首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photosynthetic unit of Rhodopseudomonas viridis contains a reaction centre (P960) and a light harvesting complex (B1015). Immune electron microscopy combined with image processing has allowed the central core of the photosynthetic unit to be identified as the reaction centre and the surrounding protein ring as the light harvesting complex. This light harvesting complex, subdivided into twelve subunits was shown to contain 24 bacteriochlorophyll b molecules. A model is presented which may account for the far red shift of the Qy absorption of the bacteriochlorophyll b molecules in vivo.  相似文献   

2.
The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for the primary electron transfer reaction through an effect on the reduction potential of the primary donor. A lowering of the redox potential of the primary donor due to the presence of the core antenna is consistently observed in a series of reaction center mutants in which the reduction potential of the primary donor was varied over a 130 mV range. Estimates of the magnitude of the change in driving force for charge separation from time-resolved delayed fluorescence measurements in the mutant reaction centers suggest that the mutations exert their effect on the driving force largely through an influence on the redox properties of the primary donor. The results demonstrate that the energetics of light-driven electron transfer in reaction centers are sensitive to the environment of the complex, and provide indirect evidence that the kinetics of electron transfer are modulated by the presence of the LH1 antenna complexes that surround the reaction center in the natural membrane.  相似文献   

3.
Phytochromes are chromoproteins found in plants and bacteria that switch between two photointerconvertible forms via the photoisomerization of their chromophore. These two forms, Pr and Pfr, absorb red and far-red light, respectively. We have characterized the biophysical and biochemical properties of two bacteriophytochromes, RpBphP2 and RpBphP3, from the photosynthetic bacterium Rhodopseudomonas palustris. Their genes are contiguous and localized near the pucBAd genes encoding the polypeptides of the light harvesting complexes LH4, whose synthesis depends on the light intensity. At variance with all (bacterio)phytochromes studied so far, the light-induced isomerization of the chromophore of RpBphP3 converts the Pr form to a form absorbing at shorter wavelength around 645 nm, designated as Pnr for near red. The quantum yield for the transformation of Pr into Pnr is about 6-fold smaller than for the reverse reaction. Both RpBphP2 and RpBphP3 autophosphorylate in their dark-adapted Pr forms and transfer their phosphate to a common response regulator Rpa3017. Under semiaerobic conditions, LH4 complexes replace specifically the LH2 complexes in wild-type cells illuminated by wavelengths comprised between 680 and 730 nm. In contrast, mutants deleted in each of these two bacteriophytochromes display no variation in the composition of their light harvesting complexes whatever the light intensity. From both the peculiar properties of these bacteriophytochromes and the phenotypes of their deletion mutants, we propose that they operate in tandem to control the synthesis of LH4 complexes by measuring the relative intensities of 645 and 710 nm lights.  相似文献   

4.
Recent findings on the photophysical investigations of several cofacial bisporphyrin dyads for through space singlet and triplet energy transfers raised several serious questions about the mechanism of the energy transfers and energy migration in the light harvesting devices, notably LH II, in the heavily studied purple photosynthetic bacteria. The key issue is that for simple cofacial or slipped dyads with controlled geometry using rigid spacers or spacers with limited flexibilities, the fastest possible rates for singlet energy transfer for three examples are in the 10 x 10(9)s(-1) (i.e. just in the 100 ps time scale) for donor-acceptor distances approaching 3.5-3.6 A. The reported time scale for energy transfers between different bacteriochlorophylls, notably B800*-->B850, is in the picosecond time scale despite the long Mg...Mg separation of approximately 18 A. Such a short rate drastically contrasts with the well accepted F?rster theory. This article reviews the modern knowledge of the structure, bacteriochlorophyll a transition moments, and photophysical processes and dynamics in LH II, and compares these parameters with the recently investigated model bisporphyrin dyads build upon octa-etio-porphyrin chromophores and rigid and semi-rigid spacers. The recently discovered role of the rhodopin glucoside residue called carotenoid will be commented as the possible relay for energy transfer, including the possibility of uphill processes at room temperature. In this context, the concept of energy migration, called exciton, may also be affected by relays and uphill processes. Also, it is becoming more and more apparent that the presence of an irreversible electron transfer reaction at the reaction center, i.e. electron transfer from the special pair to the phyophytin macrocycle and so on, renders the rates for energy transfer and migration more rapid precluding all possibility of back transfers.  相似文献   

