首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Infarction in adult rat brain was induced by middle cerebral arterial occlusion (MCAO) followed by reperfusion to examine whether taxifolin could reduce cerebral ischemic reperfusion (CI/R) injury. Taxifolin administration (0.1 and 1.0 μg/kg, i.v.) 60 min after MCAO ameliorated infarction (by 42%±7% and 62%±6%, respectively), which was accompanied by a dramatic reduction in malondialdehyde and nitrotyrosine adduct formation, two markers for oxidative tissue damage. Overproduction of reactive oxygen species (ROS) and nitric oxide (NO) via oxidative enzymes (e.g., COX-2 and iNOS) was responsible for this oxidative damage. Taxifolin inhibited leukocyte infiltration, and COX-2 and iNOS expressions in CI/R-injured brain. Taxifolin also prevented Mac-1 and ICAM-1 expression, two key counter-receptors involved in firm adhesion/transmigration of leukocytes to the endothelium, which partially accounted for the limited leukocyte infiltration. ROS, generated by leukocytes and microglial cells, activated nuclear factor-kappa B (NF-κB) that in turn signaled up-regulation of inflammatory proteins. NF-κB activity in CI/R was enhanced 2.5-fold over that of sham group and was inhibited by taxifolin. Production of both ROS and NO by leukocytes and microglial cells was significantly antagonized by taxifolin. These data suggest that amelioration of CI/R injury by taxifolin may be attributed to its anti-oxidative effect, which in turn modulates NF-κB activation that mediates CI/R injury. Yea-Hwey Wang, Wen-Yen Wang, Chia-Che Chang, and Kuo-Tong Liou contributed equally to this work.  相似文献   

2.
Macrophages can be both beneficial and detrimental after CNS injury. We previously showed rapid accumulation of macrophages in injured immature brain acutely after ischemia-reperfusion. To determine whether these macrophages are microglia or invading monocytes, we subjected post-natal day 7 (P7) rats to transient 3 h middle cerebral artery (MCA) occlusion and used flow cytometry at 24 and 48 h post-reperfusion to distinguish invading monocytes (CD45high/CD11b+) from microglia (CD45low/medium/CD11b+). Inflammatory cytokines and chemokines were determined in plasma, injured and contralateral tissue 1-24 h post-reperfusion using ELISA-based cytokine multiplex assays. At 24 h, the number of CD45+/CD11b+ cells increased 3-fold in injured compared to uninjured brain tissue and CD45 expression shifted from low to medium with less than 10% of the population expressing CD45high. MCA occlusion induced rapid and transient asynchronous increases in the pro-inflammatory cytokine IL-beta and chemokines cytokine-induced neutrophil chemoattractant protein 1 (CINC-1) and monocyte-chemoattractant protein 1 (MCP-1), first in systemic circulation and then in injured brain. Double immunofluorescence with cell-type specific markers showed that multiple cell types in the injured brain produce MCP-1. Our findings show that despite profound increases in MCP-1 in injured regions, monocyte infiltration is low and the majority of macrophages in acutely injured regions are microglia.  相似文献   

3.
Thrombin-induced activation of cultured rodent microglia   总被引:17,自引:0,他引:17  
Microglia are the resident immune cells of the CNS. Upon brain damage, these cells are rapidly activated and function as tissue macrophages. The first steps in this activation still remain unclear, but it is widely believed that substances released from damaged brain tissue trigger this process. In this article, we describe the effects of the blood coagulation factor thrombin on cultured rodent microglial cells. Thrombin induced a transient Ca(2+) increase in microglial cells, which persisted in Ca(2+)-free media. It was blocked by thapsigargin, indicating that thrombin caused a Ca(2+) release from internal stores. Preincubation with pertussis toxin did not alter the thrombin-induced [Ca(2+)](i) signal, whereas it was blocked by hirudin, a blocker of thrombin's proteolytic activity. Incubation with thrombin led to the production of nitric oxide and the release of the cytokines tumor necrosis factor-alpha, interleukin-6, interleukin-12, the chemokine KC, and the soluble tumor necrosis factor-alpha receptor II and had a significant proliferative effect. Our findings indicate that thrombin, a molecule that enters the brain at sites of injury, rapidly triggered microglial activation.  相似文献   

