共查询到20条相似文献,搜索用时 15 毫秒
1.
Aoyagi K Kuzure Y Shahrzad S Hirayama A Nagase S Ueda A 《Molecular and cellular biochemistry》2003,244(1-2):3-9
Heparin has been reported to have many actions similar to calcium-dependent protein kinase (PKC) inhibitors. We have found that puromycin aminonucleoside (PAN) increases hydroxyl radical generation and this was prevented by H-7, a PKC inhibitor in isolated rat hepatocytes. In this study, we investigate the effect of heparin on the increased hydroxyl radical generation as well as PKC activation by PAN in isolated rat hepatocytes. To estimate the amount of hydroxyl radical generation, we measured methylguanidine (MG) and creatol which are the products from the reaction of creatinine and hydroxyl radical. Synthetic rate of MG plus creatol in isolated rat hepatocytes incubated in Krebs-Henseleit bicarbonate buffer containing creatinine and tested reagents were recorded. This rate with or without PAN was 231 ± 11 or 112 ± 5.6 nmol/g wet cells/4 h (mean ± S.E., n = 5), respectively. Heparin concentrations of 3.3, 6.6 and 10 U/ml inhibited MG plus creatol synthesis in the presence of PAN by 30, 38 and 39%, and without PAN by 8.4, 27 and 34%, respectively. Statistical significance was observed except for 3.3 U/ml without PAN. The ratio of PKC in membrane/cytoplasmic fraction, an indicator of PKC activation, increased 2.8- and 3-fold that of the 0 time after 60 and 120 min incubation with PAN while heparin at 10 U/ml almost completely suppressed this increase in the ratio of PKC. The PKC ratio of the membrane/cytoplasmic fraction obtained from hepatocytes with heparin alone or without PAN and heparin was almost unchanged during the tested period. Variation of PKC levels in membrane fraction is similar to that of PKC ratio of the membrane/cytoplasmic fraction. Increased creatol synthesis by PAN and its inhibition by heparin were observed in the same samples as those used for the PKC study.These results indicate that heparin inhibits the increase in hydroxyl radical generation induced by PAN through inhibition of PKC activation in isolated rat hepatocytes. 相似文献
2.
Kazumasa Aoyagi Siranoush Shahrzad Yutaka Kuzure Akio Koyama Ko Nakamura Kazuharu Ienaga 《Free radical research》2013,47(6):487-496
Puromycin aminonucleoside (PAN) has been known to induce proteinuria. The increased generation of reactive oxygen species (ROS) has been implicated in this toxicity of PAN. We have reported that PAN increases the synthesis of methylguanidine (MG) and creatol which are the products of the reaction of creatinine and the hydroxyl radical in isolated rat hepatocytes. However, the mechanism for the increased ROS induced by PAN is still unclear. In this paper, we investigate the role of protein kinase C (PKC) on the PAN induced reactive oxygen generation in isolated rat hepatocytes. Isolated hepatocytes were incubated in Krebs-Henseleit bicarbonate buffer containing 3% BSA, 16.6 mM creatinine and tested reagents. MG and creatol were determined by high-performance liquid chromatography using 9,10-phenanthrenequinone for the post-labeling. PAN increased MG and creatol synthesis in isolated rat hepatocytes by 60%. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), a PKC inhibitor, at 10 and 100 μM significantly inhibited MG and creatol synthesis with or without PAN. The inhibition rate is dose dependent from 10 to 100 μM. H1004, a reagent used as control for H-7, did not affect (at 10 μM) or increased little (at 100 μM) the synthesis of MG and creatol. Ro31-8425, a potent PKC inhibitor, significantly inhibited (at 10 μM) MG synthesis in the presence of PAN. PKC in the membrane fraction, a marker of PKC activation, increased over the initial concentration by a factor of 1.65-fold at 60 min incubation and 2.16-fold at 120 min with PAN, while it changed little without PAN. These results indicate that PAN activates PKC resulting in increased hydroxyl radical generation in isolated rat hepatocytes. 相似文献
3.
