首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activation and maintenance of Ag-specific CD8(+) T cells is central to the long-term control of persistent infections. These killer T cells act to continuously scan and remove reservoirs of pathogen that have eluded the acute immune response. Acutely cleared viral infections depend almost exclusively on dendritic cells (DC) to present Ags to, and to activate, the CD8(+) T cell response. Paradoxically, persistent pathogens often infect professional APCs such as DC, in addition to infecting a broad range of nonprofessional APC, raising the possibility that many cell types could present viral Ags and activate T cells. We addressed whether in persistent viral infection with murine gammaherpesviruses, DC or non-DC, such as B cells and macrophages, were required to maintain the continued activation of Ag-specific CD8(+) T cells. We found that presentation of the surrogate Ag, OVA, expressed under a lytic promoter to CD8(+) T cells during persistent infection was largely restricted to DC, with little contribution from other lymphoid resident cells, such as B cells. This is despite the fact that B cells harbor a very large reservoir of latent virus. Our results support that, during persistent viral infection, continual presentation of lytic Ags by DC leads to T cell activation critical for maintaining CD8(+) T cells capable of limiting persistent viral infection.  相似文献   

2.
Murine gamma-herpesvirus 68 (MHV-68) provides an important experimental model for analyzing gamma-herpesvirus latent infection. After intranasal infection with MHV-68, we analyzed the distribution of the virus in different anatomical locations and purified populations of cells. Our data show that long-term latency is maintained in a variety of anatomical locations and cell populations with different frequencies. Importantly, we demonstrate that although latency in the lung is established in a variety of cell subsets, long-term latency in the lung is only maintained in B cells. In contrast, splenic latency is maintained in macrophages and dendritic cells, as well as in B cells. In blood, isotype-switched B cells constitute the major viral reservoir. These results show that the cell subsets in which latency is established vary within different anatomical sites. Finally, we demonstrate that long-term latency is accompanied by a low level of infectious virus in lung and spleen. These data have important implications for understanding the establishment and maintenance of latency by gamma(2)-herpesviruses.  相似文献   

3.
Murine gamma-herpesvirus 68 (MHV-68) is a natural pathogen of small rodents and insectivores (mice, voles and shrews). The primary infection is characterized by virus replication in lung epithelial cells and the establishment of a latent infection in B lymphocytes. The virus is also observed to persist in lung epithelial cells, dendritic cells and macrophages. Splenomegaly is observed two weeks after infection, in which there is a CD4+ T-cell-mediated expansion of B and T cells in the spleen. At three weeks post-infection an infectious mononucleosis-like syndrome is observed involving a major expansion of Vbeta4+CD8+ T cells. Later in the course of persistent infection, ca. 10% of mice develop lymphoproliferative disease characterized as lymphomas of B-cell origin. The genome from MHV-68 strain g2.4 has been sequenced and contains ca. 73 genes, the majority of which are collinear and homologous to other gamma-herpesviruses. The genome includes cellular homologues for a complement-regulatory protein, Bcl-2, cyclin D and interleukin-8 receptor and a set of novel genes M1 to M4. The function of these genes in the context of latent infections, evasion of immune responses and virus-mediated pathologies is discussed. Both innate and adaptive immune responses play an active role in limiting virus infection. The absence of type I interferon (IFN) results in a lethal MHV-68 infection, emphasizing the central role of these cytokines at the initial stages of infection. In contrast, type II IFN is not essential for the recovery from infection in the lung, but a failure of type II IFN receptor signalling results in the atrophy of lymphoid tissue associated with virus persistence. Splenic atrophy appears to be the result of immunopathology, since in the absence of CD8+ T cells no pathology occurs. CD8+ T cells play a major role in recovery from the primary infection, and also in regulating latently infected cells expressing the M2 gene product. CD4+ T cells have a key role in surveillance against virus recurrences in the lung, in part mediated through 'help' in the genesis of neutralizing antibodies. In the absence of CD4+ T cells, virus-specific CD8+ T cells are able to control the primary infection in the respiratory tract, yet surprisingly the memory CD8+ T cells generated are unable to inhibit virus recurrences in the lung. This could be explained in part by the observations that this virus can downregulate major histocompatibility complex class I expression and also restrict inflammatory cell responses by producing a chemokine-binding protein (M3 gene product). MHV-68 provides an excellent model to explore methods for controlling gamma-herpesvirus infection through vaccination and chemotherapy. Vaccination with gp150 (a homologue of gp350 of Epstein-Barr virus) results in a reduction in splenomegaly and virus latency but does not block replication in the lung, nor the establishment of a latent infection. Even when lung virus infection is greatly reduced following the action of CD8+ T cells, induced via a prime-boost vaccination strategy, a latent infection is established. Potent antiviral compounds such as the nucleoside analogue 2'deoxy-5-ethyl-beta-4'-thiouridine, which disrupts virus replication in vivo, cannot inhibit the establishment of a latent infection. Clearly, devising strategies to interrupt the establishment of latent virus infections may well prove impossible with existing methods.  相似文献   

