首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The presence of an Na+/Ca2+ exchange system in basolateral plasma membranes from rat small intestinal epithelium has been demonstrated by studying Na+ gradient-dependent Ca2+ uptake and the inhibition of ATP-dependent Ca2+ accumulation by Na+. The presence of 75 mM Na+ in the uptake solution reduces ATP-dependent Ca2+ transport by 45%, despite the fact that Na+ does not affect Ca2+-ATPase activity. Preincubation of the membrane vesicles with ouabain or monensin reduces the Na+ inhibition of ATP-dependent Ca2+ uptake to 20%, apparently by preventing accumulation of Na+ in the vesicles realized by the Na+-pump. It was concluded that high intravesicular Na+ competes with Ca2+ for intravesicular Ca2+ binding sites. In the presence of ouabain, the inhibition of ATP-dependent Ca2+ transport shows a sigmoidal dependence on the Na+ concentration, suggesting cooperative interaction between counter transport of at least two sodium ions for one calcium ion. The apparent affinity for Na+ is between 15 and 20 mM. Uptake of Ca2+ in the absence of ATP can be enhanced by an Na+ gradient (Na+ inside > Na+ outside). This Na+ gradient-dependent Ca2+ uptake is further stimulated by an inside positive membrane potential but abolished by monensin. The apparent affinity for Ca2+ of this system is below 1 μM. In contrast to the ATP-dependent Ca2+ transport, there is no significant difference in Na+ gradient-dependent Ca2+ uptake between basolateral vesicles from duodenum, midjejunum and terminal ileum. In duodenum the activity of ATP-driven Ca2+ uptake is 5-times greater than the Na+/Ca2+ exchange capacity but in the ileum both systems are of equal potency. Furthermore, the Na+/Ca2+ exchange mechanism is not subject to regulation by 1α,25-dihydroxy vitamin D-3, since repletion of vitamin D-deficient rats with this seco-steroid hormone does not influence the Na+/Ca2+ exchange system while it doubles the ATP-driven Ca2+ pump activity.  相似文献   

3.
An average target size of 251 kDa has been obtained for the (Ca2+ + Mg2+)-ATPase of calmodulin-depleted erythrocyte ghosts by radiation inactivation with 16 MeV electrons. This is close to twice the size of the purified calcium-pump polypeptide. When calmodulin was included during the ATPase assay, a component of about 1 MDa appeared in addition to the activated dimer.  相似文献   

4.
The beta-adrenergic agonist 1-isoproterenol evokes an acute (less than 5 min) stimulation of endocytosis, hexose transport and amino acid transport, measured by the temperature-sensitive uptake of HRP, 3H-DG and 14C-AIB, in mouse kidney cortex slices. This stimulation is concentration dependent and is maximal at 10(-8)-10(-7) M isoproterenol. Peroxidase cytochemistry showed that the hormonal increase in HRP uptake is confined to proximal tubules. The rapid membrane response is abolished in a calcium-free medium and by the beta-adrenergic antagonist propranolol, indicating Ca2+- and beta-adrenoreceptor-dependence. Isoproterenol (1 microM) rapidly (less than 30 sec) stimulates the influx and efflux of 45Ca in cortex slices. Isoproterenol also decreased mitochondrial 45Ca and increased soluble 45Ca. These results indicate that beta-adrenergic stimulation of membrane transport functions involves an increased influx of extracellular calcium and a mobilization of intracellular (mitochondrial) calcium. An increase in cytosolic Ca2+ concentration appears to be the regulatory signal for these membrane transport processes.  相似文献   

5.
6.
The phospholipid requirement of the (Ca2+ + Mg2+)-ATPase present in a membrane fraction from human platelets was studied using various purified phospholipases. Only those phospholipases, which hydrolyse the negatively charged phospholipids, inhibited the (Ca2+ + Mg2+)-ATPase activity. The ATPase activity could be restored by adding mixed micelles of Triton X-100 and phosphatidylserine or phosphatidylinositol. Micelles with phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine or sphingomyelin could not be used for reconstitution and inhibited the activity of the native enzyme.  相似文献   

