首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is known that insulin treatment increases the rate of protein synthesis in many cells and tissues and that it causes changes in the distribution of ribosomes between free (FP), cytoskeletal-bound (CBP) and membrane-bound polysome (MBP) populations. This paper concerns an analysis of the pattern of proteins in high-salt extracts of FP, CBP and MBP isolated from Krebs II ascites and MPC-11 cells. A combined detergent/salt extraction procedure was used to isolate the three fractions of polysomes from control cells and from cells following short-term stimulation with insulin. There were differences in the protein patterns in the individual fractions and changes occurred after insulin stimulation.  相似文献   

2.
A three-step sequential detergent/salt extraction procedure was used in order to isolate three distinct subcellular fractions containing free (FP), cytoskeletal-bound (CBP) and membrane-bound polysomes (MBP), respectively, from Krebs II ascites cells (Vedeler et al., Mol Cell Biochem 100: 183–193,1991). The purpose was to study changes in the distribution of polysomes in these three fractions during long-term incubation with insulin under either stationary conditions or in roller suspension culture- Insulin caused a redistribution of polysomes between FP, CBP and MBP fractions. The hormone appeared to promote an entry of ribosomes into polysomes both in CBP and MBP populations. When cells were grown in stationary culture in the presence of insulin and thus promoted to attach to the substratum and undergo morphological changes, a diversion of ribosomes from CBP into MBP was observed. The level of protein synthesis was apparently very high in this latter fraction since more then 70% of ribosomes were in polysomes. Morphological changes observed following insulin treatment were accompanied by a shift of certain proteins among subcellular fractions (for example actin and p35). The fibronectin content was about 20% higher in attached compared to non-attached cells. The results suggest that morphological changes induced by stimulation with insulin are associated with an increased activity of MBP, presumably reflecting a requirement for an increased synthesis of membrane proteins. (Mol Cell Biochem 118: 131–140, 1992)  相似文献   

3.
The influence of exogenous abscisic acid (ABA) on the content of free polysomes (FP), membrane-bound polysomes (MBP), cytoskeleton-bound polysomes (CBP) and cytomatrix-bound polysomes (CMBP) in triticale germs as well as in vitro protein synthesis by these four polysomal fractions were studied. During translation, proteins were biotinylated for chemiluminescence detection. We have found that ABA changed both the content of FP, MBP, CMP and CMBP in germ tissue, and their subsequent translation activity. At 100 μM ABA, the content of FP and MBP was over fourfold lower compared to the control, whereas the amounts of CBP and CMBP were about two- and threefold higher, respectively. Moreover, the estimation of the share of polysomes in each ribosomal fraction (sub-units, monosomes, polysomes) showed that, at 100 μM ABA, cytomatrix-bound polysomes, which constituted 90% of polysomes, were the predominant class in ABA-treated germs while membrane-bound polysomes, which made up 82% of polysomes, dominated in the control. A high level of CMBP in ABA-treated tissues may indicate that this class of polysomes participates in ABA-induced synthesis of proteins. In turn, the inhibition of MBP under ABA-treatment is probably due to the delayed protein synthesis which takes place on these polysomes. We identified two lysine-containing proteins synthesized on both of the above classes of polysomes, whose synthesis was altered due to ABA application. Synthesis of a 47 kDa protein on MBP was inhibited, while synthesis of a 79 kDa protein on CMBP is strongly enhanced by ABA influence. The importance of these findings is discussed.  相似文献   

