首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to investigate whether Na+ participates in loop diuretic-sensitive Cl(-)-cation co-transport in the beta-cells, we tested the interaction between the effects of Na+ deficiency, furosemide and D-glucose on 86Rb+ fluxes in beta-cell-rich mouse pancreatic islets. Removal of extracellular Na+ slightly reduced the ouabain-resistant 86Rb+ influx and the specific effect of 1 mM furosemide on this influx was significantly smaller in Na(+)-deficient medium. The capacity of 20 mM D-glucose to reduce the ouabain-resistant 86Rb+ influx was not changed by removal of extracellular Na+. The 86Rb+ efflux from preloaded islets was rapidly and reversibly reduced by Na+ deficiency. Furosemide (1 mM) reduced the 86Rb+ efflux and the effect of the combination of Na+ deficiency and 1 mM furosemide was not stronger than the effect of furosemide alone. 22Na+ efflux was reduced by both ouabain and furosemide and the effects appeared to be additive. The data suggest that Na+ participates in loop diuretic-sensitive Cl(-)-cation co-transport in the pancreatic beta-cells. This adds further support to the idea that beta-cells exhibit a Na+, K+, Cl- co-transport system. Since some of the furosemide effect on 86Rb+ efflux persisted in the Na(+)-deficient medium, it is likely that also loop diuretic-sensitive K+, Cl- co-transport exists in this cell type.  相似文献   

2.
The mode of influx of 86Rb+, a K+ congener, to exponentially proliferating L1210 murine leukemia cells, incubated in a Krebs-Ringer buffer, has been characterised. The influx was composed of a ouabain-sensitive fraction (approx. 40%), a loop diuretic-sensitive fraction (approx. 40%) and a fraction which was insensitive to both types of inhibitor (approx. 15%). The fraction of ouabain-insensitive 86Rb+ influx, which was fully inhibited by furosemide (1 mM) or bumetanide (100 microM), was completely inhibited when Cl- was completely substituted by nitrate or gluconate ions, but was slightly (29 +/- 12%) stimulated if the Cl- was substituted by Br-. The substitution of Na+ by Li+, choline or tetramethylammonium ions inhibited the loop diuretic-sensitive fraction of 86Rb+ uptake. These results suggested that a component of 86Rb+ influx to L1210 cells was mediated via a Na+/K+/Cl- cotransporter. 86Rb+ efflux from L1210 cells which had been equilibrated with 86Rb+ and incubated in the presence or absence of 1 mM ouabain, was insensitive to the loop diuretics. Additionally, efflux rates were found to be independent of the external concentration of K+, suggesting that efflux was not mediated by K+-K+ exchange. The initial rate of 86Rb+ influx to L1210 cells in the plateau phase of growth was reduced to 44% of that of exponentially dividing cells, the reduction being accounted for by significant decreases in both ouabain- and loop diuretic-sensitive influx; these cells were reduced in volume compared to cells in the exponential phase of cell growth. In cells which had been deprived of serum for 18 h, and which showed an increase of the proportion of cells in the G1 phase of the cell cycle, the addition of serum stimulated an immediate increase in the furosemide-sensitive component of 86Rb+ influx. Diuretic-sensitive 86Rb+ influx was not altered by the incubation of the cells with 100 microM dibutyryl cyclic AMP, but was inhibited by 10 microM of the cross-linking agent nitrogen mustard (bis(2-chloro-ethyl)methylamine, HN2).  相似文献   

3.
In serum deprived NIH 3T3 mouse cells the diuretic-sensitive transport system performs K+ self-exchange. The addition of serum which stimulates cell proliferation induces a net influx of K+, carried out by the diuretic-sensitive transport system. Thus, serum growth factors appear to induce a change in the mechanism of action of the diuretic-sensitive transporter from K+ self-exchange to an uphill transport pumping K+ into the cell. I propose here that this uphill uptake of K+ contributes to the increase of intracellular K+ content, found in the early G1 phase of the cell cycle.  相似文献   

