首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GlsA, a J-protein chaperone, is required for the asymmetric divisions that set aside germ and somatic cell precursors during embryogenesis in Volvox carteri, and previous evidence indicated that this function requires an intact Hsp70-binding site. To determine if Hsp70A, the only known cytoplasmic Hsp70 in V. carteri, is the chaperone partner of GlsA, we investigated the localization of the two proteins during critical stages of embryogenesis and tested their capacity to interact. We found that a substantial fraction of Hsp70A co-localizes with GlsA, both in interphase and mitotic blastomeres. In addition, Hsp70A coimmunoprecipitated with GlsA, and co-expression of GlsA and Hsp70A variants partially rescued the Gls phenotype of a glsA mutant, whereas neither variant by itself rescued the mutant phenotype. Immunofluorescence analysis demonstrated that GlsA is about equally abundant in all blastomeres at all cleavage stages examined but that Hsp70A is more abundant in anterior (asymmetrically dividing) blastomeres than in posterior (symmetrically dividing) blastomeres during the period of asymmetric division. We conclude that Hsp70A and GlsA function as chaperone partners that regulate asymmetric division and that the relative abundance of Hsp70A in asymmetrically dividing embryos may determine which blastomeres divide asymmetrically and which do not.  相似文献   

2.
We describe here a novel plant-specific gene, Lefsm1 (fruit SANT/MYB-like 1) harboring a single SANT/MYB domain. The expression of Lefsm1 is specific to the very early stages of tomato (Lycopersicon esculentum) fruit development. Ectopic expression of Lefsm1 results in severe developmental alterations manifested in retarded growth, and reduced apical dominance during tomato and Arabidopsis seedling development. A promoter sequence residing 1.0 kb upstream to the translation initiation codon confers the organ-specific expression of the gene. Lefsm1 belongs to a novel small gene family consisting of five to six members in tomato, Arabidopsis and rice. The SANT/MYB domain of LeFSM1 and its orthologs in Arabidopsis and rice differs from that of all other plant or animal MYB proteins and from the SANT domains found in part of the chromatin remodeling proteins. Together, our results indicate that Lefsm1 is a founding member of a small family of proteins containing a novel MYB/SANT domain which is likely to participate in the regulation of a plant-specific developmental program.  相似文献   

3.
Volvox carteri, a green alga in the order Volvocales, contains two completely differentiated cell types, small motile somatic cells and large reproductive cells called gonidia, that are set apart from each other during embryogenesis by a series of visibly asymmetric cell divisions. Mutational analysis has revealed a class of genes (gonidialess, gls) that are required specifically for asymmetric divisions in V. carteri, but that are dispensable for symmetric divisions. Previously we cloned one of these genes, glsA, and showed that it encodes a chaperone-like protein (GlsA) that has close orthologs in a diverse set of eukaryotes, ranging from fungi to vertebrates and higher plants. In the present study we set out to explore the role of glsA in the evolution of asymmetric division in the volvocine algae by cloning and characterizing a glsA ortholog from one of the simplest members of the group, Chlamydomonas reinhardtii, which does not undergo asymmetric divisions. This ortholog (which we have named gar1, for glsA related) is predicted to encode a protein that is 70% identical to GlsA overall, and that is most closely related to GlsA in the same domains that are most highly conserved between GlsA and its other known orthologs. We report that a gar1 transgene fully complements the glsA mutation in V. carteri, a result that suggests that asymmetric division probably arose through the modification of a gene whose product interacts with GlsA, but not through a modification of glsA itself.  相似文献   

4.
It has recently been shown that paromomycin, an antibiotic of the aminoglycoside family, is also active on eukaryotic cytoplasmic ribosomes. In the fungus Podospora anserina, genetic analysis of ten mutants resistant to high doses of paromomycin shows that this resistance is caused by mutations in two different nuclear genes. These mutants display pleiotropic phenotypes (cold sensitivity, mycelium and spore appearance and coloration, cross-resistance to other antibiotics). Double mutants are either lethal or very altered and unstable. Moreover, the cytochrome spectra of these mutants seem to indicate that cytoplasmic protein synthesis is affected. The mutants also display a slight suppressor effect. We can therefore assume that these mutations affect cytoplasmic ribosomes.This work was supported by a C.N.R.S. Grant (ATP Microbiologie No. 3052) and by a NATO Grant.  相似文献   

