首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a simple electrochemical approach for the immobilization of glucose oxidase (GOx) on reduced graphene oxide (RGO). The immobilization of GOx was achieved in a single step without any cross linking agents or modifiers. A simple solution phase approach was used to prepare exfoliated graphene oxide (GO), followed by electrochemical reduction to get RGO-GOx biocomposite. The direct electrochemistry of GOx was revealed at the RGO-GOx modified glassy carbon electrode (GCE). The electrocatalytic and electroanalytical applications of the proposed film were studied by cyclic voltammetry (CV) and amperometry. It is notable that the glucose determination has been achieved in mediator-free conditions. RGO-GOx film showed very good stability, reproducibility and high selectivity. The developed biosensor exhibits excellent catalytic activity towards glucose over a wide linear range of 0.1-27mM with a sensitivity of 1.85μAmM(-1)cm(-2). The facile and easy electrochemical approach used for the preparation of RGO-GOx may open up new horizons in the production of cost-effective biosensors and biofuel cells.  相似文献   

2.
A novel glucose biosensor was developed, based on the immobilization of glucose oxidase (GOD) with cross-linking in the matrix of bovine serum albumin (BSA) on a Pt electrode, which was modified with gold nanoparticles decorated Pb nanowires (GNPs-Pb NWs). Pb nanowires (Pb NWs) were synthesized by an l-cysteine-assisted self-assembly route, and then gold nanoparticles (GNPs) were attached onto the nanowire surface through –SH–Au specific interaction. The morphological characterization of GNPs-Pb NWs was examined by transmission electron microscopy (TEM). Cyclic voltammetry and chronoamperometry were used to study and to optimize the electrochemical performance of the resulting biosensor. The synergistic effect of Pb NWs and GNPs made the biosensor exhibit excellent electrocatalytic activity and good response performance to glucose. The effects of pH and applied potential on the amperometric response of the biosensor have been systemically studied. In pH 7.0, the biosensor showed the sensitivity of 135.5 μA mM−1 cm−2, the detection limit of 2 μM (S/N = 3), and the response time <5 s with a linear range of 5–2200 μM. Furthermore, the biosensor exhibits good reproducibility, long-term stability and relative good anti-interference.  相似文献   

3.
Luo XL  Xu JJ  Du Y  Chen HY 《Analytical biochemistry》2004,334(2):284-289
An amperometric biosensor for the quantitative measurement of glucose is reported. The biosensor is based on a biocomposite that is homogeneous and easily prepared. This biocomposite is made of chitosan hydrogel, glucose oxidase, and gold nanoparticles by a direct and facile electrochemical deposition method under enzyme-friendly conditions. The resulting biocomposite provided a shelter for the enzyme to retain its bioactivity at considerably extreme conditions, and the decorated gold nanoparticles in the biocomposite offer excellent affinity to enzyme. The biosensor exhibited a rapid response (within 7s) and a linear calibration range from 5.0 microM to 2.4 mM with a detection limit of 2.7 microM for the detection of glucose. The combination of gold nanoparticles affinity and the promising feature of the biocomposite with the onestep nonmanual technique favor the sensitive determination of glucose with improved analytical capabilities.  相似文献   

4.
A new glucose biosensor has been fabricated by immobilizing glucose oxidase into a copper dispersed sol-gel derived ceramic-graphite composite. The copper in the biocomposite offers excellent electrocatalytic activity towards the reduction (at -0.2 V) as well as oxidation (at +0.45 V) of hydrogen peroxide liberated in the enzymatic reaction enabling sensitive and selective determination of glucose. A linear response to glucose in the concentration range between 2.7 x 10(-5) to 4.0 x 10(-3) M with a correlation coefficient of 0.9987 and 4.0 x 10(-5) to 5.6 x 10(-3) M with a correlation coefficient of 0.9989 were observed with the electrocatalytic reduction and oxidation, respectively. Ascorbic acid and uric acid did not interfere with the glucose measurement during catalytic reduction at -0.2 V, a Nafion membrane was used to eliminate these interferences during the electrocatalytic oxidation at +0.45 V. The combination of copper catalysis and the promising feature of sol-gel biocomposite favor the sensitive and selective determination of glucose with improved analytical capabilities.  相似文献   