Hemoglobin: A mechanism for the generation of hydroxyl radicals 总被引:4,自引:0,他引:4
Oxyhemoglobin (HbO2) reduces Fe(III) NTA aerobically to become methemoglobin (metHb) and Fe(II)NTA. These conditions are favorable for the generation via Fenton chemistry of the hydroxyl radical that was measured by HPLC using salicylate as a probe. The levels of hydroxyl radicals generated are a function of both the percent metHb formed and the chemical nature of the buffer. The rates of formation of both metHb and hydroxyl radicals were dependent upon the concentration of Fe(III)NTA. Of the buffers tested, HEPES was the most effective scavenger of hydroxyl radicals while the other buffers scavenged in the order: HEPES > Tris > MOPS > NaCl ≈ unbuffered. The addition of catalase to remove H202 or bathophenanthroline to chelate Fe(II) inhibited virtually all hydroxyl radical formation. Carbonyl formation from free radical oxidation of amino acids was found to be 0.1 mol/mol of hemoglobin. These experiments demonstrate the ability of hemoglobin to participate directly in the generation of hydroxyl radicals mediated by redox metals, and provide insight into potential oxidative damage from metals released into the blood during some pathologic disorders including iron overload. 相似文献
4.
Ueno S Kashimoto T Susa N Wada K Ito N Takeda-Homma S Nishimura Y Sugiyama M 《Free radical research》2006,40(9):944-951
Appropriate experimental conditions for the estimation of hydroxyl radical generation by salicylate hydroxylation were determined for multiple organs of X-irradiated mice in vivo. The in vitro experiments showed that there were significant correlations between the salicylic acid (SA) concentration, the amount of 2,3-dihydroxy benzoic acid (2,3-DHBA) and the X-ray exposure dose, and we obtained two linear-regression equations to calculate the amounts of hydroxyl radicals generated by the X-irradiation. The optimum dosage of SA and the appropriate sampling time for in vivo experiments was determined, and significant increases in the ratio of 2,3-DHBA to SA were detected in several organs of mice after X-irradiation. The hydroxyl radical equivalents of the 2,3-DHBA increases were also calculated. Our results clearly demonstrated the usefulness of the salicylate hydroxylation method in estimating hydroxyl radical generation in multiple organs in vivo. 相似文献
5.
6.
Detection of hydroxyl radicals by D-phenylalanine hydroxylation: a specific assay for hydroxyl radical generation in biological systems 总被引:2,自引:0,他引:2
Hydroxylation of l-phenylalanine (Phe) by hydroxyl radical (*OH) yields 4-, 3-, and 2-hydroxyl-Phe (para-, meta-, and ortho-tyrosine, respectively). Phe derivative measurements have been employed to detect *OH formation in cells and tissues, however, the specificity of this assay is limited since Phe derivatives also arise from intracellular Phe hydroxylase. d-Phe, the d-type enantiomer, is not hydroxylated by Phe hydroxylase. We evaluate whether d-Phe reacts with *OH as well as l-Phe, providing a more reliable probe for *OH generation in biological systems. With *OH generated by a Fenton reaction or xanthine oxidase, d- and l-Phe equally gave rise to p, m, o-tyr and this could be prevented by *OH scavengers. Resting human neutrophils (PMNs) markedly converted l-Phe to p-tyr, through non-oxidant-mediated reactions, whereas d-Phe was unaffected. In contrast, when PMNs were stimulated in the presence of redox cycling iron the *OH formed resulted in more significant rise of p-tyr from d-Phe (9.4-fold) than l-Phe (3.6-fold) due to the significant background formation of p-tyr from l-Phe. Together, these data indicated that d- and l-Phe were equally hydroxylated by *OH. Using d-Phe instead of l-Phe can eliminate the formation of Phe derivatives from Phe hydroxylase and achieve more specific, sensitive measurement of *OH in biological systems. 相似文献
7.