4.
The influence of abscisic acid (ABA) on the process of polysome formation and synthesis of newly-formed proteins by different polysome populations was studied. Triticale caryopses were germinated in water or various ABA concentrations for 48 hrs, and afterwards they were transferred to a solution of 14C-amino acids and germinated for an additional 30 min. Embryos were separated from caryopses, and four polysome populations were isolated: the FP (free polysomes), MBP (membrane-bound polysomes), CBP (cytoskeleton-bound polysomes) and CMBP (cytoskeleton-membrane-bound polysomes). ABA retarded both the process of polysome formation and their activity in forming new proteins in vivo in all studied fractions. Participation of polysomes in total ribosomal materials (sub-units, monosomes and polysomes) of each polysome population in the control sample was as follows: FP — 77; MBP — 72; CBP — 70 and CMBP — 66 %, whereas in sample treated by ABA (100 μM) it was accordingly: 17; 23; 27 and 28%. The largest population made up FP (in control sample 69%), participation of MBP was always lower and ranged from about 19 to 30 %. Participation of polysome populations bound with the cytoskeleton CBP and CMBP, both in control sample as well as in samples treated with 1 and 10 μM ABA solution, was only a few per cent. It should be noted that when the ABA concentration was higher (100 μM) (process of germination was strongly inhibited), participation of those two populations (CBP and CMBP) was much increased in embryos, respectively to about 18 and 20 %. In both the control group and in embryonal tissue treated with ABA increasing incorporation of radioactive precursors to newly-formed proteins in vivo in fractions of polysomes isolated by following buffers: C (FP), C + PTE (MBP), C + Tris (CBP) and buf. U (CMBP) was observed. It should be noted, that the biggest incorporation of 14C-amino acids into nascent polypeptide chains was found in the last polysome population (CMBP). In the sample treated with ABA (100 μM) the activity of this fraction (CMBP) in forming new proteins is several times, and in the case of FP dozens of times, more intense. Increased participation of CBP and CMBP in embryos of triticale caryopses treated with ABA (100 μM) and the largest incorporation of 14C-amino acids into nascent polypeptide chains synthesised by CMBP, may indicate the important role of proteins formed by polysomes associated with cytoskeleton in inhibition of germination and seedling growth by ABA.  相似文献   

5.
Polysome stability and the formation of various polysomal populations in pea stem and root tissue were examined. Both total ribosomal fraction and four polysome populations were isolated: FP (free polysomes), MBP (membrane-bound polysomes), CBP (cytoskeleton-bound polysomes) and CMBP (cytoskeleton-membrane-bound polysomes). The content of above mentioned populations decreased in roots and stems during germination. In both roots and stems a gradual decrease of FP participation in the total polysomal population was also observed during germination. On the other hand, an obvious increase in participation of CMBP population in the total polysomes pool was observed in later stages of germination. Increase of CMBP participation in pea root and stem tissues in later stages of germination is probably due to intensive enzymatic protein synthesis taking place in them. These proteins may participate in elongating growth of cells. The results of investigation on polysomes stability showed that total polysomes isolated from pea roots appeared to be more resistant to digestion by exogenous ribonuclease (EC 3.1.27.5) than polysomes isolated from stems. As protein-mRNA interactions are widely known and ribosomes are also very adhesive structures, numerous non-ribosomal proteins are present in the polysome preparations. We suppose that changes in proteins bound to polysomes indicated by us previously, significantly influence both the stability and also translatability of polysomes isolated from different plant organs.  相似文献   

6.
Summary Microsomal membranes were obtained from MPC-11 cells, L-cells, Krebs II ascites cells and various normal animal tissues following cell disruption by nitrogen cavitation. Membrane preparations were applied to discontinuous sucrose gradients designed to separate three fractions — heavy rough (HR), light rough (LR) and smooth (S) microsomes. In each of the transformed cell lines all three fractions were found whilst in the normal tissues tested the HR fraction was absent. Of the normal tissues liver and pancreas were rich in both LR and S microsomes, the presence of large amounts of LR indicating a rich protein synthesizing activity on membrane-bound polysomes. Kidney also contained appreciable LR but much less than both liver and pancreas. Both heart and lung contained virtually only S microsomal material — a reflection of low protein synthetic activity on membrane-bound polysomes. Attempts to promote the appearance of the HR fraction in liver, kidney and pancreas by incubation in tissue culture medium, or, in the case of pancreas, by cholecystokinin/pancreozymin/secretin, stimulation bothin vivo andin vitro were unsuccessful.  相似文献   

7.
The influence of abscisic acid (ABA) on the processes of formation of different polysomal populations, their structures and stability in embryonal tissue during pea seeds germination was studied. The contents of total ribosomal fraction increased in all samples up to 72 h of germination and then decreased. The contents of polysomal population (FP, MBP, CBP and CMBP) extracted from the embryonal tissue after 72 hrs of germination of pea seeds were then quantified. It turned out that in examined tissue of control sample, fraction of free polysomes (FP) was the most abounded. This population of polysomes in sprouts decreased after ABA treatment. FP content decreased even more when the higher ABA concentration was applied during germination. Similar changes were observed in the fraction of membrane-bound polysomes (MBP). Quite different tendencies were found, however, in forming population of the cytoskeleton-membrane-bound polysomes (CMBP). The CMBP population content in embryonal tissue increased in a dosage dependent manner with increasing concentration of ABA applied during seed germination. This indicates the important role of CMBP fraction in synthesis of specific proteins in embryos in the time when processes of seeds germination are retarded by ABA. In the final part we examined the stability of polysomes isolated from sprouts of germinating seeds in water and sprouts isolated from seeds treated with ABA (100 μM) during germination. Total polysomes isolated from embryonal tissue of germinating seeds treated with ABA showed much higher resistance to exogenous ribonuclease digestion than total polysomes of control sample. The obtained results suggest that ABA influence on different polysomal population formation also controls their stability.  相似文献   