5.
Photosynthetic membranes comprise a network of light harvesting and reaction center pigment-protein complexes responsible for the primary photoconversion reactions: light absorption, energy transfer and electron cycling. The structural organization of membranes of the purple bacterial species Rb. sphaeroides has been elucidated in most detail by means of polarized light spectroscopy and atomic force microscopy. Here we report a functional characterization of native and untreated membranes of the same species adsorbed onto a gold surface. Employing fluorescence confocal spectroscopy and light-induced electrochemistry we show that adsorbed membranes maintain their energy and electron transferring functionality. Gold-adsorbed membranes are shown to generate a steady high photocurrent of 10 μA/cm2 for several minutes and to maintain activity for up to three days while continuously illuminated. The surface-adsorbed membranes exhibit a remarkable functionality under aerobic conditions, even when exposed to light intensities well above that of direct solar irradiation. The component at the interface of light harvesting and electron cycling, the LH1 complex, displays exceptional stability, likely contributing to the robustness of the membranes. Peripheral light harvesting LH2 complexes show a light intensity dependent decoupling from photoconversion. LH2 can act as a reversible switch at low-light, an increased emitter at medium light and photobleaches at high light.  相似文献   

6.
The utility of photosynthetically defective mutants in the purple photosynthetic bacterium Blastochloris viridis (formerly Rhodopseudomonas viridis)was demonstrated with construction of a reaction-center deficient mutant, LH 1-H. This LH 1-H mutant has a photosynthetic apparatus in which most of the puf operon genes were deleted, resulting in an organism containing only the genes for the light harvesting polypeptides and the H subunit of the reaction center. This B. viridisstrain containing a truncation of the puf operon was characterized by gel electrophoresis, lipid-to-protein ratio analysis, optical spectroscopy, electron paramagnetic resonance and transmission electron microscopy. Optical and electron paramagnetic resonance spectroscopies revealed no photoactivity in this LH 1-H mutant consistent with the absence of intact reaction centers. Electron paramagnetic resonance evidence for assembled LH 1 complexes suggested that the interactions between light harvesting polypeptide complexes in membranes were largely unchanged despite the absence of their companion reaction center cores. The observed increase in the lipid-to-protein ratio was consistent with modified interactions between LH 1s, a view supported by transmission electron microscopy analysis of membrane fragments. The results show that B. viridis can serve as a practical system for investigating structure-function relationships in membranes and photosynthesis through the construction of photosynthetically defective mutants. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The stepwise synthesis and assembly of photosynthetic membrane components in the y-1 mutant of Chlamydomonas reinhardi have been previously demonstrated (Ohad 1975 In Membrane Biogenesis, Mitochondria, Chloroplasts and Bacteria, Plenum, pp 279-350). This experimental system was used here in order to investigate the process of formation and interconnection of the energy collecting chlorophylls with the reaction centers of both photosystems I and II. The following measurements were carried out: photosynthetic electron flow at various light intensities, including parts or the entire electron transfer chain; analysis of the kinetics of fluorescence emission at room temperature and fluorescence emission spectra at 77 K, and electrophoretic separation of membrane polypeptides and chlorophyll protein complexes. Based on the data obtained it is concluded that: (a) each photosystem (PSI and PSII) contains, in addition to the reaction center, an interconnecting antenna and a main or light harvesting antenna complex; (b) the formation of the light harvesting complex, interconnecting antenna, and reaction centers for each photosystem can occur independently. (c) the interconnecting antennae link the light harvesting complexes with the respective reaction centers. In their absence, energy transfer between the light harvesting chlorophylls and the reaction centers is inefficient. The formation of the interconnecting antennae and efficient assembly of photosystem components occur simultaneously with the de novo synthesis of chlorophyll and at least three polypeptides, one translated in the cytoplasm and two translated in the chloroplast. The synthesis of these polypeptides was found to be light dependent.  相似文献   