7.
The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 μ M in the absence or presence of 1 μ M free Ca2+. At free Mg2+ concentrations of 1 μ M and lower, ATP hydrolysis is Mg2+ -independent, but is strongly stimulated by submicromolar Ca2+ concentrations Km  0.25 μM, Vmax  24 μmol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely.  相似文献   

8.
The (Ca2+ + Mg2+-ATPase from red cell membranes, purified by means of a calmodulin-containing affinity column according to the method of Gietzen et al. (Gietzen, K., Tej?ka, M. and Wolf, H.U. (1980) Biochem. J. 189, 81–88) with either phosphatidylcholine or phosphatidylserine as phospholipid is characterized. The phosphatidylcholine preparation can be activated by calmodulin, while the phosphatidylserine preparation is fully activated without calmodulin. The enzyme shows a biphasic ATP dependence with two Km values of 3.5 and 120 μM. The enzyme is phosphorylated by ATP in the presence of Ca2+ only.  相似文献   

9.
The ouabain-insensitive, Mg2+-dependent, Na+-stimulated ATPase activity present in fresh basolateral plasma membranes from guinea-pig kidney cortex cells (prepared at pH 7.2) can be increased by the addition of micromolar concentrations of Ca2+ to the assay medium. The Ca2+ involved in this effect seems to be associated with the membranes in two different ways: as a labile component, which can be quickly and easily ‘deactivated’ by reducing the free Ca2+ concentration of the assay medium to values lower than 1 μM; and as a stable component, which can be ‘deactivated’ by preincubating the membranes for periods of 3–4 h with 2 mM EDTA or EGTA. Both components are easily activated by micromolar concentrations of Ca2+. The Ka of the system for Na+ is the same, 8 mM, whether only the stable component or both components, stable and labile, are working. In other words, the activating effect of Ca2+ on the Na+-stimulated ATPase is on the Vmax, and not on the Ka of the system for Na+. The activating effect of Ca2+ may be related to some conformational change produced by the interaction of this ion with the membranes, since it can also be obtained by resuspending the membranes at pH 7.8 or by ageing the preparations. Changes in the Ca2+ concentration may modulate the ouabain-insensitive, Na+-stimulated ATPase activity. This modulation could regulate the magnitude of the extrusion of Na+ accompanied by Cl? and water that these cells show, and to which the Na+-ATPase has been associated as being responsible for the energy supply of this mode of Na+ extrusion.  相似文献   

10.
ATP-enriched human red cells display high rates of Ca2+-dependent ATP hydrolysis (16 mmol·litre cells?1·h?1) with a high Ca2+ affinity (K0.5~0.2 μM). The finding suggests a mechanism for regulation of cell Ca2+ levels, involving highly-cooperative stimulation of active Ca2+ extrusion following binding of calmodulin to the (Ca2+ + Mg2+)-ATPase.  相似文献   

11.
12.
Erythrocyte membranes prepared by three different procedures showed (Mg2+ + Ca2+)-ATPase activities differing in specific activity and in affinity for Ca2+. The (Mg2+ + Ca2+)-ATPase activity of the three preparations was stimulated to different extents by a Ca2+-dependent protein activator isolated from hemolystes. The Ca2+ affinity of the two most active preparations was decreased as the ATP concentration in the assay medium was increased. Lowering the ATP concentration from 2 mM to 2–200 μM or lowering the Mg:ATP ratio to less than one shifted the (Mg2+ + Ca2+)-ATPase activity in stepwise hemolysis membranes from mixed “high” and “low” affinity to a single high Ca2+ affinity. Membranes from which soluble proteins were extracted by EDTA (0.1 mM) in low ionic strengh, or membranes prepared by the EDTA (1–10 mM) procedure, did not undergo the shift in the Ca2+ affinity with changes in ATP and MgCl2 concentrations. The EDTA-wash membranes were only weakly activated by the protein activator. It is suggested that the differences in properties of the (Mg2+ + Ca2+)-ATPase prepared by these three procedures reflect differences determined in part by the degree of association of the membrane with a soluble protein activator and changes in the state of the enzyme to a less activatable form.  相似文献   