5.
6.
动物胃肠道是食物消化和营养吸收器官,对机体健康至关重要。果蝇与哺乳动物的肠道在细胞组成、遗传调控等方面高度相似,是研究肠道发育的良好模型。体外培养细胞中的研究发现,Nprl2通过作用于Rag GTPase,抑制雷帕霉素靶点复合物1(target of rapamycin complex 1,TORC1)的活性,参与细胞代谢的调节。前期报道nprl2突变果蝇具有前胃增大、消化能力降低等肠道衰老相关表型。但对于Nprl2是否通过Rag GTPase调控肠道发育等方面尚不清楚。为了探究Rag GTPase在Nprl2调控果蝇肠道发育中的作用,本研究利用遗传杂交结合免疫荧光等方法对RagA敲减和nprl2突变果蝇的肠道形态、肠道细胞组成等方面进行研究。发现单独敲减RagA可以引起肠变粗、前胃增大等表型,敲减RagA能挽救nprl2突变体中肠道变细、分泌型细胞减少的表型,但并不能挽救nprl2突变体中前胃增大的表型。以上结果表明,RagA在肠道发育中发挥重要作用,Nprl2通过作用于Rag GTPase调节肠道细胞分化和肠道形态,但Nprl2对前胃发育和肠道的消化功能的调节可能通过不依赖于Rag GTPase的机制实现。  相似文献   

7.
8.
Strigolactones are recently identified plant hormones that inhibit shoot branching. Pleiotropic defects in strigolactone-deficient or -insensitive mutants indicate that strigolactones control various aspects of plant growth and development. However, our understanding of the hormonal function of strigolactones in plants is very limited. In this study we demonstrate that rice dwarf mutants that are strigolactone-deficient or -insensitive exhibit a short crown root phenotype. Exogenous application of GR24, a synthetic strigolactone analog, complemented the crown root defect in strigolactone-deficient mutants but not in strigolactone-insensitive mutants. These observations imply that strigolactones positively regulate the length of crown roots. Histological observations revealed that the meristematic zone is shorter in dwarf mutants than in wild type, suggesting that strigolactones may exert their effect on roots via the control of cell division. We also show that crown roots of wild type, but not dwarf mutants, become longer under phosphate starvation.  相似文献   

9.
10.
Summary In gemmae ofVittaria graminifolia and prothallia ofOnoclea sensibilis, cell differentiation is initiated by nuclear migration and geometrically asymmetric cell division. The small daughter cells inVittaria develop into antheridia in the presence of gibberellic acid or into rhizoids or new prothallia in its absence. Antheridial differentiation from asymmetric division is induced inOnoclea byPteridium antheridiogen, whereas rhizoid or vegetative cell formation occurs in its absence. Although asymmetric cytokinesis initiates differentiation, it does not in itself determine the developmental fate of the smaller cell. Several histochemical techniques demonstrate that prior to nuclear migration and cell division, Ca2+ accumulates in the cytoplasm and wall of the cell at the site where asymmetric division will occur, regardless of the developmental fate of the small cell. The cytoplasmic localization of Ca2+ appears to reflect a mobilization of Ca2+ from within the cell that eventually moves into the cell wall. We propose that this internal accumulation of Ca2+ leads to a localized decrease in cytosolic [Ca2+] which in turn may regulate developmental events such as nuclear migration.Publishing prior to 1984 as Alix R. Bassel.  相似文献   