4.
Control of virus infection is mediated in part by major histocompatibility complex (MHC) Class Ia presentation of viral peptides to conventional CD8 T cells. Although important, the absolute requirement for MHC Class Ia-dependent CD8 T cells for control of chronic virus infection has not been formally demonstrated. We show here that mice lacking MHC Class Ia molecules (K(b-/-)xD(b-/-) mice) effectively control chronic gamma-herpesvirus 68 (gammaHV68) infection via a robust expansion of beta2-microglobulin (beta2-m)-dependent, but CD1d-independent, unconventional CD8 T cells. These unconventional CD8 T cells expressed: (1) CD8alphabeta and CD3, (2) cell surface molecules associated with conventional effector/memory CD8 T cells, (3) TCRalphabeta with a significant Vbeta4, Vbeta3, and Vbeta10 bias, and (4) the key effector cytokine interferon-gamma (IFNgamma). Unconventional CD8 T cells utilized a diverse TCR repertoire, and CDR3 analysis suggests that some of that repertoire may be utilized even in the presence of conventional CD8 T cells. This is the first demonstration to our knowledge that beta2-m-dependent, but Class Ia-independent, unconventional CD8 T cells can efficiently control chronic virus infection, implicating a role for beta2-n-dependent non-classical MHC molecules in control of chronic viral infection. We speculate that similar unconventional CD8 T cells may be able to control of other chronic viral infections, especially when viruses evade immunity by inhibiting generation of Class Ia-restricted T cells.  相似文献   

5.
Novel broadly neutralizing antibodies targeting HIV-1 hold promise for their use in the prevention and treatment of HIV-1 infection. Pre-clinical results have encouraged the evaluation of these antibodies in healthy and HIV-1-infected humans. In first clinical trials, highly potent broadly neutralizing antibodies have demonstrated their safety and significant antiviral activity by reducing viremia and delaying the time to viral rebound in individuals interrupting antiretroviral therapy. While emerging antibody-resistant viral variants have indicated limitations of antibody monotherapy, strategies to enhance the efficacy of broadly neutralizing antibodies in humans are under investigation. These include the use of antibody combinations to prevent viral escape, antibody modifications to increase the half-life and the co-administration of latency-reversing agents to target the cellular reservoir of HIV-1. We provide an overview of the results of pre-clinical and clinical studies of broadly HIV-1 neutralizing antibodies, discuss their implications and highlight approaches for the ongoing advancement into humans.  相似文献   

6.
The human gamma-herpesviruses, EBV and Kaposi's sarcoma-associated herpesvirus, infect >90% of the population worldwide, and latent infection is associated with numerous malignancies. Rational vaccination and therapeutic strategies require an understanding of virus-host interactions during the initial asymptomatic infection. Primary EBV infection is associated with virus replication at epithelial sites and entry into the circulating B lymphocyte pool. The virus exploits the life cycle of the B cell and latency is maintained long term in resting memory B cells. In this study, using a murine gamma-herpesvirus model, we demonstrate an early dominance of latent virus at the site of infection, with lung B cells harboring virus almost immediately after infection. These data reinforce the central role of the B cell not only in the later phase of infection, but early in the initial infection. Early inhibition of lytic replication does not impact the progression of the latent infection, and latency is established in lymphoid tissues following infection with a replication-deficient mutant virus. These data demonstrate that lytic viral replication is not a requirement for gamma-herpesvirus latency in vivo and suggest that viral latency can be disseminated by cellular proliferation. These observations emphasize that prophylactic vaccination strategies must target latent gamma-herpesvirus at the site of infection.  相似文献   