8.
Cyanobacteria are oxygenic phototrophic prokaryotes and are considered to be the ancestors of chloroplasts. Their photosynthetic machinery is functionally equivalent in terms of primary photochemistry and photosynthetic electron transport. Fluorescence measurements and other techniques indicate that cyanobacteria, like plants, are capable of redirecting pathways of excitation energy transfer from light harvesting antennae to both photosystems. Cyanobacterial cells can reach two energetically different states, which are defined as “State 1” (obtained after preferential excitation of photosystem I) and “State 2” (preferential excitation of photosystem II). These states can be distinguished by static and time resolved fluorescence techniques. One of the most important conclusions reached so far is that the presence of both photosystems, as well as certain antenna components, are necessary for state transitions to occur. Spectroscopic evidence suggests that changes in the coupling state of the light harvesting antenna complexes (the phycobilisomes) to both photosystems occur during state transitions. The finding that the phycobilisome complexes are highly mobile on the surface of the thylakoid membrane (the mode of interaction with the thylakoid membrane is essentially unknown), has led to the proposal that they are in dynamic equilibrium with both photosystems and regulation of energy transfer is mediated by changes in affinity for either photosystem.  相似文献   

9.
The harvesting of solar radiation by purple photosynthetic bacteria is achieved by circular, integral membrane pigment-protein complexes. There are two main types of light-harvesting complex, termed LH2 and LH1, that function to absorb light energy and to transfer that energy rapidly and efficiently to the photochemical reaction centres where it is trapped. This mini-review describes our present understanding of the structure and function of the purple bacterial light-harvesting complexes.  相似文献   

10.
The photosynthetic apparatus of Rhodopseudomonas palustris contains, in addition to reaction center bacteriochlorophyll (Bchl) two spectral forms of light harvesting (LH) Bchl, i.e. LH Bchl I, characterized by an infrared absorption maximum at 880 nm (890 nm at 77°K) and LH Bchl II absorbing at 805 and 855 nm (805 and 870 nm at 77°K). LH Bchl I seems to be associated with a single protein species of an apparent mol. wt. of 13000 whereas LH Bchl II is apparently associated with two proteins of mol. wts. of 9000 and 11000.Cells in anaerobic cultures adapt to changes of light intensity 1. by variation of the size of the photosynthetic unit, i.e. the molar ratio of LH Bchl II to reaction center Bchl, 2. by variation of the number of photosynthetic units per unit of membrane area, 3. by regulation of the size of the intracytoplasmic membrane system.During adaptation of changes of oxygen partial pressure cells are able to synthesize reaction center Bchl, LH Bchl and intracytoplasmic membranes at different rates. The synthesis of reaction center Bchl and LH Bchl I are, however, coordinated with each other, while the syntheses of LH Bchl II and reaction center Bchl proceed independently.List of Non-Standard Abbreviations Bchl bacteriochlorophyll - ICM mitracytoplasmic membrane - LDAO lauryldimethyl aminoxide - R Rhodopseudomonas - RC reaction center - SDS sodium dodecylsulfate  相似文献   

11.
The development of functional photosynthetic units in Rhodobacter sphaeroides was followed by near infra-red fast repetition rate (IRFRR) fluorescence measurements that were correlated to absorption spectroscopy, electron microscopy and pigment analyses. To induce the formation of intracytoplasmic membranes (ICM) (greening), cells grown aerobically both in batch culture and in a carbon-limited chemostat were transferred to semiaerobic conditions. In both aerobic cultures, a low level of photosynthetic complexes was observed, which were composed of the reaction center and the LH1 core antenna. Interestingly, in the batch cultures the reaction centers were essentially inactive in forward electron transfer and exhibited low photochemical yields F(V)/F(M), whereas the chemostat culture displayed functional reaction centers with a rather rapid (1-2 ms) electron transfer turnover, as well as a high F(V)/F(M) of approximately 0.8. In both cases, the transfer to semiaerobiosis resulted in rapid induction of bacteriochlorophyll a synthesis that was reflected by both an increase in the number of LH1-reaction center and peripheral LH2 antenna complexes. These studies establish that photosynthetic units are assembled in a sequential manner, where the appearance of the LH1-reaction center cores is followed by the activation of functional electron transfer, and finally by the accumulation of the LH2 complexes.  相似文献   