8.
This study was conducted on barley cv. Ars. caryopses collected at full ripeness and divided into two batches. From one batch (dormant caryopses) polysomes were isolated from embryos immediately after harvesting and after two days of germination. From the other batch (non-dormant caryopses) the same was done after eight months storage in a dry state. A low ionic strength cytoskeleton-stabilizing buffer was used for the isolation of polysomes. Four different fractions of polysomes were examined: free polysomes (FP), membrane-bound polysomes (MBP), cytoskeleton-bound polysomes (CBP) and cytoskeleton-membrane-bound polysomes (CMBP). In germs grown from non-dormant caryopses, the first two fractions (FP + MBP) made up about 78 % of the total ribosomal material, whereas in embryos of dormant, imbibed caryopses, two last fractions (CBP + CMBP) made up about 71 %. The percentage of polysomes after 48 hours of imbibition of dormant caryopses in the FP, MBP and CBP was only about 13 % (i.e., 87 % monosomes), whereas a greater proportion (19.4 %) was found in the CMBP. The highest incorporation of 3H-uridine and 14C-amino acids (after 48 hours of germination and 0.5, 3 and 6 hrs incubation with precursors) took place in trhc CMBP both in dormant and non-dormant caryopses The major amount of the two polysome fractions associated with the cytoskeleton (CBP and CMBP) and the higher activity of CMBP in protein synthesis in embryos of dormant, imbibed triticale caryopses may indicate a significant role for polysomes associated with the cytoskeleton in the control of protein synthesis in dormant and germinating caryopses.  相似文献   

9.
The incorporation of [3H]-glucosamine into polypeptides of three fractions of polysomes in MPC-11 cells was studied. After short term incubation greatest incorporation was observed in a fraction of membrane-bound polysomes, which after nitrogen cavitation of cells, remained bound to the endoplasmic reticulum (ER) associated with the nucleus (fraction 2). Polypeptide chains on membrane-bound polysomes in the microsomal fraction (fraction 1) and free polysomes contained much less radioactivity. Since nascent polypeptide chains contained within membrane-bound polysomes of fraction 2 are glycosylated at an earlier stage than those in fraction 1 it is likely that this represents a difference in type of proteins synthesized in the respective fractions of ER.  相似文献   

10.
Plants growing under natural conditions are constantly exposed to various stress factors, which can restrain their productivity and limit yields. This paper deals with the effect of long- and short-term osmotic stress followed by recovery on the formation of polysomes and their stability during germination of pea (Pisum sativum L.) seeds. By isolating polysomes, it is possible to obtain an index which evidences the ability of tissues to synthesize proteins. Changes in the distribution of polysomes often precede measurable changes in amounts of proteins. Under osmotic stress, the dominant population of polysomes was the population of free polysomes (FP). The share of membrane-bound polysomes (MBP) and cytoskeleton-bound polysomes (CBP) and cytoskeleton-membrane-bound polysomes (CMBP) in the total fraction of ribosomes increased under intensive (−1.0 and −1.5 MPa) osmotic stress. These results can suggest that the bound forms of polysomes play an important role in the synthesis of stress proteins. In addition, the stability of polysomes isolated from pea early seedlings growing under unstressed control and osmotic stress conditions was tested. It turned out that polysomes formed under osmotic stress conditions (especially the CMBP) were more resistant to the activity of exogenous ribonucleases than the polysomes in the control samples. Under stress conditions it is highly likely that ribosomes become more densely packed on mRNA thus making it more resistant to ribonuclease. This is just one of the many mechanisms regulating stability of mRNA.  相似文献   