13.
Several nucleotide triphosphates (NTPs) were tested as energy source for the Ca2+ uptake by human platelet membrane vesicles. The Ca2+ uptake by these membranes was driven by ATP, GTP, ITP, UTP and CTP. The steady-state level of accumulated Ca2+ was equal with the different NTPs. The highest uptake velocity was found with ATP, but about 40–80% of the velocity with ATP could be accomplished with the other nucleotides. The highest affinity was also found with ATP (Km apparent  15 μM). The liberation of Pi from the various NTPs was measured simultaneously with the Ca2+ uptake. The coupling ratio (moles of Ca2+ taken up/moles of Pi liberated) varied from 0.4 for ATP to 2.3 for UTP and was almost independent of the NTP concentration. The enzyme activity with ATP as substrate is strongly dependent on the Ca2+ concentration in contrast to the activity with GTP, ITP, UTP or CTP.  相似文献   

14.
The ATPase activity of rabbit-kidney brush border can be activated almost equally well by Ca2+ and Mg2+ and, therefore, should be called (Ca2+ or Mg2+)-ATPase. This enzyme was solubilized and enriched 14-fold by the following steps: pretreatment with papain removed 69% of alkaline phosphatase without attacking a significant portion of the ATPase activity. Addition of 1% cholate removed 65% of the protein but no ATPase activity. The combination of cholate (0.5%) and deoxycholate (0.4%) solubilized most of the ATPase activity and most of the remaining protein. A column chromatography of the extract on Sepharose CL-2B resulted in an 6.5-fold increase of specific ATPase activity. A precipitation by ammonium sulfate (40% saturation) produced an additional 1.9-fold increase. The yield of this partial purification was 16%. Towards the nucleotides UTP and GTP the enzyme showed an activity slightly higher, and towards ITP and CTP an activity slightly lower than that with ATP. ADP was split about half as fast as ATP. AMP was not accepted by the enzyme. Replacing MgCl2 by CaCl2 resulted in an ATPase activity of 92% of that with MgCl2. Using calcium- and magnesium-ATP as substrates, apparent Km values of 0.22 and 0.33 mM, respectively, were obtained. The gel electrophoresis revealed the enrichment of a protein with an apparent Mr of 95 000 and also that of microvillus actin.  相似文献   

15.
16.
Phosphorylation of solubilized and purified high-affinity (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) of human erythrocyte membranes shows no dependence on cyclic AMP concentration in the range 0.1--1000 microM. Ca2+-dependent phosphoprotein is sensitive to hydroxylamine and molybdate treatment. The phosphate linkage shows maximum stability at low pH values, which is progressively lost as the pH rises, with a shoulder around pH 6. SDS gel electrophoresis of the phosphorylated protein yields a peak which shows relative mobility corresponding to a molecular weight of 145 000 and sensitivity to MgATP-chase and hydroxylamine treatment. This indicates that the phosphoprotein represents the phosphorylated intermediate of the high-affinity (Ca2+ + Mg2+)-ATPase of human erythrocyte membranes.  相似文献   

17.
In reconstituted human red blood cells a difference was found in (Ca2+ + Mg2+)-ATPase activity and in Ca2+ efflux at 37°C, depending on the side of the membrane at which the monovalent cations K+ and Na+ were placed. Under the conditions used, (Ca2+ + Mg2+)-ATPase activity and Ca2+ efflux was highest when K+ (35 ± 0.5 mM (± S.E.), mean of four experiments) was at the inside and Na+ (130 mM) at the outside of the ghost membrane.  相似文献   

18.
19.
20.
Luminal (brush border) and antiluminal (basal-lateral) membranes were isolated from canine renal cortex. The enzyme marker for luminal membrane, alkaline phosphatase was enhanced 19-fold and the antiluminal enzyme marker, (Na+ + K+)-ATPase, was enhanced 22-fold in their respective membrane preparation, while the amount of cross contamination was minimal. Contamination of these preparations by enzyme markers for lysosomes, endoplasmic reticulum and mitochondria was also low. Routinely, more than 50 mg membrane protein was isolated for each membrane. Electron micrographs showed that the membranes were uniform in size, appearance, and vesicular in nature. An examination of the orientation of these membranes showed that 76.5% of the antiluminal membranes and 86% of the luminal membranes were right-side out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号