12.
Tobacco rbcL deletion mutant, which lacks the key enzyme Rubisco for photosynthetic carbon assimilation, was characterized with respect to thylakoid functional properties and protein composition. The Delta rbcL plants showed an enhanced capacity for dissipation of light energy by non-photochemical quenching which was accompanied by low photochemical quenching and low overall photosynthetic electron transport rate. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed a slow electron transfer and decreased redox gap between Q(A) and Q(B), whereas the donor side function of the Photosystem II (PSII) complex was not affected. The 77 K fluorescence emission spectrum of Delta rbcL plant thylakoids implied a presence of free light harvesting complexes. Mutant plants also had a low amount of photooxidisible P700 and an increased ratio of PSII to Photosystem I (PSI). On the other hand, an elevated level of plastid terminal oxidase and the lack of F0 'dark rise' in fluorescence measurements suggest an enhanced plastid terminal oxidase-mediated electron flow to O2 in Delta rbcL thylakoids. Modified electron transfer routes together with flexible dissipation of excitation energy through PSII probably have a crucial role in protection of PSI from irreversible protein damage in the Delta rbcL mutant under growth conditions. This protective capacity was rapidly exceeded in Delta rbcL mutant when the light level was elevated resulting in severe degradation of PSI complexes.  相似文献   

13.
Michael Wormit 《BBA》2009,1787(6):738-9506
Light harvesting complexes have been identified in all chlorophyll-based photosynthetic organisms. Their major function is the absorption of light and its transport to the reaction centers, however, they are also involved in excess energy quenching, the so-called non-photochemical quenching (NPQ). In particular, electron transfer and the resulting formation of carotenoid radical cations have recently been discovered to play an important role during NPQ in green plants. Here, the results of our theoretical investigations of carotenoid radical cation formation in the major light harvesting complex LHC-II of green plants are reported. The carotenoids violaxanthin, zeaxanthin and lutein are considered as potential quenchers. In agreement with experimental results, it is shown that zeaxanthin cannot quench isolated LHC-II complexes. Furthermore, subtle structural differences in the two lutein binding pockets lead to substantial differences in the excited state properties of the two luteins. In addition, the formation mechanism of carotenoid radical cations in light harvesting complexes LH2 and LH1 of purple bacteria is studied. Here, the energetic position of the S1 state of the involved carotenoids neurosporene, spheroidene, spheroidenone and spirilloxanthin seems to determine the occurrence of radical cations in these LHCs upon photo-excitation. An elaborate pump-deplete-probe experiment is suggested to challenge the proposed mechanism.  相似文献   

14.
The development of functional photosynthetic units in Rhodobacter sphaeroides was followed by near infra-red fast repetition rate (IRFRR) fluorescence measurements that were correlated to absorption spectroscopy, electron microscopy and pigment analyses. To induce the formation of intracytoplasmic membranes (ICM) (greening), cells grown aerobically both in batch culture and in a carbon-limited chemostat were transferred to semiaerobic conditions. In both aerobic cultures, a low level of photosynthetic complexes was observed, which were composed of the reaction center and the LH1 core antenna. Interestingly, in the batch cultures the reaction centers were essentially inactive in forward electron transfer and exhibited low photochemical yields FV/FM, whereas the chemostat culture displayed functional reaction centers with a rather rapid (1-2 ms) electron transfer turnover, as well as a high FV/FM of ∼0.8. In both cases, the transfer to semiaerobiosis resulted in rapid induction of bacteriochlorophyll a synthesis that was reflected by both an increase in the number of LH1-reaction center and peripheral LH2 antenna complexes. These studies establish that photosynthetic units are assembled in a sequential manner, where the appearance of the LH1-reaction center cores is followed by the activation of functional electron transfer, and finally by the accumulation of the LH2 complexes.  相似文献   