11.
Summary Polysomes from Krebs II ascites and 3T3 cells were separated into three populations by using a sequential extraction method. Free polysomes were released by using a combination of low salt (25 mM KCl) and NP-40 detergent in the lysis buffer. The cytoskeletal bound polysomes were subsequently released by raising the salt concentration to 130 mM and finally, polysomes bound to the membranes of the endoplasmic reticulum were extracted by the combined treatment with Triton X-100 and deoxycholate. The results presented here illustrate that the three polysome-containing fractions differ in many parameters such as polysome profiles, cytoskeletal components and phospholipid content. When polyA-containing mRNA was isolated from the three polysome fractions and translated in an in vitro system, some differences were observed in the patterns of proteins being synthesized.  相似文献   

12.
13.
This review describes the critical evidence that in eukaryotic cells polyribosomes, mRNAs and components of the protein synthetic machinery are associated with the cytoskeleton. The role of microtubules, intermediate filaments and microfilaments are discussed; at present most evidence suggests that polyribosomes interact with the actin filaments. The use of non-ionic detergent/deoxycholate treatment in the isolation of cytoskeletal-bound polysomes is described and the conclusion reached that at low salt concentrations this leads to mixed preparations of polysomes derived from both the cytoskeleton and the endoplasmic reticulum. At present the best approach for isolation of cytoskeletal-bound polysomes appears to involve extraction with salt concentrations greater than 130 mM after an initial non-ionic detergent treatment. Such polysomes appear to be enriched in certain mRNAs and thus it is suggested that they are involved in translation of a unique set of proteins. The evidence for mRNA localisation is presented and the role of the cytoskeleton in transport and localisation of RNA discussed. Recent data on the role of the 3 untranslated region in the targeting of mRNAs both to particular regions of the cell and for translation on cytoskeletal-bound polysomes is described. The hypothesis is developed that the association of polysomes with the cytoskeleton is the basis of a mechanism for the targeting of mRNAs and the compartmentalization of protein synthesis.Abbreviations CBP cytoskeletal-bound polysomes - FP free polysomes - MBP membrane-bound polysomes - ER endoplasmic reticulum  相似文献   

14.
In Vitro Synthesis of Adenovirus Core Proteins   总被引:11,自引:9,他引:2       下载免费PDF全文
mRNA extracted from polysomes of KB cells at late stages of productive infection with adenovirus type 2 was translated in a cell-free system derived from Krebs II ascites cells. Two of the polypeptides obtained in this reaction corresponded to the adenovirus core protein V and the precursor to core protein VII. The following criteria were used to establish identity between the in vitro products and the virion proteins: comigration during sodium dodecyl sulfatepolyacrylamide gel electrophoresis, cochromatography in sodium dodecyl sulfate-hydroxyapatite, specific immunoprecipitation of the precursor to core protein VII, and tryptic peptide analysis.  相似文献   

15.
Endonuclease activity which specifically cleaves baseless (apurinic/apyrimidinic (AP] sites in supercoiled DNA has been purified from mitochondria of the mouse plasmacytoma cell line, MPC-11. Two variant forms separate upon purification; these have small but reproducible differences in catalytic and chromatographic properties, but similar physical properties. Both have a sedimentation coefficient of 4.0, corresponding to a molecular weight of 61,000 (assuming a globular configuration) and a peptide molecular weight of about 65,000 as determined by immunoblot analysis with antiserum raised against the major AP endonuclease from HeLa cells. Thus mitochondrial AP endonuclease appears to be a monomer of about 65 kDa, making it distinguishable from the major AP endonuclease of MPC-11 cells which, like those of other mammalian cells, appears to be a monomer of about 41 kDa. A possible 82-kDa precursor form was also detected by immunoblot analysis of a crude mitochondrial fraction. Mitochondrial AP endonuclease activity is greatly stimulated by divalent cations, has a pH optimum between 6.5 and 8.5, and cleaves the AP site by a class II mechanism to generate a 3'-OH nucleotide residue. These properties resemble those of the major mammalian AP endonucleases but, unlike those enzymes, mitochondrial AP endonuclease activity is neither inhibited by adenine or NAD+ nor stimulated by Triton X-100. Since the mitochondrial activity generates active primer termini for DNA synthesis, it could function in base excision DNA repair; alternatively, it might have a role in eliminating damaged mitochondrial genomes from the gene pool.  相似文献   