7.
B cells can use antibody-dependent mechanisms to control latent viral infections. It is unknown whether this represents the sole function of B cells during chronic viral infection. We report here that hen egg lysozyme (HEL)-specific B cells can contribute to the control of murine gamma-herpesvirus 68 (gammaHV68) latency without producing anti-viral antibody. HEL-specific B cells normalized defects in T cell numbers and proliferation observed in B cell-/- mice during the early phase of gammaHV68 latency. HEL-specific B cells also reversed defects in CD8 and CD4 T cell cytokine production observed in B cell-/- mice, generating CD8 and CD4 T cells necessary for control of latency. Furthermore, HEL-specific B cells were able to present virally encoded antigen to CD8 T cells. Therefore, B cells have antibody independent functions, including antigen presentation, that are important for control of gamma-herpesvirus latency. Exploitation of this property of B cells may allow enhanced vaccine responses to chronic virus infection.  相似文献   

8.
Dissecting the host response to a gamma-herpesvirus   总被引:15,自引:0,他引:15  
The murine gamma-herpesvirus 68 (MHV-68) provides a unique experimental model for dissecting immunity to large DNA viruses that persist in B lymphocytes. The analysis is greatly facilitated by the availability of genetically disrupted (-/-) mice that lack key host-response elements, and by the fact that MHV-68 is a lytic virus that can readily be manipulated for mutational analysis. The mutant virus strategy is being used, for example, to characterize the part played in vivo by an MHV-68-encoded chemokine-binding protein that may ultimately find an application in human therapeutics. Experiments with various -/- mice and monoclonal antibody depletion protocols have shown very clearly that type I interferons (IFNs) are essential for the early control of MHV-68 replication, while CD4+ T cells producing IFN-gamma function to limit the consequences of viral persistence. Virus-specific CD8+ effectors acting in the absence of the CD4+ subset seem initially to control the lytic phase in the lung following respiratory challenge, but are then unable to prevent the reactivation of replicative infection in epithelia and the eventual death of CD4+ T-cell-deficient mice. This could reflect the fact that the interaction between the CD8+ T cells and the virus-infected targets is partially compromised by the MHV-68 K3 protein, which inhibits antigen presentation by MHC class I glycoproteins. Immunization strategies focusing on the CD8+ T-cell response to epitopes expressed during the lytic phase of MHV-68 infection can limit virus replication, but are unable to prevent the establishment of latency. Other experiments with mutant viruses also suggest that there is a disconnection between lytic MHV-68 infection and latency. The massive nonspecific immunoglobulin response and the dramatic expansion of Vbeta4+ CD8+ T cells, which is apparently MHC independent, could represent some sort of 'smoke screen' used by MHV-68 to subvert immunity. Although MHV-68 is neither Epstein-Barr virus nor human herpesvirus-8, the results generated from this system suggest possibilities that may usefully be addressed with these human pathogens. Perhaps the main lesson learned to date is that all the components of immunity are likely to be important for the control of these complex viruses.  相似文献   

9.
The DA strain of Theiler's murine encephalomyelitis virus persists in the white matter of the spinal cords of susceptible mice. Previous results showed that the difference in susceptibility to viral persistence between the susceptible SJL/J strain and the resistant B10.S strain was due to multiple non-H-2 loci. The respective roles of hematopoietic and nonhematopoietic cells in this difference have been evaluated with bone marrow chimeras. The results show that non-H-2 loci with a major effect on susceptibility are expressed in hematopoietic cells. However, the study of the SJL.B10-D10Mit180-D10Mit74 congenic line suggests that other loci expressed in nonhematopoietic cells also play a role.  相似文献   