15.
The kinetics of charge recombination following photoexcitation by a laser pulse have been analyzed in the reaction center-light harvesting complex 1 (RC-LH1) purified from the photosynthetic bacterium Rhodobacter sphaeroides. In RC-LH1 core complexes isolated from photosynthetically grown cells P(+)Q(B)(-) recombines with an average rate constant, k approximately 0.3 s(-1), more than three times smaller than that measured in RC deprived of the LH1 (k approximately 1 s(-1)). A comparable, slowed recombination kinetics is observed in RC-LH1 complexes purified from a pufX-deleted strain. Slowing of the charge recombination kinetics is even more pronounced in RC-LH1 complexes isolated from wild-type semiaerobically grown cells (k approximately 0.2 s(-1)). Since the kinetics of P(+)Q(A)(-) recombination is unaffected by the presence of the antenna, the P(+)Q(B)(-) state appears to be energetically stabilized in core complexes. Determinations of the ubiquinone-10 (UQ(10)) complement associated with the purified RC-LH1 complexes always yield UQ(10)/RC ratios larger than 10. These quinone molecules are functionally coupled to the RC-LH1 complex, as judged from the extent of exogenous cytochrome c(2) rapidly oxidized under continuous light excitation. Analysis of P(+)Q(B)(-) recombination, based on a kinetic model which considers fast quinone equilibrium at the Q(B) binding site, indicates that the slowing down of charge recombination kinetics observed in RC-LH1 complexes cannot be explained solely by a quinone concentration effect and suggests that stabilization of the light-induced charge separation is predominantly due to interaction of the Q(B) site with the LH1 complex. The high UQ(10) complements detected in RC-LH1 core complexes, but not in purified light-harvesting complex 2 and in RC, are proposed to reflect an in vivo heterogeneity in the distribution of the quinone pool within the chromatophore bilayer.  相似文献   

16.
Single complex fluorescence polarization spectroscopy is applied to study the peripheral light harvesting antenna (LH2) from photosynthetic purple bacterium Rhodopseudomonas (Rps.) acidophila. The measured two-dimensional excitation-emission polarization plots are used to construct geometric representation for the absorbing B800 and emitting B850 as ellipses. The shape and orientation of the ellipses is discussed in terms of tilted LH2 complexes where emission occurs from energetically disordered B850 excitons.  相似文献   

17.
蛋白质在生物体内电荷转移过程中所起的作用迄今仍然是一个有争议的问题.其争论焦点是蛋白质在生物电荷转移过程中是否提供特殊的电子传递通道或者是仅仅作为普通的有机介质.应用飞秒时间分辨瞬态吸收光谱研究由光合细菌天线分子和平均粒径为8 nm的TiO2组装而成的超分子系统中长程电荷转移.晶体结构研究表明,光合细菌天线分子具有由多个α-脱辅基和β-脱辅基蛋白跨膜螺旋构成的双层空心柱面体结构,其中α-脱辅基蛋白跨膜螺旋构成的小环状体套于β-脱辅基蛋白跨膜螺旋构成的大环状体中.小环状体的空腔直径约为3.6 nm.光合色素细菌叶绿素和β-胡萝卜素分子处于两环之间.细菌叶绿素距离外周胞质膜最近,预计为1 nm.本研究试图将TiO2纳米颗粒部分装入光合细菌膜蛋白的腔体中,探讨细菌叶绿素与TiO2纳米颗粒间进行的光致长程电荷转移,进而揭示蛋白质在电荷转移过程中所起的作用.实验观察到细菌叶绿素B850在LH2/TiO2中的基态漂白恢复的时间常数明显地比在LH2中短,应用长程电荷转移模型,将蛋白质视为普通介电媒体,由电荷转移速率推算得到细菌叶绿素与TiO2纳米颗粒最近表面的距离为0.6 nm,表明TiO2纳米颗粒已经成功地部分装入光合细菌天线分子的空腔中.  相似文献   