5.
Nanofibrous glucose electrodes were fabricated by the immobilization of glucose oxidase (GOx) into an electrospun composite membrane consisting of polymethylmethacrylate (PMMA) dispersed with multiwall carbon nanotubes (MWCNTs) wrapped by a cationic polymer (poly(diallyldimethylammonium chloride) (PDDA)) and this nanofibrous electrode (NFE) is abbreviated as PMMA-MWCNT(PDDA)/GOx-NFE. The NFE was characterized for morphology and electroactivity by using electron microscopy and cyclic voltammetry, respectively. Field emission transmission electron microscopy (FETEM) image reveals the dispersion of MWCNT(PDDA) within the matrix of PMMA. Cyclic voltammetry informs that NFE is suitable for performing surface-confined electrochemical reactions. PMMA-MWCNT(PDDA)/GOx-NFE exhibits excellent electrocatalytic activity towards hydrogen peroxide (H(2)O(2)) with a pronounced oxidation current at +100 mV. Glucose is amperometrically detected at +100 mV (vs. Ag/AgCl) in 0.1M phosphate buffer solution (PBS, pH 7). The linear response for glucose detection is in the range of 20 microM to 15 mM with a detection limit of 1 microM and a shorter response time of approximately 4 s. The superior performance of PMMA-MWCNT(PDDA)/GOx-NFE is due to the wrapping of PDDA over MWCNTs that binds GOx through electrostatic interactions. As a result, an effective electron mediation is achieved. A layer of nafion is made over PMMA-MWCNT(PDDA)/GOx-NFE that significantly suppressed the electrochemical interference from ascorbic acid or uric acid. In all, PMMA-MWCNT(PDDA)/GOx-nafion-NFE has exhibited excellent properties for the sensitive determination of glucose like high selectivity, good reproducibility, remarkable stability and without interference from other co-existing electroactive species.  相似文献   

6.
A fluorescent glucose biosensor was constructed by immobilizing glucose oxidase on a bamboo inner shell membrane with glutaraldehyde as a cross-linker. The detection scheme was based on the depletion of dissolved oxygen content upon exposure to glucose solution with a concomitant increase in the fluorescence intensity of an oxygen transducer, tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(Pi) ditetrakis(4-chlorophenyl)borate. The enzyme immobilization, effect of pH, temperature and ionic strength have been studied in detail. The biosensor exhibited repeatable response to a 2.0 mM glucose solution with a relative standard deviation of 3.0% (n = 10). It showed good storage stability and maintained 95% of its initial response after it had been kept at 4 degrees C for 8 months. The biosensor has a linear response range of 0.0-0.6 mM glucose with a detection limit of 58 microM (S/N = 3). Common potential interferants in samples do not pose any significant interference on the response of the glucose biosensor. It was successfully applied to the determination of glucose content in some commercial wines and medical glucose injections.  相似文献   

7.
In this paper, a mediatorless amperometric glucose biosensor based on direct covalent immobilisation of monomolecular layer of glucose oxidase (GOx) on a semiconducting indium-tin oxide (ITO) is demonstrated. The abundance of surface hydroxyl functional group of ITO allows it to be used as a suitable platform for direct covalent immobilisation of the enzyme for sensor architecture. The anodic current corresponding to electrochemical oxidation of the enzymatic product, hydrogen peroxide, at a sputtered Pt electrode at 0.500 V (vs. SCE) was obtained as the sensor signal. It was found that the biosensor based on the direct immobilisation scheme shows a fast biosensor response, minimum interference from other common metabolic species and ease of biosensor miniaturisation. A linear range of 0-10 mM of glucose was demonstrated, which exhibits a high sensitivity as far as performance per immobilised GOx molecule is concerned. A detection limit as low as 0.05 mM and long-term stability were observed. Even more important, the biosensor design allows fabrication through a dry process. These characteristics make it possible to achieve mass production of biosensor compatible with the current electronic integrated circuit manufacturing technologies.  相似文献   