4.
The NADPH-diaphorase (NADPH-d) histochemical technique is commonly used to localize the nitric oxide (NO) produced by the enzyme nitric oxide synthase (NOS) in neural tissue. The expression of inducible nitric oxide synthase (iNOS) is induced in the late stage of cerebral ischemia, and NO produced by iNOS contributes to the delay in recovery from brain neuronal damage. The present study was performed to investigate whether the increase in nitric oxide production via inducible nitric oxide synthase was suppressed by the administration of aminoguanidine, a selective iNOS inhibitor, as it follows a decrease of NADPH-diaphorase activity (a marker for NOS) after four-vessel occlusion used as an ischemic model. The administration of aminoguanidine (100 mg/kg i.p., twice per day up to 3 days immediately after the ischemic insult) reduced the number of NADPH-diaphorase positive cells to control levels. Our results indicated that aminoguanidine suppressed NADPH-diaphorase activity, and also decreased the number of NADPH-diaphorase positive cells in the CA1 region of the hippocampus following ischemic brain injury.  相似文献   

5.
Excessive production of nitric oxide (NO) as result of inducible nitric oxide synthase (iNOS) induction has been implicated in the pathophysiology of hemorrhagic shock. Our aim was to study the effects of NOS inhibitors, aminoguanidine (AG) and NG-nitro-L-arginine methyl ester (L-NAME), on survival rate, mean arterial blood pressure (MABP), temporal evolution of infarct volume, nitric oxide (NO) production and neurological deficit in a model of delayed hemorrhagic shock (DHS) in conscious rats. Our results showed that the NOS inhibitors significantly improved survival rate, MABP, and attenuated brain NO overproduction 24, 48 h and 72 h after DHS. AG reduced brain infarct volume and improved the neurological performance evaluated by the rotameric and grip strength tests while L-NAME did not show protective effect in rats following DHS. These findings suggest that NO formation via iNOS activation may contribute to organ damage and that the selective iNOS inhibitor, AG, may be of interest as a therapeutic agent for neurological recovery following DHS.  相似文献   

6.
目的:拟观察高压氧(HBO)治疗对急性创伤性颅脑损伤后皮层NOSmRNA表达的影响,探讨HBO治疗急性脑损伤的机理。方法:采用自由落体法打击模型制备SD大鼠急性脑创伤,伤后1 h、12 h采用0.25 MPaHBO治疗,伤后6 h、24 h取样皮层,应用半定量逆转录聚合酶链反应(RT-PCR)观察神经元型一氧化氮合酶(nNOS)、内皮型一氧化氮合酶(eNOS)和诱导型一氧化氮合酶(iNOS)mRNA表达量变化。结果:0.25MPaHBO治疗各时间组nNOS、eNOS和iNOSmRNA较急性颅脑损伤各时间组显著下降(P<0.01),且HBO治疗24 h组较6 h组下降更明显(P<0.05,P<0.01),0.25 MPa常氧高氮各时间组与急性颅脑损伤各时间组NOSmRNA表达量无统计学意义。结论:HBO治疗可以下调nNOSmRNA、iNOSmRNA和eNOSmRNA的表达量,可能为HBO治疗脑创伤的机理之一。  相似文献   

7.
8.
新生大鼠缺血缺氧后脑内一氧化氮合酶的动态表达   总被引:3,自引:0,他引:3  
实验采用生后14天Wistar大鼠缺血缺氧(HI)动物模型。用免疫组织化学方法观察HI复苏(HI/R0后前脑一氧化氮合酶动态表达。结果显示;神经元一氧化氮合酶(nNOS)阳性神经元主要分布于新生大鼠大脑皮层的Ⅲ-Ⅳ层。尾状核,隔核及嗅结节,HI/R早期其表达水平无明显变化;复苏48小时及5天后,可分别在右侧大脑顶皮层或右侧大脑顶皮层和尾状核区出现梗塞灶,该区nNOS阳性神经元明显减少,而诱导型一氧化氮合酶(iNOS)阳性细胞在HI/R后12小时始现于损伤侧的侧脑室;随时间的推移在损伤侧缰核,皮层,尾状核以及丘脑背外侧核,丘脑腹侧核可见iNOS阳性细胞逐渐增多并染色加深,用识别单核巨噬细胞的克隆ED1单克隆抗体检测可见ED1阳性细胞出现的时间和在脑区的分布与iNOS阳性细胞相似,本实验提示,在局灶性脑缺血缺氧早期,脑内NO的释放不依赖于nNOS阳性神经元或iNOS阳性细胞,而在局灶性脑缺血缺氧晚期,iNOS阳性细胞产生的NO可能参与了脑损伤的过程。  相似文献   