18.
Time-resolved fluorescence of chromatophores isolated from strains of Rhodobacter sphaeroides containing light harvesting complex I (LHI) and reaction center (RC) (no light harvesting complex II) was measured at several temperatures between 295 K and 10 K. Measurements were performed to investigate energy trapping from LHI to the RC in RC mutants that have a P/P(+) midpoint potential either above or below wild-type (WT). Six different strains were investigated: WT + LHI, four mutants with altered RC P/P(+) midpoint potentials, and an LHI-only strain. In the mutants with the highest P/P(+) midpoint potentials, the electron transfer rate decreases significantly, and at low temperatures it is possible to directly observe energy transfer from LHI to the RC by detecting the fluorescence kinetics from both complexes. In all mutants, fluorescence kinetics are multiexponential. To explain this, RC + LHI fluorescence kinetics were analyzed using target analysis in which specific kinetic models were compared. The kinetics at all temperatures can be well described with a model which accounts for the energy transfer between LHI and the RC and also includes the relaxation of the charge separated state P(+)H(A)(-), created in the RC as a result of the primary charge separation.  相似文献   

19.
In photosynthesis, the central step in transforming light energy into chemical energy is the coupling of light-induced electron transfer to proton uptake and release. Despite intense investigations of different photosynthetic protein complexes, including the photosystem II (PS II) in plants and the reaction center (RC) in bacteria, the molecular details of this fundamental process remain incompletely understood. In the RC of Rhodobacter (Rb.) sphaeroides, fast formation of the charge separated state, P(+)Q(A)(-), is followed by a slower electron transfer from the primary acceptor, Q(A), to the secondary acceptor, Q(B), and the uptake of a proton from the cytoplasm. The proton transfer to Q(B) takes place via a protonated water chain. Mutation of the amino acid AspL210 to Asn (L210DN mutant) near the entry of the proton pathway can disturb this water chain and consequently slow down proton uptake. Time-resolved step-scan Fourier transform infrared (FTIR) measurements revealed an intermediate X in the Q(A)(-)Q(B) to Q(A)Q(B)(-) transition. The nature of this transition remains a matter of debate. In this study, we investigated the role of the iron-histidine complex located between Q(A) and Q(B). We used time-resolved fast-scan FTIR spectroscopy to characterize the Rb. sphaeroides L210DN RC mutant marked with isotopically labeled histidine. FTIR marker bands of the intermediate X between 1120 cm(-1) and 1050 cm(-1) are assigned to histidine vibrations and indicate the protonation of a histidine, most likely HisL190, during the disappearance of the intermediate. Based on these results we propose a novel mechanism of the coupling of electron and proton transfer in photosynthesis.  相似文献   

20.
The effect of 1-hexanol on spectral properties and the processes of energy transfer of the green gliding photosynthetic bacterium Chloroflexus aurantiacus was investigated with reference to the baseplate region. On addition of 1-hexanol to a cell suspension in a concentration of one-fourth saturation, a specific change in the baseplate region was induced: that is, a bleach of the 793-nm component, and an increase in absorption of the 813-nm component. This result was also confirmed by fluorescence spectra of whole cells and isolated chlorosomes. The processes of energy transfer were affected in the overall transfer efficiency but not kinetically, indicating that 1-hexanol suppressed the flux of energy flow from the baseplate to the B806-866 complexes in the cytoplasmic membranes. The fluorescence excitation spectrum suggests a specific site of interaction between bacteriochlorophyll (BChl) c with a maximum at 771 nm in the rod elements and BChl a with a maximum at 793 nm in the baseplate, which is a funnel for a fast transfer of energy to the B806-866 complexes in the membranes. The absorption spectrum of chlorosomes was resolved to components consistently on the basis, including circular dichroism and magnetic circular dichroism spectra; besides two major BChl c forms, bands corresponding to tetramer, dimer, and monomer were also discernible, which are supposed to be intermediary components for a higher order structure. A tentative model for the antenna system of C. aurantiacus is proposed.Abbreviations A670 a component whose absorption maximum is located at 670 nm - (B)Chl (bacterio)chlorophyll - CD circular dichroism - F675 a component whose emission maximum is located at 675 nm - FMO protein Fenna-Mathews-Olson protein - LD linear dichroism - LH light-harvesting - McD magnetic circular dichroism - PS photosystem - RC reaction center  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号