8.
This paper describes the optimisation of a screen-printing water-based carbon ink containing cobalt phthalocyanine (CoPC) and glucose oxidase (GOD) for the fabrication of a glucose biosensor. To optimise the performance of the biosensor, the loadings of the electrocatalyst (CoPC) and enzyme (GOD) were varied. It was found that the maximum linear range was achieved with a CoPC loading of 20% (m/m, relative to the mass of carbon) and a GOD loading of 628 U per gram of carbon. In our studies we chose to employ chronoamperometry, as this technique is commonly used for commercial devices. The optimum operating applied potential was found to be +0.5 V, following an incubation period of 60 s. The optimum supporting electrolyte was found to be 0.05 M phosphate buffer at pH 8.0, which resulted in a linear range of 0.2-5 mM, the former represents the detection limit. The sensitivity was 1.12 microA mM(-1). The effect of temperature was also investigated, and it was found that 40 degrees C gave optimal performance. The resulting amperometric biosensors were evaluated by measuring the glucose concentrations for 10 different human plasma samples containing endogenous glucose and also added glucose. The same samples were analysed by a standard spectrophotometric method, and the results obtained by the two different methods were compared. A good correlation coefficient (R(2) = 0.95) and slope (0.98) were calculated from the experimental data, indicating that the new devices hold promise for biomedical studies.  相似文献   

9.
A biosensor based on pyruvate oxidase (POX) enzyme was developed for the investigation of the effect of thiamine (vitamin B(1)) molecule on the activity of the enzyme. The biosensor was prepared with a chemical covalent immobilization method on the dissolved oxygen (DO) probe by using gelatin and cross-linking agent, glutaraldehyde. POX catalyzes the degradation of pyruvate to acetylphosphate, CO(2) and H(2)O(2) in the presence of phosphate and oxygen. Thiamine is an activator for POX enzyme and determination method of the biosensor was based on this effect of thiamine on the activity of the enzyme. The biosensor responses showed increases in the presence of thiamine. Increases in the biosensor responses were related to thiamine concentration. Thiamine determination is based on the assay of the differences on the biosensor responses on the oxygenmeter in the absence and the presence of thiamine. The biosensor response depend linearly on thiamine concentration between 0.025 and 0.5 microM with 2 min response time. In the optimization studies of the biosensor the most suitable enzyme amount was found as 2.5 U cm(-2) and also phosphate buffer (pH 7.0; 50 mM) and 35 degrees C were obtained as the optimum working conditions. In the characterization studies of the biosensor some parameters such as activator and interference effects of some substances on the biosensor response and reproducibility were carried out.  相似文献   

10.
Electrodeposition was used for the co-deposition of glucose oxidase (GOx) enzymes and palladium nanoparticles onto a Nafion-solubilized carbon nanotube (CNT) film. The co-deposited Pd-GOx-Nafion CNT bioelectrode retains its biocatalytic activity and offers an efficient oxidation and reduction of the enzymatically liberated H2O2, allowing for fast and sensitive glucose quantification. The combination of Pd-GOx electrodeposition with Nafion-solubilized CNTs enhances the storage time and performance of the sensor. An extra Nafion coating was used to eliminate common interferents such as uric and ascorbic acids. The fabricated Pd-GOx-Nafion CNT glucose biosensor exhibits a linear response up to 12 mM glucose and a detection limit of 0.15 mM (S/N = 3).  相似文献   

11.
Glucose potentiometric biosensor was prepared by immobilizing glucose oxidase on iodide-selective electrode. The hydrogen peroxide formed after the oxidation of glucose catalysed by glucose oxidase (GOD) was oxidized by sodium molybdate (SMo) at iodide electrode in the presence of dichlorometane. The glucose concentration was calculated from the decrease of iodide concentration determined by iodide-selective sensor. The sensitivity of glucose biosensor towards iodide ions and glucose was in the concentration ranges of 1.0 × 10?1–1.0 × 10?6 M and 1.0 × 10?2?1.0 × 10?4 M, respectively. The characterization of proposed glucose biosensor and glucose assay in human serum were also investigated.  相似文献   