16.
17.
Starvation induces vegetative microplasmodia of Physarum polycephalum to differentiate into translationally-dormant sclerotia. The existence and the biochemical nature of stored mRNA in sclerotia is examined in this report. The sclerotia contain about 50% of the poly(A)-containing RNA [poly(A)+RNA] complement of microplasmodia as determined by [3H]-poly(U) hybridization. The sclerotial poly(A)+RNA sequences are associated with proteins in a ribonucleoprotein complex [poly(A)+mRNP] which sediments more slowly than the polysomes. Sclerotial poly(A)+RNP sediments more rapidly than poly(A)+RNP derived from the polysomes of microplasmodia despite the occurrence of poly(A)+RNA molecules of a similar size in both particles suggesting the existence of differences in protein composition. Isolation of poly(A)+RNP by oligo (dT)-cellulose chromatography and the analysis of its associated proteins by polyacrylamide gel electrophoresis show that sclerotial poly(A)+RNP contains at least 14 major polypeptides, 11 of which are different in electrophoretic mobility from the polypeptides found in polysomal poly(A)+RNP. Three of the sclerotial poly(A)+RNP polypeptides are associated with the poly(A) sequence (18, 46, and 52 × 103 mol. wt. components), while the remaining eight are presumably bound to non-poly(A) portions of the poly(A)+RNA. Although distinct from polysomal poly(A)+RNP, the sclerotial poly(A)+RNP is similar in sedimentation behavior and protein composition (with two exceptions) to the microplasmodial free cytoplasmic poly(A)+RNP. The results suggest that dormant sclerotia store mRNA sequences in association with a distinct set of proteins and that these proteins are similar to those associated with the free cytoplasmic poly(A)+RNP of vegetative plasmodia.  相似文献   

18.
The stabilities and translation of Ehrlich ascites tumor cell poly(A)-containing mRNA and mengovirus RNA in fractionated cell-free protein synthesizing systems from uninfected and mengovirus-infected Ehrlich ascites tumor cells were studied. During incubation of the systems about 20% of the input RNA is reduced in size and associated with ribosomes engaged in polypeptide synthesis; the remainder is rapidly degraded by RNases. At the end of active translation, both mRNA and nascent proteins are bound to polysomes which are of the same size as those formed during active protein synthesis. The kinetics of protein synthesis closely follow those of RNA hydrolysis. The stabilities of mengovirus RNA and poly(A)-containing mRNA from Ehrlich ascites tumor cells are the same in both systems.  相似文献   

19.
Studies were performed to identify in cytoplasmic extracts of Krebs II ascites cells protein kinase activities that might be responsible for the phosphorylation of the ribosomal proteins previously identified as phosphoproteins in these cells in vivo. Column chromatography resolved a casein kinase activity that could use ATP or GTP as a phosphoryl donor to phosphorylate, in ribosomes, exclusively the acidic 60S phosphoprotein(s) phosphorylated in vivo. A second casein kinase fraction could use ATP, only, in a similar reaction, but also contained protein kinase activity with respect to other ribosomal proteins, including the basic ribosomal protein phosphorylated in vivo, ribosomal protein S6. This latter was also among several proteins phosphorylated by an activity in the cyclic AMP-independent histone kinase fraction.  相似文献   

20.
The nuclear fraction isolated from Krebs II ascites cells following cell disruption by nitrogen cavitation was separated into four fractions by salt/detergent extraction: NP-40 soluble fraction, 130 mM KCl extract, DOC/Triton × 100 soluble fraction and salt/detergent treated nuclei. The protein composition of the individual fractions was studied by SDS-PAGE and the relative amounts of actin and a 35 kDa protein (p35) were measured from gel scans. There was a time-dependent shift of actin from the 130 mM KCl extract to the NP-40 soluble fraction upon storage of the nuclear fraction on ice, indicating a progressive depolymerization of microfilaments. Compared with actin there was a slower release of p35 into the NP-40 soluble fraction. The results suggest that p35 is not integrated in the microfilament network. Phalloidin, which stabilizes the microfilaments, enriched the amount of both proteins in the 130 mM KCl extracts, together with a series of other proteins in the range 50–205 kDa. The presence of phalloidin also resulted in a large increase in the actin content in both the DOC/Triton × 100 extract and the fraction containing salt/detergent treated nuclei. Incubation of cells with insulin and/or cycloheximide enriched the amount of actin in the 130 mM KCl fraction. The results show that short term incubation of cells with phalloidin, insulin or cycloheximide increases the actin content of the nuclear fraction and also affects the presence of several other proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号