9.
We investigated the mechanism of exercise-induced late cardioprotection against ischemia-reperfusion (I/R) injury. C57BL/6 mice received treadmill exercise (60 min/day) for 7 days at a work rate of 60-70% maximal oxygen uptake. Exercise transiently increased oxidative stress and activated endothelial isoform of nitric oxide synthase (eNOS) during exercise and increased expression of inducible isoform of NOS (iNOS) in the heart after 7 days of exercise. The mice were subjected to regional ischemia by 30 min of occlusion of the left coronary artery, followed by 2 h of reperfusion. Infarct size was significantly smaller in the exercised mice. Ablation of cardiac sympathetic nerve by topical application of phenol abolished oxidative stress, activation of eNOS, upregulation of iNOS, and cardioprotection mediated by exercise. Treatment with the antioxidant N-(2-mercaptopropionyl)-glycine during exercise also inhibited activation of eNOS, upregulation of iNOS, and cardioprotection. In eNOS(-/-) mice, exercise-induced oxidative stress was conserved, but upregulation of iNOS and cardioprotection was lost. Exercise did not confer cardioprotection when the iNOS selective inhibitor 1400W was administered just before coronary artery occlusion or when iNOS(-/-) mice were employed. These results suggest that exercise stimulates cardiac sympathetic nerves that provoke redox-sensitive activation of eNOS, leading to upregulation of iNOS, which acts as a mediator of late cardioprotection against I/R injury.  相似文献   

10.
11.
Excessive nitric oxide (NO) production after cerebral hypoxia-ischaemia (HI) may induce cellular injury in various ways, including reaction with superoxide to form the highly reactive peroxynitrite. We characterized the spatial and temporal formation of peroxynitrite through immunohistochemical detection of nitrosylated proteins. Nitrotyrosine immunoreactivity peaked around 3 h post-HI and was detected in areas of injury, as judged by the loss of microtubule-associated protein-2 (MAP-2) staining, in neurones, glia and endothelial cells. Nitrotyrosine staining co-localized with three other cellular markers of injury, active caspase-3, nuclear translocation of apoptosis-inducing factor (AIF) and an oligonucleotide hairpin probe detecting specific DNA strand breaks. The number of nitrotyrosine-positive cells at early time points outnumbered the cells positive for the other three markers of injury, indicating that nitrosylation preceded caspase-3 activation. Pharmacological inhibition of neuronal and inducible nitric oxide synthase (nNOS and iNOS) using 2-iminobiotin, which has been demonstrated earlier to be neuroprotective, significantly reduced nitrotyrosine formation and caspase-3 activation, but not nuclear translocation of AIF, in cortex and striatum of the ipsilatral hemisphere. In summary, nitrotyrosine is an early marker of cellular injury and inhibition of nNOS and iNOS is a promising strategy for neuroprotection after perinatal HI.  相似文献   

12.
13.
This study was performed to investigate the mechanism of blood–brain barrier (BBB) permeability change, which was induced by aminoguanidine (AG) after surgical brain injury (SBI) in rats. Compared to control group, AG (150 mg/kg, i.p.) significantly reduced Evans blue extravasation into brain tissue at 24 h after surgical resection, it also induced a 32% decrease of malondialdehyde (MDA) values and a 1.1-fold increase of the glutathione (GSH) levels at 12 h after injury. The expression of inducible nitric oxide synthase (iNOS) reached the peak value at 24 h after SBI, which was significantly attenuated after AG treatment. In addition, ZO-1 protein was up-regulated by AG (150 mg/kg) treatment at 24 h after SBI. Our results indicated that AG could protect the BBB after SBI, which could be correlated with antioxidative property, the down-regulation of iNOS and up-regulation of tight junction protein expression.  相似文献   