Wei Chen Hong Zhu Jianrong Li Kequan Zhou Yunbo Li 《Biochemical and biophysical research communications》2009,390(1):142-77
Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in φX-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1. Moreover, the consumption of oxygen caused by 250 μM SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25-2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin. 相似文献
8.
Ueno S Kashimoto T Susa N Shiho K Seki T Ito N Takeda-Homma S Nishimura Y Sugiyama M 《Free radical research》2007,41(11):1246-1252
Hydroxyl radical (·OH) generation in the kidney of mice treated with ferric nitrilotriacetate (Fe-NTA) or potassium bromate (KBrO3) in vivo was estimated by the salicylate hydroxylation method, using the optimal experimental conditions we recently reported. Induction of DNA lesions and lipid peroxidation in the kidney by these nephrotoxic compounds was also examined. The salicylate hydroxylation method revealed significant increases in the ·OH generation after injection of Fe-NTA or KBrO3 in the kidneys. A significant increase in 8-hydroxy-2'-deoxyguanosine in nuclei of the kidney was detected only in the KBrO3 treated mice, while the comet assay showed that the Fe-NTA and KBrO3 treatments both resulted in significant increases in DNA breakage in the kidney. With respect to lipid peroxidation, the Fe-NTA treatment enhanced lipid peroxidation and ESR signals of the alkylperoxy radical adduct. These DNA breaks and lipid peroxidation mediated by ·OH were diminished by pre-treatment with salicylate in vivo. These results clearly demonstrated the usefulness of the salicylate hydroxylation method as well as the comet assay in estimating the involvement of ·OH generation in cellular injury induced by chemicals in vivo. 相似文献
9.
本文介绍了一种以二氯苯磺酸为沉淀剂从毛发水解液中分步沉淀亮氨酸和精氨酸的方法。利用两种沉淀形成速度的不同,通过控制反应条件,实现了亮氨酸和精氨酸的分步沉淀,确定了沉淀条件对目标氨基酸沉淀效率的影响,得到合适的工艺条件:200g人发,水解得400mL水解液;加50g二氯苯磺酸沉淀剂,在5℃加晶种,间歇搅拌12h,过滤得亮氨酸复合物沉淀;在沉淀亮氨酸之后的母液中再加50g二氯苯磺酸沉淀剂,于相同的温度条件下加晶种,连续搅拌至生成稠厚的沉淀,再静置沉淀12h,过滤得精氨酸复合物沉淀。亮氨酸的沉淀率为71.0%,母液中残留亮氨酸浓度为7.6g/L;精氨酸的沉淀率为76.6%,母液中残留精氨酸浓度为8.9g/L。 相似文献
10.
ABSTRACT
The roles of SUMOylation and the related enzymes in autophagic regulation are unclear. Based on our previous studies that identified the SUMO2/3-specific peptidase SENP3 as an oxidative stress-responsive molecule, we investigated the correlation between SUMOylation and macroautophagy/autophagy. We found that Senp3± mice showed increased autophagy in the liver under basal and fasting conditions, compared to Senp3+/+ mice. We constructed a liver-specific senp3 knockout mouse; these Senp3-deficient liver tissues showed increased autophagy as well. Autophagic flux was accelerated in hepatic and other cell lines following knockdown of SENP3, both before and after the cells underwent starvation in the form of the serum and amino acid deprivation. We demonstrated that BECN1/beclin 1, the core molecule of the BECN1-PIK3C3 complex, could be SUMO3-conjugated by PIAS3 predominantly at K380 and deSUMOylated by SENP3. The basal SUMOylation of BECN1 was increased upon cellular starvation, which enhanced autophagosome formation by facilitating BECN1 interaction with other complex components UVRAG, PIK3C3 and ATG14, thus promoting PIK3C3 activity. In contrast, SENP3 deSUMOylated BECN1, which impaired BECN1-PIK3C3 complex formation or stability to suppress the PIK3C3 activity. DeSUMOylation of BECN1 restrained autophagy induction under basal conditions and especially upon starvation when SENP3 had accumulated in response to the increased generation of reactive oxygen species. Thus, while reversible SUMOylation regulated the degree of autophagy, SENP3 provided an intrinsic overflow valve for fine-tuning autophagy induction. 相似文献
11.