11.
DNA replication and its connection to M phase restraint are studied extensively at the level of single cells but rarely in the context of a developing animal. C. elegans lin-6 mutants lack DNA synthesis in postembryonic somatic cell lineages, while entry into mitosis continues. These mutants grow slowly and either die during larval development or develop into sterile adults. We found that lin-6 corresponds to mcm-4 and encodes an evolutionarily conserved component of the MCM2-7 pre-RC and replicative helicase complex. The MCM-4 protein is expressed in all dividing cells during embryonic and postembryonic development and associates with chromatin in late anaphase. Induction of cell cycle entry and differentiation continues in developing mcm-4 larvae, even in cells that went through abortive division. In contrast to somatic cells in mcm-4 mutants, the gonad continues DNA replication and cell division until late larval development. Expression of MCM-4 in the epidermis (also known as hypodermis) is sufficient to rescue the growth retardation and lethality of mcm-4 mutants. While the somatic gonad and germline show substantial ability to cope with lack of zygotic mcm-4 function, mcm-4 is specifically required in the epidermis for growth and survival of the whole organism. Thus, C. elegans mcm-4 has conserved functions in DNA replication and replication checkpoint control but also shows unexpected tissue-specific requirements.  相似文献   

12.
Asymmetric cell division and apoptosis (programmed cell death) are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well.  相似文献   

13.
This paper describes the analysis of cold-resistant revertants of a cold-sensitive mutant. Pm1-1 is a ribosomal mutation screened for its paromomycin resistance. Suppression of its cold sensitivity occurs with two kinds of external mutations localized in two different loci. One of them, PmB, is assumed to be a ribosomal gene. PmB mutations confer hypersensitivity to paromomycin in vivo as well as in vitro in a cell-free protein synthesis system.This work was supported by DGRST Grant MRM/P240 and NATO Grant 1637.  相似文献   

14.
The Drosophila segment polarity gene fused, which encodes a serine threonine kinase, is required to transmit the Hedgehog (Hh) signal in imaginal discs. To explore the functional homology between the human protein FUSED (hFU) and the Drosophila protein fused (dFu), we have subjected hFU to a precise and well-defined Hh signalling assay of Drosophila wing development. In the wildtype, hFU affects the expression of Hh target genes leading thus to defects in adult wings. In fu mutants, overexpression of hFU cannot rescue the fu phenotype. These results suggest that hFU in Drosophila interferes with endogenous Hh signalling probably by competing with endogenous dFu when binding its partners but cannot perform the normal Fu function.Edited by C. Desplan  相似文献   

15.
Asymmetric cell division is important for regulating cell proliferation and fate determination during stomatal development in plants. Although genes that control asymmetric division and cell differentiation in stomatal development have been reported, regulators controlling the process from asymmetric division to cell differentiation remain poorly understood. Here, we report a weak allele (fk–J3158) of the Arabidopsis sterol C14 reductase gene FACKEL (FK) that shows clusters of small cells and stomata in leaf epidermis, a common phenomenon that is often seen in mutants defective in stomatal asymmetric division. Interestingly, the physical asymmetry of these divisions appeared to be intact in fk mutants, but the cell‐fate asymmetry was greatly disturbed, suggesting that the FK pathway links these two crucial events in the process of asymmetric division. Sterol profile analysis revealed that the fk–J3158 mutation blocked downstream sterol production. Further investigation indicated that cyclopropylsterol isomerase1 (cpi1), sterol 14α–demethylase (cyp51A2) and hydra1 (hyd1) mutants, corresponding to enzymes in the same branch of the sterol biosynthetic pathway, displayed defective stomatal development phenotypes, similar to those observed for fk. Fenpropimorph, an inhibitor of the FK sterol C14 reductase in Arabidopsis, also caused these abnormal small‐cell and stomata phenotypes in wild‐type leaves. Genetic experiments demonstrated that sterol biosynthesis is required for correct stomatal patterning, probably through an additional signaling pathway that has yet to be defined. Detailed analyses of time‐lapse cell division patterns, stomatal precursor cell division markers and DNA ploidy suggest that sterols are required to properly restrict cell proliferation, asymmetric fate specification, cell‐fate commitment and maintenance in the stomatal lineage cells. These events occur after physical asymmetric division of stomatal precursor cells.  相似文献   