14.
Nitric oxide (NO) release upon microglial cell activation has been implicated in the tissue injury and cell death in many neurodegenerative diseases. Recent studies have indicated the ability of interferon-gamma (IFNgamma) and lipopolysaccharides (LPS) to independently induce type II nitric oxide synthase (iNOS) expression and NO production in BV-2 microglial cells. However, a detailed comparison between the signaling pathways activating iNOS by these two agents has not been accomplished. Analysis of PKC isoforms revealed mainly the presence of PKCdelta, iota and lambda in BV-2 cells. Although both IFNgamma and LPS could specifically enhance the tyrosine phosphorylation of PKCdelta, treatment with IFNgamma induced a steady increase of phospho-PKCdelta for up to 1h, whereas treatment with LPS elevated phospho-PKCdelta levels only transiently, with peak activity at 5 min. Rottlerin, a specific inhibitor for PKCdelta, dose-dependently inhibited IFNgamma- and LPS-induced NO production. Despite the common involvement of PKCdelta, IFNgamma- but not LPS-induced NO production involved extracellular signal-regulated kinases (ERK1/2) cascade and IFNgamma-induced phosphorylation of ERK1/2 was mediated through PKC. On the other hand, LPS- but not IFNgamma-induced NO production was through stimulation of NF-kappaB activation and nuclear translocation to interact with DNA. These results demonstrated distinct signaling pathways for induction of iNOS by IFNgamma and LPS in BV-2 microglial cells.  相似文献   

15.
This investigation was performed to determine the neuroprotective effect of baicalin on permanent cerebral ischemia injury in rats and the potential mechanisms in this process. Adult male Sprague-Dawley rats underwent permanent middle cerebral artery occlusion (pMCAO). The rats were then received intraperitoneal injection with baicalin (10, 30 and 100 mg/kg) or vehicle. Morphological characteristic, neurological deficit scores, cerebral infarct volume and the enzymatic activity of myeloperoxidase (MPO) were measured 24 h after pMCAO. The mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were determined by RT-PCR. Neuronal apoptosis was determined by TUNEL staining and Western blot. Baicalin (30 and 100 mg/kg) reduced neurological deficit scores and cerebral infarct volume 24 h after pMCAO. Baicalin significantly decreased the enzymatic activity of MPO and the expression of iNOS mRNA and COX-2 mRNA in rat brain, it also significantly inhibited neuronal apoptosis and the expression of cleaved caspase-3 protein after pMCAO. Our results suggested that baicalin possesses potent anti-inflammatory and anti-apoptotic properties and attenuates cerebral ischemia injury. This protection might be associated with the downregulated expression of iNOS mRNA, COX-2 mRNA, and cleaved caspase-3 protein.  相似文献   

16.
Inflammatory neurodegeneration contributes to a wide variety of brain pathologies. A number of mechanisms by which inflammatory-activated microglia and astrocytes kill neurons have been identified in culture. These include: (1) acute activation of the phagocyte NADPH oxidase (PHOX) found in microglia, (2) expression of the inducible nitric oxide synthase (iNOS) in glia, and (3) microglial phagocytosis of neurons. Activation of PHOX (by cytokines, β-amyloid, prion protein, lipopolysaccharide, ATP, or arachidonate) causes microglial proliferation and inflammatory activation; thus, PHOX is a key regulator of inflammation. However, activation of PHOX alone causes little or no death, but when combined with iNOS expression results in apparent apoptosis via peroxynitrite production. Nitric oxide (NO) from iNOS expression also strongly synergizes with hypoxia to induce neuronal death because NO inhibits cytochrome oxidase in competition with oxygen, resulting in glutamate release and excitotoxicity. Finally, microglial phagocytosis of these stressed neurons may contribute to their loss.  相似文献   

17.
Free radicals have been suggested to be largely involved in the genesis of ischemic brain damage, as shown in the protective effects of alpha-phenyl-N-tert-butyl nitrone (PBN), a spin trapping agent, against ischemic cerebral injury. In the present study, the effects of PBN as well as MCI-186, a newly-developed free radical scavenger, and oxypurinol, an inhibitor of xanthine oxidase, were evaluated in a rat transient middle cerebral aretery (MCA) occlusion model to clarify the possible role of free radicals in the reperfusion injury of brain. The volume of cerebral infarction, induced by 2-h occlusion and subsequent 2-h reperfusion of MCA in Fisher-344 rats, was evaluated. The administration of PBN (100 mg/kg) and MCI-186 (100 mg/kg) just before reperfusion of MCA significantly reduced the infarction volume. In contrast, oxypurinol (100 mg/kg) failed to show any preventive effect on the infarction. These results suggest that free radical formation is involved in the cerebral damage induced by ischemia-reperfusion of MCA, and that hydroxyl radical is responsible for the reperfusion injury after transient focal brain ischemia. It is also suggested that xanthine oxidase is not a major source of free radicals.  相似文献   

