 vs 11.59 Gy); (b) T cells recovered from twice-reconstituted F1----(PA----PB) chimeras manifested primary host (PB)-type Ir phenotype; (c) T cells which were recovered from (B10.Thy-1.1 X B10.BR.Thy-1.1)F1----parent (Thy-1.2) bone marrow chimeras and treated with anti-Thy-1.2 plus complement to deplete host-derived T cells still manifested preferentially the restriction specificity for host-type H-2; (d) PA-derived T cells which had differentiated in a fully allogeneic host (PB) environment of (PA + PB)----PB chimeras manifested fully allogeneic host-type Ir phenotype; (e) T cells from F1----parent chimeras that were prepared with 13-day fetal liver cells also manifested host H-2-restricted Ir phenotype; and (f) host preference for Ir phenotype of antigen-specific proliferative T cells was observed even in the case of F1----parent bone marrow chimeras reconstituted with "intact" bone marrow cells. The data suggest that thymic APCs, surviving host T cells or the source of stem cells (adult bone marrow vs 13-day fetal liver), do not necessarily play a significant role in the manifestation of H-2 restriction specificity and Ir phenotype of T cells generated in H-2 incompatible radiation chimeras.  相似文献   

11.
Synthetic hapten-peptide conjugates selectively modify cell-bound MHC class I molecules in a haplotype-specific way. We investigated the contribution of the carrier peptides to the structural specificity of T cell-antigenic TNP epitopes, using different H-2Kb-binding TNP-peptides and a collection of TNP/Kb-specific CTL clones. Adjustment of peptide sequences to the proposed Kb-specific "motif" (octamers with F or Y and L in positions 5 and 8, respectively) enhanced Kb-binding and antigenicity by many orders of magnitude. Moreover, several clones reacted to peptides, containing the "motif" and TNP-lysine in position 4 but were otherwise unrelated by sequence. TNP in other positions was not recognized by these cells, but other CTL reacted to TNP in position 7. This points to the positioning of hapten determinants within the MHC binding groove as a major role of the anchoring peptide. However, determination of the limiting amounts of TNP peptides that elicit antigenicity or inhibit other Kb-restricted CTL reactions revealed that TCR also recognize variations in the sequences of carrier peptides. This contribution is low for TNP in position 4 but high in position 7, indicating lysine in position 4 as a particularly dominant and cross-reactive hapten-anchoring site in Kb-associated peptides. This implies that cell modification with lysine-reactive TNP reagents results in immunodominant, highly repetitive TNP epitopes, which may explain the strong antigenicity and the allergenic properties of TNP, as well as the restricted TCR repertoire directed against this hapten. Our data further recommend hapten peptides for general studies of TCR-Ag interactions because in contrast to pure protein Ag, hapten epitopes tolerate substantial structural variations in the MHC-anchoring peptide, and can be located by hapten-specific antibodies.  相似文献   

12.
BACKGROUND: MHC class I molecule-restricted cytotoxic T-lymphocyte (CTL) responses are induced following either intramuscular (i.m.) injection of a DNA plasmid encoding influenza virus nucleoprotein (NP) or transplantation of myoblasts stably transfected with the NP gene, the latter indicating that synthesis of NP by myocytes in vivo is sufficient to induce CTL. The present study was designed to investigate the role of muscle cells and involvement of professional antigen-presenting cells (APCs) in priming CTL responses following DNA vaccination. MATERIALS AND METHODS: Parent-->F1 bone marrow (BM) chimeric mice were generated whose somatic cells include muscle cells bearing both parental MHC haplotypes, while their professional APCs express only the donor MHC haplotypes. RESULTS AND CONCLUSIONS: Upon injection of NP DNA, or after infection with influenza virus, CTL responses generated in the chimeras were restricted to the donor MHC haplotype. Thus cells of BM lineage were definitively shown to be responsible for priming such CTL responses after infection or DNA immunization. Moreover, expression of antigen by muscle cells in BM chimeric mice after myoblast transplantation is sufficient to induce CTL restricted only by the MHC haplotype of the donor BM. This indicates that transfer of antigen from myocytes to professional APCs can occur, thus obviating a requirement for direct transfection of BM-derived cells.  相似文献   