Freinbichler W Colivicchi MA Fattori M Ballini C Tipton KF Linert W Della Corte L 《Journal of neurochemistry》2008,105(3):738-749
Sodium terephthalate was shown to be a new robust and sensitive chemical trap for highly reactive oxygen species (hROS), which lacks the drawbacks of the salicylic acid method. Reaction of the almost non-fluorescent terephthalate (TA2− ) with hydroxyl radicals or ferryl-oxo species resulted in the stoichiometric formation of the brilliant fluorophor, 2-hydroxyterephthalate (OH-TA). Neither hydrogen peroxide nor superoxide reacts in this system. This procedure was validated for determining hROS formation during microdialysis under in vivo conditions as well as by in vitro studies. The detection limit of OH-TA in microdialysis samples was 0.5 fmol/μL. Derivatization of samples with o- phthalaldehyde, for amino acid detection, had no effect on OH-TA fluorescence, which could easily be resolved from the amino acid derivatives by HPLC, allowing determination in a single chromatogram. Use of terephthalate in microdialysis experiments showed the neurotoxin kainate to evoke hROS formation in a dose-dependent manner. The presence of TA2− in the perfusion fluid did not affect basal or evoked release of aspartate, glutamate, taurine and GABA. Assessment of cell death ' ex vivo' showed TA2− to be non-toxic at concentrations up to 1 mM. The in vitro results in the Fenton system (Fe2+ + H2 O2 ) indicate a mechanism whereby TA2− forms a primary complex with Fe2+ followed by an intramolecular hydroxylation accompanied by intramolecular electron transfer. 相似文献
12.
Summary
N-acetylchitooligosaccharides, fragments of the backbone of fungal cell wall, trigger rapid membrane responses such as transient depolarization, and elicit defense reactions including phytoalexin production in suspension-cultured rice cells. The generation of reactive oxygen species triggered by the oligosaccharide signal was analyzed with EPR spectroscopy using a spin trapping system, 4-pyridyl 1-oxideN-tert-butyl nitrone (4-POBN) and ethanol. OH generation was detected as the -hydroxyethyl adduct of 4-POBN after elicitation. Superoxide dismutase, catalase or diethylenetriamine pentaacetic acid, a metal chelator, inhibited
generation, proposing the following reaction sequence: generation of
in response to the oligosaccharide elicitor, followed by dismutation to H2O2, then generation of
by the reaction of H2O2 with Fe2+ that is generated by the reduction of Fe3+ by
. Generation of the same reactive oxygen species was also triggered by calyculin A, a protein phosphatase inhibitor, alone, suggesting the involvement of protein phosphorylation in its regulation during the oligosaccharide signal transduction.Abbreviations DMPO
5,5-dimethyl-1-pyrroline N-oxide
- DTPA
diethylenetriamine pentaacetic acid
- 4-POBN
4-pyridyl 1-oxideN-tert-butylnitrone
- SOD
Superoxide dismutase
- 4-hydroxy-TEMPO
2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl 相似文献
13.