12.
A new amperometric biosensor, based on adsorption of glucose oxidase (GOD) at the platinum nanoparticle-modified carbon nanotube (CNT) electrode, is presented in this article. CNTs were grown directly on the graphite substrate. The resulting GOD/Pt/CNT electrode was covered by a thin layer of Nafion to avoid the loss of GOD in determination and to improve the anti-interferent ability. The morphologies and electrochemical performance of the CNT, Pt/CNT, and Nafion/GOD/Pt/CNT electrodes have been investigated by scanning electron microscopy, cyclic voltammetry, and amperometric methods. The excellent electrocatalytic activity and special three-dimensional structure of the enzyme electrode result in good characteristics such as a large determination range (0.1-13.5mM), a short response time (within 5s), a large current density (1.176 mA cm(-2)), and high sensitivity (91mA M(-1)cm(-2)) and stability (73.5% remains after 22 days). In addition, effects of pH value, applied potential, electrode construction, and electroactive interferents on the amperometric response of the sensor were investigated and discussed. The reproducibility and applicability to whole blood analysis of the enzyme electrode were also evaluated.  相似文献   

13.
ZnO:Co nanoclusters were synthesized by nanocluster-beam deposition with averaged particle size of 5 nm and porous structure, which were for the first time adopted to construct a novel amperometric glucose biosensor. Glucose oxidase was immobilized into the ZnO:Co nanocluster-assembled thin film through Nafion-assisted cross-linking technique. Due to the high specific active sites and high electrocatalytic activity of the ZnO:Co nanoclusters, the constructed glucose biosensor showed a high sensitivity of 13.3 microA/mA cm2. The low detection limit was estimated to be 20 microM (S/N=3) and the apparent Michaelis-Menten constant was found to be 21 mM, indicating the high affinity of the enzyme on ZnO:Co nanoclusters to glucose. The results show that the ZnO:Co nanocluster-assembled thin films with nanoporous structure and nanocrystallites have potential applications as platforms to immobilize enzyme in biosensors.  相似文献   

14.
A bienzymatic glucose biosensor was proposed for selective and sensitive detection of glucose. This mediatorless biosensor was made by simultaneous immobilization of glucose oxidase (GOD) and horseradish peroxidase (HRP) in an electropolymerized pyrrole (PPy) film on a single-wall carbon nanotubes (SWNT) coated electrode. The amperometric detection of glucose was assayed by potentiostating the bienzymatic electrode at -0.1 versus Ag/AgCl to reduce the enzymatically produced H(2)O(2) with minimal interference from the coexisting electroactive compounds. The single-wall carbon nanotubes, sandwiched between the enzyme loading polypyrrole (PPy) layer and the conducting substrate (gold electrode), could efficiently promote the direct electron transfer of HRP. Operational characteristics of the bienzymatic sensor, in terms of linear range, detection limit, sensitivity, selectivity and stability, were presented in detail.  相似文献   

15.
Biopolymer pectin stabilized gold nanoparticles were prepared at graphene and multiwalled carbon nanotubes (GR-MWNTs/AuNPs) and employed for the determination of glucose. The formation of GR-MWNTs/AuNPs was confirmed by scanning electron microscopy, X-ray diffraction, UV–vis and FTIR spectroscopy methods. Glucose oxidase (GOx) was successfully immobilized on GR-MWNTs/AuNPs film and direct electron transfer of GOx was investigated. GOx exhibits highly enhanced redox peaks with formal potential of −0.40 V (vs. Ag/AgCl). The amount of electroactive GOx and electron transfer rate constant were found to be 10.5 × 10−10 mol cm−2 and 3.36 s−1, respectively, which were significantly larger than the previous reports. The fabricated amperometric glucose biosensor sensitively detects glucose and showed two linear ranges: (1) 10 μM  2 mM with LOD of 4.1 μM, (2) 2 mM  5.2 mM with LOD of 0.95 mM. The comparison of the biosensor performance with reported sensors reveals the significant improvement in overall sensor performance. Moreover, the biosensor exhibited appreciable stability, repeatability, reproducibility and practicality. The other advantages of the fabricated biosensor are simple and green fabrication approach, roughed and stable electrode surface, fast in sensing and highly reproducible.  相似文献   