13.
When (B10.BR X CWB)F1 (BWF1; H-2k/b) mice carrying the H-42b allele at the minor H-42 locus were injected with H-42a C3H.SW (CSW; H-2b) or C3H (H-2k) spleen cells (SC), self-H-2Kb restricted anti-H-42a pCTL in the BWF1 recipients were primed and differentiated to anti-H-42a CTL after in vitro stimulation with (B10.BR X CSW)F1 (BSF1; H-2k/b, H-42b/a) SC. In contrast, anti-H-42a pCTL in H-42b mice were inactivated by injection with H-42-congenic H-42a SC, and stable anti-H-42a CTL tolerance was induced. Preference of H-2Kb restriction of anti-H-42a CTL was strict, and self-H-2Kb-restricted anti-H-42a CTL did not lyse target cells carrying H-42a antigen in the context of H-2Kbm1. Involvement of suppressor cells in the anti-H-42a CTL tolerance was ruled out by the present cell transfer study and the previous cell-mixing in vitro study. Notably, treatment with anti-Thy-1.2 antibody (Ab) plus complement (C) wiped out the ability of CSW SC in the priming of anti-H-42a pCTL of BWF1 mice but left that of C3H SC unaffected, and injection of the anti-Thy-1.2 Ab plus C-treated CSW SC induced anti-H-42a CTL tolerance in the BWF1 recipients. Furthermore, H-42a/b, I-Ab/bm12 [CSW X B6.CH-2bm12 (bm12)]F1 SC could not prime anti-H-42a pCTL in H-42b, I-Ab (CWB X B6)F1 recipients, whereas H-42a/b, I-Ab (CSW X B6)F1 SC primed anti-H-42a pCTL in H-42b, I-Ab/bm12 (CWB X bm12)F1 recipients. The unresponsiveness of anti-H-42a pCTL in H-42b mice to H-42-congenic H-42a SC was sometimes corrected by immunization of H-42b female mice with H-42-congenic H-42a male SC. Taking all of the results together, we propose the following. Unresponsiveness of anti-H-42a pCTL in H-42b mice to H-42-congenic H-42a SC is caused by "veto cells" contained in the antigenic H-42a SC. Anti-H-42a pCTL in the H-42b recipients directly interacting with H-42-congenic H-42a SC, which bear H-42a antigen and H-2Kb restriction element, are inactivated or vetoed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The choice of class II MHC determinants that serve as self-recognition elements for murine CD4+ T cells is thought to be determined by the environment in which T cells mature rather than their genotype. Patients with severe combined immunodeficiency (SCID) reconstituted with T cell depleted haploidentical parental stem cells provide an excellent model for studying this phenomenon in humans. After engraftment, the T cells that develop in these infants are all of donor origin. We sought to determine whether the successful immune reconstitution observed in two such SCID chimeras involved modification of the MHC restriction of Ag recognition by the genetically donor T cells as they matured to become competent T cells in the infants' microenvironment. A tetanus toxoid (TT)-specific T cell line and TT-specific T cell clones were established from the blood of two reconstituted SCID patients and from their maternal donors. T cell responsiveness was determined by [3H]thymidine incorporation after TT presentation by EBV-transformed B cell lines (EBV-B) from various donors. The TT-specific T cell line from patient 1 proliferated when presented Ag by patient, maternal donor, and paternal APC. A CD4+ donor origin clone that proliferated when presented TT by patient and paternal EBV-B, but not by maternal donor EBV-B, was isolated from each patient. TT recognition by these clones was shown to be restricted by the HLA DR determinant shared by patient and father, but not present in the donor. Four TT-specific clones isolated from maternal donors failed to proliferate when presented TT by the appropriate paternal EBV-B. These studies demonstrate that, in these human SCID bone marrow chimeras, engrafted donor-origin stem cells maturing to competent T cells in the recipient microenvironment are capable of utilizing recipient HLA determinants as restriction elements for Ag recognition. This suggests that human, as well as murine, MHC restriction patterns for Ag recognition by CD4+ T cells are environmentally determined.  相似文献   