10.
Several gamma-herpesviruses encode proteins related to the mammalian cyclins, regulatory subunits of cyclin-dependent kinases (cdks) essential for cell cycle progression. We report a 2.5 A crystal structure of a full-length oncogenic viral cyclin from gamma-herpesvirus 68 complexed with cdk2. The viral cyclin binds cdk2 with an orientation different from cyclin A and makes several novel interactions at the interface, yet it activates cdk2 by triggering conformational changes similar to cyclin A. Sequences within the viral cyclin N-terminus lock part of the cdk2 T-loop within the core of the complex. These sequences and others are conserved amongst the viral and cellular D-type cyclins, suggesting that this structure has wider implications for other cyclin-cdk complexes. The observed resistance of this viral cyclin-cdk complex to inhibition by the p27(KIP:) cdk inhibitor is explained by sequence and conformational variation in the cyclin rendering the p27(KIP:)-binding site on the cyclin subunit non-functional.  相似文献   

11.
Recent studies show that alloantibodies mediate a substantial proportion of graft-rejection episodes, contributing to both early and late graft loss. Rejection that is caused by antibody is mediated by different mechanisms from rejection that is caused by T cells, thereby requiring other approaches to treatment and prevention. Antibody induces rejection acutely through the fixation of complement, resulting in tissue injury and coagulation. In addition, complement activation recruits macrophages and neutrophils, causing additional endothelial injury. Antibody and complement also induce gene expression by endothelial cells, which is thought to remodel arteries and basement membranes, leading to fixed and irreversible anatomical lesions that permanently compromise graft function.  相似文献   

12.
Intranasal infection of mice with the murine gamma-herpesvirus MHV-68 results in an acute lytic infection in the lung, followed by the establishment of lifelong latency. Development of an infectious mononucleosis-like syndrome correlates with the establishment of latency and is characterized by splenomegaly and the appearance of activated CD8+ T cells in the peripheral blood. Interestingly, a large population of activated CD8+ T cells in the peripheral blood expresses the V beta 4+ element in their TCR. In this report we show that MHV-68 latency in the spleen after intranasal infection is harbored in three APC types: B cells, macrophages, and dendritic cells. Surprisingly, since latency has not previously been described in dendritic cells, these cells harbored the highest frequency of latent virus. Among B cells, latency was preferentially associated with activated B cells expressing the phenotype of germinal center B cells, thus formally linking the previously reported association of latency gene expression and germinal centers to germinal center B cells. Germinal center formation, however, was not required for the establishment of latency. Significantly, although three cell types were latently infected, the ability to stimulate V beta 4+CD8+ T cell hybridomas was limited to latently infected, activated B cells.  相似文献   

13.
The number of neurological disorders in which autoantibodies are thought to play a pathogenic role continues to increase although the strength of the evidence varies. Many of the disorders are tumour associated.  相似文献   

14.
Dengue type 2 virus (DEN 2) could replicate only to a limited extent in a murine mastocytoma cell line, P815. The viral multiplication was enhanced 10- to 100-fold by mouse anti-DEN 2 antiserum or anti-DEN 2 type-specific monoclonal antibody diluted beyond their neutralizing titers. Cells incubated with virus-antibody mixtures changed morphologically, developing a mature mast cell-like appearance, 4-5 days after infection. The indirect fluorescent antibody technique showed that the enhancement of infection was caused by an increase in the number of DEN 2-infected cells. This is the first report that cells of mast cell lineage support dengue virus multiplication, and that virus production is enhanced in the presence of anti-dengue antibodies.  相似文献   

15.
Bone marrow transplantation (BMT) is commonly used in the treatment of leukemia, however its therapeutic application is partly limited by the high incidence of associated opportunistic infections. We modeled this clinical situation by infecting mice that underwent BMT with lymphocytic choriomeningitis virus (LCMV) and investigated the potential of immunotherapeutic strategies to counter such infections. All mice that received BMT survived LCMV infection and developed a virus carrier status. Immunotherapy by adoptive transfer of naive splenocytes protected against low (200 PFU), but not high (2 x 10(6) PFU), doses of LCMV. Attempts to control infection of high viral titers using strongly elevated frequencies of activated LCMV-specific T cells failed to control virus and resulted in immunopathology and death. In contrast, virus neutralizing Abs combined with naive splenocytes were able to efficiently control high-dose LCMV infection without associated side effects. Thus, cell transfer combined with neutralizing Abs represented the most effective means of controlling BMT-associated opportunistic viral infection in our in vivo model. These data underscore the in vivo efficacy and immunopathological "safety" of neutralizing antibodies.  相似文献   