16.
In this work, a novel chemiluminescence (CL) flow biosensor for glucose was proposed. Glucose oxidase (GOD), horseradish peroxidase (HRP) and gold nanoparticles were immobilized with sol-gel method on the inside surface of the CL flow cell. The CL detection involved enzymatic oxidation of glucose to d-gluconic acid and H(2)O(2), and then the generated H(2)O(2) oxidizing luminol to produce CL emission in the presence of HRP. It was found that gold nanoparticles could remarkably enhance the CL respond of the glucose biosensor. The enhanced effect was closely related to the sizes of gold colloids, and the smaller the size of gold colloids had the higher CL respond. The immobilization condition and the CL condition were studied in detail. The CL emission intensity was linear with glucose concentration in the range of 1.0 x 10(-5)molL(-1) to 1.0 x 10(-3)molL(-1), and the detection limit was 5 x 10(-6)molL(-1) (3sigma). The apparent Michaelis-Menten constant of GOD in gold nanoparticles/sol-gel matrix was evaluated to be 0.3mmolL(-1), which was smaller than that of GOD immobilized in sol-gel matrix without gold nanoparticles. The proposed biosensor exhibited short response time, easy operation, low cost and simple assembly, and the proposed biosensor was successfully applied to the determination of glucose in human serum.  相似文献   

17.
The performance of a new glucose biosensor based on the combination of biocatalytic activity of glucose oxidase (GOx) with the electrocatalytic properties of CNTs and neutral red (NR) for the determination of glucose is described. This sensor is comprised of a multiwalled carbon nanotubes (MWNTs) conduit functionalized with NR and Nafion (Nf) as a binder and glucose oxidase as a biocatalyst. Neutral red was covalently immobilized on carboxylic acid groups of the CNTs via carbodiimide reaction. The functionalized MWNTs were characterized by microscopic, spectroscopic and thermal methods. The MWNT-NR-GOx-Nf nanobiocomposite was prepared by mixing the GOx solution with NR functionalized CNTs followed by mixing homogeneously with Nafion. The performance of the MWNT-NR-GOx-Nf nanobiocomposite modified electrode was examined by electrochemical impedance spectroscopy and cyclic voltammetry. The catalytic reduction of hydrogen peroxide liberated from the enzymatic reaction of glucose oxidase upon glucose with NR functionalized CNTs leads to the selective detection of glucose. The excellent electrocatalytic activity and the influence of nanobiocomposite film result in good characteristics such as low potential detection of glucose with a large determination range from 1 x 10(-8) to 1 x 10(-3)M with a detection limit of 3 x 10(-9)M glucose, a short response time (with 4s), good stability and anti-interferent ability. The improved electrocatalytic activity and stability made the MWNT-NR-GOx-Nf nanobiocomposite biosensor system a potential platform to immobilize different enzymes for other bioelectrochemical applications.  相似文献   