15.
The role of T helper cells (Th) and their soluble products in the generation of a cytotoxic T-cell (CTL) response of thymocytes to trinitrophenyl (TNP)-modified syngeneic cells was investigated. The Th have a Thy 1+ Lyt 1+2? surface phenotype, and produce at least two soluble helper factors. Production of factors requires stimulation of primed Th by specific antigen (self-TNP), and depends on a Thy 1+ Lyt 1+2? cell. Factors present in supernatants after 5 hr of stimulation act preferentially on antiallogeneic precursor CTL (pCTL); factors present at 24 hr act preferentially on self-TNP-specific pCTL with a variable activity for alloantigen-specific pCTL. These results are interpreted as suggesting a possible role for helper factors having selective action in generation of CTL responses.  相似文献   

16.
To test the capacity of the epithelial component of the chick embryo thymus to induce tolerance to major histocompatibility complex (MHC) antigens, pre-colonized thymic rudiments were grafted into chick embryonic recipients. Semi-allogeneic or allogeneic transplantations were done between two lines of chickens histocompatible at the MHC locus. Approximately 10% of these thymic chimeras hatched and were studied 3 mo after hatching. Thymic grafts were not rejected by the allogeneic host. The tolerance of chimeric chickens to thymus donor MHC antigens was tested by using a skin graft rejection test and a graft-vs-host (GvH) assay. Chimeric chickens that received an MHC-incompatible thymic graft during the embryonic life tolerated skin graft with the MHC haplotype of the thymus donor. Nevertheless, the lymphocytes within the thymic graft, the host thymus, and the blood were tolerant to the host MHC antigens but were alloreactive in GvH reaction for the MHC antigens of the thymic graft type. These results suggest that the epithelial component of the thymus when taken before the starting of the colonization by hemopoietic precursors and grafted into an early chick embryonic host can induce a tolerance for the MHC determinants involved in allograft rejection but not in the GvH reaction.  相似文献   

17.
The specificity of the T-accessory cell interactions that initiate primary allospecific cytotoxic T lymphocyte (CTL) responses were found to be surprisingly diverse and of three distinct major histocompatibility complex (MHC) specificities, involving responder T cell recognition of: a) self-Ia accessory cell determinants, b) allo-Ia accessory cell determinants, or c) allo-K/D accessory cell determinants. Any one of these T-accessory cell interactions was sufficient to initiate allospecific CTL responses. It was observed that when accessory cells did not express foreign class I MHC determinants, primary allospecific CTL responses were invariably initiated by Ia-restricted T-accessory cell interactions. In contrast, it was observed that when accessory cells did express foreign class I MHC determinants, primary allospecific CTL responses could be initiated by Ia-independent T-accessory cell interactions that were specific for allogeneic, but not self, K/D determinants and that did not involve recognition of polymorphic Ia determinants. The MHC specificities of the T-accessory cell interactions that initiate primary allospecific and primary trinitrophenyl (TNP)-self CTL responses were also compared. It was observed that primary allospecific and primary TNP-self CTL responses could be initiated by self-Ia-restricted T-accessory cell interactions, and that in both responses the Ia determinants that the responding T cells recognized as self-specificities on the accessory cell surface were those that their precursors had encountered on radiation-resistant thymic elements in their differentiation environment. In contrast to the initiation of primary TNP-self CTL responses that required the activation by accessory cells of Ia-restricted T helper (TH) cells, allospecific CTL responses could also be initiated by class I-restricted T cells specific for accessory cell K/D determinants. Interestingly, such class I-restricted T cells present in primary responder cell populations were triggered only by recognition of allogeneic, but not self, K/D accessory cell determinants, even when the accessory cells were modified with TNP. Thus, the present study demonstrates that primary allospecific CTL responses, but not TNP-self CTL responses, are initiated by Ia-restricted or Ia-independent cellular interaction pathways. These results raise the possibility that unprimed class I-restricted TH cells that mediate the Ia-independent cellular interaction pathway may predominantly express an allospecific, but not a self + X-specific, receptor repertoire. Possible mechanisms by which these distinct T-accessory cell interactions initiate primary allospecific CTL responses are discuss  相似文献   