18.
目的探讨大鼠局灶性脑缺血再灌注后海马神经细胞一氧化氮合酶(NOS)的表达与神经细胞凋亡的关系及中药复方丹参的保护作用。方法采用大脑中动脉内栓线阻断法(MCAO)造成局灶性脑缺血再灌注模型。用原位细胞凋亡检测方法观察海马神经细胞凋亡;用免疫组织化学方法检测大鼠海马神经细胞(nNOS、iNOS)的表达并做图像分析。结果与假手术对照组比较,脑缺血再灌注2h后缺血侧海马CA1、CA3区神经细胞nNOS、iNOS表达升高,并出现神经细胞凋亡,随着再灌注时间的延长,神经细胞iNOS的表达明显增强,凋亡神经细胞数逐渐增多,至24h达高峰,但神经细胞nNOS的表达并未见明显增强。复方丹参保护组神经细胞nNOS、iNOS的表达和凋亡神经细胞数明显低于缺血再灌组(P<0.01)。结论脑缺血再灌注后缺血侧海马CA1、CA3区神经细胞nNOS的表达增强,iNOS的表达显著升高,使NO的形成增加,这可能是介导脑缺血再灌注后神经细胞凋亡的机制之一。复方丹参具有下调神经细胞nNOS、iNOS的表达,减少NO的生成,抑制细胞凋亡,减轻缺血再灌注对大鼠海马损伤的作用。  相似文献   

19.
《Free radical research》2013,47(8):925-935
Abstract

The present study tested the cytoprotective effect of methyleugenol in an in vivo ischemia model (i.e. middle cerebral artery occlusion (MCAO) for 1.5 h and subsequent reperfusion for 24 h) and further investigated its mechanism of action in in vitro cerebral ischemic models. When applied shortly after reperfusion, methyleugenol largely reduced cerebral ischemic injury. Methyleugenol decreased the caspase-3 activation and death of cultured cerebral cortical neurons caused by oxygen-glucose deprivation (OGD) for 1 h and subsequent re-oxygenation for 24 h. Methyleugenol markedly reduced superoxide generation in the ischemic brain and decreased the intracellular oxidative stress caused by OGD/re-oxygenation. It was found that methyleugenol elevated the activities of superoxide dismutase and catalase. Further, methyleugenol inhibited the production of nitric oxide and decreased the protein expression of inducible nitric oxide synthase. Methyleugenol down-regulated the production of pro-inflammatory cytokines in the ischemic brain as well as in immunostimulated mixed glial cells. The results indicate that methyleugenol could be useful for the treatment of ischemia/inflammation-related diseases.  相似文献   

20.
We investigated the effects of therapeutic hypothermia (30 degrees C) on alterations in constitutive (cNOS) and inducible (iNOS) nitric oxide synthase activities following traumatic brain injury (TBI). Male Sprague-Dawley rats were anesthetized with 0.5% halothane and underwent moderate (1.8-2.2 atm) parasagittal fluid-percussion (F-P) brain injury. In normothermic rats (37 degrees C) the enzymatic activity of cNOS was significantly increased at 5 min within the injured cerebral cortex compared with contralateral values (286.5+/-68.9% of contralateral value; mean+/-SEM). This rise in nitric oxide synthase activity was significantly reduced with pretraumatic hypothermia (138.8+/-17% of contralateral value; p < 0.05). At 3 and 7 days after normothermic TBI the enzymatic activity of cNOS was decreased significantly (30+/-8.4 and 28.6+/-20.9% of contralateral value, respectively; p < 0.05). However, immediate posttraumatic hypothermia (3 h at 30 degrees C) preserved cNOS activity at 3 and 7 days (69.5+/-23.3 and 78.6+/-7.6% of contralateral value, respectively; mean+/-SEM; p < 0.05). Posttraumatic hypothermia also significantly reduced iNOS activity at 7 days compared with normothermic rats (0.021+/-0.06 and 0.23+/-0.06 pmol/mg of protein/min, respectively; p < 0.05). The present results indicate that hypothermia (a) decreases early cNOS activation after TBI, (b) preserves cNOS activity at later periods, and (c) prevents the delayed induction of iNOS. Temperature-dependent alterations in cNOS and iNOS enzymatic activities may participate in the neuroprotective effect of hypothermia in this TBI model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号