16.
Vaccination to prevent persistent viral infection.   总被引:3,自引:8,他引:3       下载免费PDF全文
Persistent virus infections are increasingly being recognized as a significant cause of human morbidity and mortality. To establish persistence, a virus must establish infection and evade eradication by the host immune response, in particular by cytotoxic T lymphocytes (CTL). We have studied a virus that establishes persistence in part by suppressing the CTL response of the infected host. The virus persists in many cell types, including lymphocytes and macrophages. We show that prior immunization with a vaccine designed to induce CTL (in the absence of antiviral antibody) confers complete protection against subsequent establishment of persistence in all tissues analyzed. The vaccine can be designed to express as few as 10 amino acids of a viral protein that comprise the CTL epitope. Further, two CTL epitopes for two discrete MHC haplotypes can be successfully used in a single vaccine that protects both strains of mice. Hence, a "string of CTL epitopes" (beads) concept for vaccination is feasible. Finally, the CTL vaccine provided protection against the establishment of persistence by an immunosuppressive virus.  相似文献   

17.
18.
We have used the Friend virus model to determine the basic mechanisms by which the immune system can control persistent retroviral infections. Previously we showed that CD4(+) T cells play an essential role in keeping persistent retrovirus in check. The present in vitro experiments with a Friend virus-specific CD4(+) T-cell clone revealed that these cells produce gamma interferon (IFN-gamma), which acts with two distinct mechanisms of antiviral activity. First, IFN-gamma had a direct inhibitory effect on virus production. This inhibitory effect was noncytolytic and, interestingly, was not associated with decreased cell surface expression of viral antigens. The second mechanism of IFN-gamma-mediated antiviral activity was an enhancement of CD4(+) T-cell-mediated cytolytic activity. We also found an in vivo role for IFN-gamma in the control of persistent Friend virus infections. Neutralization of IFN-gamma in persistently infected mice resulted in significantly increased levels of virus in the spleen, and a significant percentage of IFN-gamma-deficient mice were unable to maintain long-term control over Friend virus infections.  相似文献   

19.
DNA vaccination against persistent viral infection.   总被引:8,自引:5,他引:8       下载免费PDF全文
This study shows that DNA vaccination can confer protection against a persistent viral infection by priming CD8+ cytotoxic T lymphocytes (CTL). Adult BALB/c (H-2d) mice were injected intramuscularly with a plasmid expressing the nucleoprotein (NP) gene of lymphocytic choriomeningitis virus (LCMV) under the control of the cytomegalovirus promoter. The LCMV NP contains the immunodominant CTL epitope (amino acids 118 to 126) recognized by mice of the H-2d haplotype. After three injections with 200 micrograms of NP DNA, the vaccinated mice were challenged with LCMV variants (clones 13 and 28b) that establish persistent infection in naive adult mice. Fifty percent of the DNA-vaccinated mice were protected, as evidenced by decreased levels of infectious virus in the blood and tissues, eventual clearance of viral antigen from all organs tested, the presence of an enhanced LCMV-specific CD8+ CTL response, and maintenance of memory CTL after clearance of virus infection. However, it should be noted that protection was seen in only half of the vaccinated mice, and we were unable to directly measure virus-specific immune responses in any of the DNA-vaccinated mice prior to LCMV challenge. Thus, at least in the system that we have used, gene immunization was a suboptimal method of inducing protective immunity and was several orders of magnitude less efficient than vaccination with live virus. In conclusion, our results show that DNA immunization works against a persistent viral infection but that efforts should be directed towards improving this novel method of vaccination.  相似文献   

20.
Establishing persistent infection and resisting elimination by the host's immune system are key factors contributing to latent infection by Mycobacterium tuberculosis. Recently, bacterial determinants regulating these processes have been identified. Here, we review molecular mechanisms regulating persistent infection and discuss the highly dynamic interaction of M. tuberculosis with the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号