J. Neurochem. (2012) 122, 941-951. ABSTRACT: In vitro and in vivo models of Parkinson's disease (PD) suggest that increased oxidant production leads to mitochondrial dysfunction in dopaminergic neurons and subsequent cell death. However, it remains unclear if cell death in these models is caused by inhibition of mitochondrial function or oxidant production. The objective of this study was to determine the relationship between mitochondrial dysfunction and oxidant production in response to multiple PD neurotoxicant mimetics. MPP(+) caused a dose-dependent decrease in the basal oxygen consumption rate in dopaminergic N27 cells, indicating a loss of mitochondrial function. In parallel, we found that MPP(+) only modestly increased oxidation of hydroethidine as a diagnostic marker of superoxide production in these cells. Similar results were found using rotenone as a mitochondrial inhibitor, or 6-hydroxydopamine (6-OHDA) as a mechanistically distinct PD neurotoxicant, but not with exposure to paraquat. In addition, the extracellular acidification rate, used as a marker of glycolysis, was stimulated to compensate for oxygen consumption rate inhibition after exposure to MPP(+) , rotenone, or 6-OHDA, but not paraquat. Together these data indicate that MPP(+) , rotenone, and 6-OHDA dramatically shift bioenergetic function away from the mitochondria and towards glycolysis in N27 cells. 相似文献
14.
Soto-Otero R Méndez-Alvarez E Hermida-Ameijeiras A Sánchez-Sellero I Cruz-Landeira A Lamas ML 《Life sciences》2001,69(8):879-889
Monoamine oxidase (MAO) is an enzyme involved in brain catabolism of monoamine neurotransmitters whose oxidative deamination results in the production of hydrogen peroxide. It has been documented that hydrogen peroxide derived from MAO activity represents a special source of oxidative stress in the brain. In this study we investigated the potential effects of the production of hydroxyl radicals (*OH) on MAO-A and MAO-B activities using mitochondrial preparations obtained from rat brain. Ascorbic acid (100 microM) and Fe2+ (0.2, 0.4, 0.8, and 1.6 microM) were used to induce the production of *OH. Results showed that the generation of *OH significantly reduced both MAO-A (85-53%) and MAO-B (77-39%) activities, exhibiting a linear correlation between both MAO-A and MAO-B activities and the amount of *OH produced. The reported inhibition was found to be irreversible for both MAO-A and MAO-B. Assuming the proven contribution of MAO activity to brain oxidative stress, this inhibition appears to reduce this contribution when an overproduction of *OH occurs. 相似文献
15.
Ascorbate deficiency results in decreased collagen production: under-hydroxylation of proline leads to increased intracellular degradation 总被引:2,自引:0,他引:2
R A Berg B Steinmann S I Rennard R G Crystal 《Archives of biochemistry and biophysics》1983,226(2):681-686
Collagen production by cultured human lung fibroblasts was examined when the cells were made deficient in ascorbate. Cells grown in the absence of ascorbate produced 30% less collagen during a 6-h labeling period than cells incubated with as little as 1 microgram/ml ascorbate during the labeling period. Cells grown without ascorbate produced under-hydroxylated collagen which was subject to increased intracellular degradation from a basal level of 16% to an enhanced level of 49% of all newly synthesized collagen. The likely mechanism for increased intracellular degradation is the inability of under-hydroxylated collagen to assume a triple-helical conformation causing it to be susceptible to intracellular degradation. Measurement of collagen production by enzyme linked immunoassay (ELISA) using antibodies directed against triple-helical determinants of collagen showed that both types I and III collagens were affected. In contrast, another connective tissue component, fibronectin, was not affected. Analysis by ELISA showed a greater decrease in collagen production than did analysis by the collagenase method, suggesting that some non-helical collagen chains (detected by collagenase but not by ELISA) were secreted in the absence of ascorbate. These results provide a mechanism to account, in part, for the deficiency of collagen in connective tissues which occurs in a state of ascorbate deficiency. 相似文献
16.
17.