18.
An amperometric glucose biosensor was fabricated by the electrochemical polymerization of pyrrole onto a platinum electrode in the presence of the enzyme glucose oxidase in a KCl solution at a potential of + 0·65 V versus SCE. The enzyme was entrapped into the polypyrrole film during the electropolymerization process. Glucose responses were measured by potentio-statting the enzyme electrode at a potential of + 0·7 V versus SCE in order to oxidize the hydrogen generated by the oxidation of glucose by the enzyme in the presence of oxygen. Experiments were performed to determined the optimal conditions of the polypyrrole glucose oxidase film preparation (pyrrole and glucose oxidase concentrations in the plating solution) and the response to glucose from such electrodes was evaluated as a function of film thickness, pH and temperature. It was found that a concentration of 0·3 M pyrrole in the presence of 65 U/ml of glucose oxidase in 0·01 M KCl were the optimal parameters for the fabrication of the biosensor. The optimal response was obtained for a film thickness of 0·17 μm (75 mC/cm2) at pH 6 and at a temperature of 313 K. The temperature dependence of the amperometric response indicated an activation energy of 41 kJ/mole. The linearity of the enzyme electrode response ranged from 1·0 mM to 7·5 mM glucose and kinetic parameters determined for the optimized biosensors were 33·4 mM for the Km and 7·2 μA for the Imax. It was demonstrated that the internal diffusion of hydrogen peroxide through the polypyrrole layer to the platinum surface was the main limiting factor controlling the magnitude of the response of the biosensor to glucose. The response was directly related to the enzyme loading in the polypyrrole film. The shelf life and the operational stability of the optimized biosensor exceed 500 days and 175 assays, respectively. The substrate specificity of the entrapped glucose oxidase was not altered by the immobilization procedure.  相似文献   

19.
A novel non-enzyme glucose amperometric biosensor was fabricated based on biospecific binding affinity of concanavalin A (Con A) for D-glucose on thionine (TH) modified electrode. TH can be covalently immobilized on potentiostatically activated glassy carbon electrode through Schiff-base reaction. Subsequently, the surface-adherent polydopamine film formed by self-polymerization of dopamine attached to TH and afforded binding sites for the subsequent immobilization of Con A molecules via Michael addition and/or Schiff-base reaction with high stability. Thus, a sensing platform for specific detection towards D-glucose was established. The binding of Con A towards D-glucose can be monitored through the decrease of the electrode response of the TH moiety. Due to the high affinity of Con A for D-glucose and high stability of the resulting sensing platform, the fabricated biosensor exhibited high selectivity, good sensitivity, and wide linear range from 1.0×10(-6) to 1.0×10(-4) M with a low detection limit of 7.5×10(-7) M towards D-glucose.  相似文献   

20.
We constructed a fusion protein (GOx-R5) consisting of R5 (a polypeptide component of silaffin) and glucose oxidase (GOx) that was expressed in Pichia pastoris. Silaffin proteins are responsible for the formation of a silica-based cell matrix of diatoms, and synthetic variants of the R5 protein can perform silicification in vitro[1]. GOx secreted by P. pastoris was self-immobilized (biosilicification) in a pH 5 citric buffer using 0.1 M tetramethoxysilane as a silica source. This self-entrapment property of GOx-R5 was used to immobilize GOx on a graphite rod electrode. An electric cell designed as a biosensor was prepared to monitor the glucose concentrations. The electric cell consisted of an Ag/AgCl reference electrode, a platinum counter electrode, and a working electrode modified with poly(neutral red) (PNR)/GOx/Nafion. Glucose oxidase was immobilized by fused protein on poly(neutral red) and covered by Nafion to protect diffusion to the solution. The morphology of the resulting composite PNR/GOx/Nafion material was analyzed by scanning electron microscopy (SEM). This amperometric transducer was characterized electrochemically using cyclic voltammetry and amperometry in the presence of glucose. An image produced by scanning electron microscopy supported the formation of a PNR/GOx complex and the current was increased to 1.58 μA cm−1 by adding 1 mM glucose at an applied potential of −0.5 V. The current was detected by way of PNR-reduced hydrogen peroxide, a product of the glucose oxidation by GOx. The detection limit was 0.67 mM (S/N = 3). The biosensor containing the graphite rod/PNR/GOx/Nafion detected glucose at various concentrations in mixed samples, which contained interfering molecules. In this study, we report the first expression of R5 fused to glucose oxidase in eukaryotic cells and demonstrate an application of self-entrapped GOx to a glucose biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号