16.
In flowering plants, male gametes arise via meiosis of diploid pollen mother cells followed by two rounds of mitotic division. Haploid microspores undergo polar nuclear migration and asymmetric division at pollen mitosis I to segregate the male germline, followed by division of the germ cell to generate a pair of sperm cells. We previously reported two gemini pollen (gem) mutants that produced twin‐celled pollen arising from polarity and cytokinesis defects at pollen mitosis I in Arabidopsis. Here, we report an independent mutant, gem3, with a similar division phenotype and severe genetic transmission defects through pollen. Cytological analyses revealed that gem3 disrupts cell division during male meiosis, at pollen mitosis I and during female gametophyte development. We show that gem3 is a hypomorphic allele (aug6‐1) of AUGMIN subunit 6, encoding a conserved component in the augmin complex, which mediates microtubule (MT)‐dependent MT nucleation in acentrosomal cells. We show that MT arrays are disturbed in gem3/aug6‐1 during male meiosis and pollen mitosis I using fluorescent MT‐markers. Our results demonstrate a broad role for the augmin complex in MT organization during sexual reproduction, and highlight gem3/aug6‐1 mutants as a valuable tool for the investigation of augmin‐dependent MT nucleation and dynamics in plant cells.  相似文献   

17.
The NCK adaptor proteins are composed entirely of SH3 and SH2 domains and serve as protein interaction bridges for several receptors during signal transduction events. Here we report the molecular and genetic analysis of the Caenorhabditis elegans nck-1 gene. C. elegans nck-1 encodes two isoforms: NCK-1A and a shorter isoform that lacks the first SH3 domain, NCK-1B. C. elegans nck-1 mutants exhibit defects in axon guidance and neuronal cell position, as well as defects in the excretory canal cell, gonad, and male mating. NCK-1 is broadly expressed in neurons and epithelial cells with NCK-1B being the most abundant isoform. NCK-1A and NCK-1B share a similar expression pattern in parts of the nervous system, but also have independent expression patterns in other tissues. Interestingly, NCK-1B is localized to the nuclei of many cells. Genetic rescue experiments show that NCK-1 functions cell autonomously and, in general, either NCK-1A or NCK-1B is sufficient to function in axon guidance. However, there appears to be specific roles for each isoform, for example NCK-1B is required for HSN cell migration while NCK-1A is required for efficient male mating. Genetic epistasis experiments show that NCK-1 functions redundantly with the LAR Receptor Tyrosine Phosphatase, PTP-3, and the Netrin receptor UNC-40.  相似文献   

18.
Summary The rnh gene of Escherichia coli encodes RNase H. rnh mutants display at least two phenotypes: (1) they require functional RecBCD enzyme for growth; thus rnh-339::cat recB270 (Ts) and rnh-339::cat recC271 (Ts) strains are temperature sensitive for growth; (2) rnh mutants permit replication that is independent of the chromosomal origin, presumably by failing to remove RNA-DNA hybrids from which extra-original replication can be primed. We report here that manifestation of these two phenotypes occurs at different levels of RNase H function; we have examined partially functional rnh mutants for their in vitro RNase H activity, their ability to rescue viability in recB or recC cells and their ability to permit growth of mutants incapable of using oriC [dnaA (Ts)].  相似文献   

19.
20.
A series ofNeurospora crassamutants affected in the ability to regulate entry into conidiation (an asexual developmental program) were isolated by using an insertional mutagenesis procedure followed by a screening protocol. One of the mutants isolated by this approach consisted entirely of cells with an abnormal morphology. The mutant produces chains of swollen septated cells. The developmentally regulatedccg-1gene is constitutively expressed in these cells, suggesting that they have entered the conidial developmental program. The insertionally disrupted genecnb-1was isolated by plasmid rescue and found to encode calcineurin B, the regulatory subunit of the Ca2+and calmodulin-dependent protein phosphatase calcineurin. The data demonstrate that calcineurin B is required for normal vegetative growth inN. crassaand suggest that thecnb-1mutant is unable to repress entry into the asexual developmental program. The results suggest that Ca2+may play an important role in regulating fungal morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号