《Free radical research》2013,47(2):104-115
AbstractReduction of S-nitrosothiols to the corresponding thiol function is the key step in analyzing S-nitrosocysteinyl residues in proteins. Though it has been shown to give low yields, ascorbate-dependent reduction is commonly performed in the frequently used biotin-switch technique. We demonstrate that the compound methylhydrazine can act as a specific and efficient reducing agent for S-nitrosothiols. The corresponding thiol function is exclusively generated from low molecular weight and proteinaceous S-nitrosothiols while methylhydrazine failed to reduce disulfides. It was possible to optimize the experimental conditions so that thiol autoxidation is excluded, and high reaction yields (> 90%) are obtained for the thiol function. The biotin-switch technique performed with methylhydrazine-dependent reduction shows remarkably improved sensitivity compared to the ascorbate-dependent procedure. 相似文献
18.
Diana M. Pazmi?o María C. Romero-Puertas Luisa M. Sandalio 《Plant signaling & behavior》2012,7(3):425-427
Although structurally similar to the natural plant hormone indol-3- acetic acid, auxin herbicides were developed for purposes other than growth, and have been successfully used in agriculture for the last 60 years. Concerted efforts are being made to understand and decipher the precise mechanism of action of IAA and synthetic auxins. Innumerable results need to be interconnected to resolve the puzzle of auxin biology and action mode of auxin herbicides. To date, different breakthroughs are providing more insights into the process of plant-herbicide interactions. Here we highlight some of the latest findings on how the 2,4-dichlorophenoxyacetic acid damages susceptible broadleaf plants, emphasizing the role of ROS as a downstream component of the auxin signal transduction under herbicide treatment. 相似文献
19.
Husain Y. Khan Haseeb Zubair Mohd F. Ullah Aamir Ahmad Sheikh M. Hadi 《Biometals》2011,24(6):1169-1178
To account for the observed anticancer properties of plant polyphenols, we have earlier proposed a mechanism which involves
the mobilization of endogenous copper ions by polyphenols leading to the generation of reactive oxygen species (ROS) that
serve as proximal DNA cleaving agents and lead to cell death. Over the last decade we have proceeded to validate our hypothesis
with considerable success. As a further confirmation of our hypothesis, in this paper we first show that oral administration
of copper to rats leads to elevated copper levels in lymphocytes. When such lymphocytes with a copper overload were isolated
and treated with polyphenols EGCG, genistein and resveratrol, an increased level of DNA breakage was observed. Further, preincubation
of lymphocytes having elevated copper levels with the membrane permeable copper chelator neocuproine, resulted in inhibition
of polyphenol induced DNA degradation. However, membrane impermeable chelator of copper bathocuproine, as well as iron and
zinc chelators were ineffective in causing such inhibition in DNA breakage, confirming the involvement of endogenous copper
in polyphenol induced cellular DNA degradation. It is well established that serum and tissue concentrations of copper are
greatly increased in various malignancies. In view of this fact, the present results further confirm our earlier findings
and strengthen our hypothesis that an important anticancer mechanism of plant polyphenols could be the mobilization of intracellular
copper leading to ROS-mediated cellular DNA breakage. In this context, it may be noted that cancer cells are under considerable
oxidative stress and increasing such stress to cytotoxic levels could be a successful anticancer approach. 相似文献
20.
Metabolic effects of manganese deficiency in Aspergillus niger: evidence for increased protein degradation 总被引:2,自引:0,他引:2
The effect of manganese deficiency on macromolecule synthesis has been studied in a citric acid producing strain of Aspergillus niger: pulse labelling experiments showed that the synthesis of both protein and RNA was not influenced by the presence of manganese; however, increased protein degradation occurred under manganese deficiency. This was also reflected by the increased activity of an intracellular proteinase activity under these conditions. In replacement cultures addition of inhibitors of RNA, DNA or protein synthesis revealed that only emetine and cycloheximide (which both act at the ribosome) successfully antagonized the adverse effect of manganese ions on citric acid accumulation. Manganese deficiency was also characterized by a decreased portion of polysomes and 80 S ribosomes. 相似文献