18.
Hapten-specific T cells have been shown to recognize haptenated peptides with high avidity and, in some instances, with promiscuous MHC restriction. In this study, the impact of Ag density on MHC restriction of a CTL response specific to the trinitrophenyl (TNP) hapten was investigated. In this study, we demonstrate a novel recognition mechanism used by TNP-specific CD8(+) CTL in the presence of high Ag doses. Although low levels of TNP epitopes on target cells allowed for HLA-A1-restricted CTL activity only, entirely MHC-independent target cell recognition became operative at high TNP loading. In both cases, recognition was mediated by the TCR. This MHC-independent recognition is target cell type restricted and critically involves in our model direct recognition of the ectonucleotidase family surface molecule CD39 by the CTL.  相似文献   

19.
Activation of murine B lymphocytes in a splenocyte stimulator population with affinity-purified goat anti-mouse IgD (G alpha M delta) antibody was previously shown by this laboratory to enhance the presentation of strongly stimulatory major histocompatibility complex (MHC) and minor lymphocyte-stimulating (Mlsa,d) determinants in a primary mixed lymphocyte reaction. In the present study, the G alpha M delta treatment of murine splenocytes was employed to enhance the detection of the weakly stimulatory non-MHC Mlsc determinant in order to study the role the MHC might play as a restricting element for the recognition of these minor antigens in a primary mixed lymphocyte reaction. Indeed, enhanced T cell proliferation to Mlsc determinants presented on G alpha M delta-treated splenocytes was observed when the responder and activated H-2-compatible stimulator cell shared certain MHC haplotypes. High responsiveness was associated with the H-2a,k,j,p haplotypes, intermediate responsiveness was associated with the H-2f,g haplotypes and low responsiveness was associated with the H-2b,s haplotypes. (Low X high responder)F1 T cells preferentially responded to the Mlsc determinants presented on G alpha M delta-treated stimulator cells of the F1 or parental high responder H-2 haplotype. When mitomycin C instead of irradiation was used to inactivate normal (non-IgD-treated) splenocytes, a similar preferential response of T cells to Mlsc determinants presented on stimulator cells of a high responder H-2 haplotype was also observed. The inability of G alpha M delta-treated splenocytes of the low responder haplotype to elicit substantial levels of T cell proliferation across an Mlsc difference could not be attributed to the failure of these stimulator cells to become activated by the anti-Ig antibody. In addition, co-culture experiments could not identify the poor T cell response to Mlsc determinants presented on certain MHC haplotypes as being caused by the induction of nonspecific suppressor cells. Presentation of Mlsc determinants caused by transgene product complementation was detectable in F1 mice derived by crossing one parent that had the Mlsc non-MHC genes and a poorly permissive H-2 haplotype with a parent that expressed a permissive H-2 haplotype but lacked the Mlsc non-MHC genes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Monoclonal T helper (TH) cell populations were employed to study the mechanism of activation of the Lyb-5+ B cell subpopulation in T cell-dependent antibody responses in vitro. It was demonstrated that monoclonal T cell populations were sufficient to help rigorously T-depleted unprimed (B + accessory) cells for direct plaque-forming cell responses to trinitrophenyl- (TNP) conjugated keyhole limpet hemocyanin (KLH). The activation of several lines of cloned (H-2b X H-2k)F1 TH cells was antigen (KLH) specific and H-2 restricted. Individual clones were restricted to H -2b, H-2k, or unique (H-2b X H-2k)F1 encoded determinants. Under the experimental conditions employed, responses mediated by cloned TH cells were found to result in the activation of the Lyb-5+ B cell subpopulation. The activation of Lyb-5+ B cells by cloned TH cells did not require covalent linkage of carrier and hapten, and responses could be stimulated in the presence of free KLH plus TNP conjugated to an irrelevant carrier. The H-2 restriction of TH cell function was shown to reflect a requirement for T cell recognition of determinants expressed by accessory cells, whereas no requirement existed for restricted T cell recognition of B cells. These findings suggest that the help provided by monoclonal TH cells, once activated, was both antigen nonspecific and H-2 unrestricted. Consistent with this interpretation, it was found that the supernatant of antigen-stimulated TH cells provided antigen-nonspecific help to T-depleted spleen cells. Thus, these results demonstrate that the activation of Lyb-5+ B cells by antigen-specific and H-2-restricted monoclonal TH cell populations is itself antigen nonspecific and H-2 unrestricted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号