4.
(1) Unidirectional K+ (86Rb) influx and efflux were measured in subconfluent layers of MDCK renal epithelial cells and HeLa carcinoma cells. (2) In both MDCK and HeLa cells, the furosemide-inhibitable and chloride-dependent component of K+ influx/efflux was stimulated 2-fold by a 30 min incubation in 1 . 10(-3) M ouabain. (3) Measurements of net K+ loss and Na+ gain in ouabain-treated cells at 1 h failed to show any diuretic sensitive component, confirming the exchange character of the diuretic-sensitive fluxes. (4) Prolonged incubations for 2.5 h in ouabain revealed a furosemide- and anion-dependent K+ (Cl-) outward net flux uncoupled from net Na+ movement. Net K+ (Cl-) outward flux was half-maximally inhibited by 2 microM furosemide. (5) After 2.5 h ouabain treatment, the anion and cation dependence of the diuretic-sensitive K+ influx/efflux were essentially unchanged when compared to untreated controls.  相似文献   

5.
The identity of the genetic defect(s) in Swiss 3T3 TNR-2 and TNR-9 that confers nonresponsiveness to the proliferative effect of 12-0-tetradecanoylphorbol-13-acetate (TPA) is not known. In BALB/c 3T3 cells, loss (via mutation) of a specific membrane ion transport system, the furosemide-sensitive Na+K+Cl- cotransporter, is associated with decreased responsiveness to TPA. In this study, the transport properties of parental Swiss 3T3 cells and the TPA-nonresponsive lines TNR-2 and TNR-9 were determined in the presence and absence of TPA. When the rate of 86Rb+ efflux (as a tracer for K+) was measured from each of the three cell lines, a furosemide- and TPA-inhibitable component of efflux was clearly evident in parental and TNR-9 cells but was virtually absent in TNR-2 cells. 86Rb+ influx measurements indicated the presence in parental 3T3 cells and the TNR-9 line of a substantial furosemide-sensitive flux that could be inhibited by TPA. In contrast, much less furosemide-sensitive influx was present in 3T3-TNR-2 cells and it was relatively unaffected by TPA. In both parental 3T3 and 3T3-TNR-2 cells, most of the furosemide-sensitive 86Rb+ influx is dependent on extracellular Na+ and Cl-. The apparent affinities of the transporter for these two ions, as well as for K+, were similar in both cell lines. In parental cells, the inhibition of furosemide-sensitive 86Rb+ influx was quite sensitive to TPA (K1/2 approximately equal to 1 nM) and occurred very rapidly after phorbol ester exposure. As expected because of its volume-regulatory role, inhibition of Na+K+Cl- cotransport by TPA in parental cells caused a substantial reduction in cell volume (25%). In contrast, because of the reduced level of cotransport activity in TNR-2 cells, TPA had only a slight effect on cell volume. These results suggest that the genetic defect in 3T3-TNR-2 cells (but not TNR-9 cells) responsible for nonresponsiveness to phorbol esters may be the reduction of Na+K+Cl- cotransport activity. Thus this membrane transport system may be an important component of the signal transduction pathway used by phorbol esters in 3T3 cells.  相似文献   

6.
The inhibition of passive K+ influx into human red blood cells (RBC) by loop diuretics was found to be dependent on the external Na+ concentration. In the absence of external Na+, there was minimal inhibition but the influx remained dependent on Cl- ions. Thus, raising the external Na+ concentration increased the affinity of the putative (Na+, K+, Cl-) cotransport system in human RBC for loop diuretics.  相似文献   

7.
To probe the mechanism by which intracellular ATP, Na+, and Cl- influence the activity of the NaK2Cl cotransporter, we measured bumetanide-sensitive (BS) 86Rb fluxes in the osteosarcoma cell line UMR- 106-01. Under physiological gradients of Na+, K+, and Cl-, depleting cellular ATP by incubation with deoxyglucose and antimycin A (DOG/AA) for 20 min at 37 degrees C reduced BS 86Rb uptake from 6 to 1 nmol/mg protein per min. Similar incubation with 0.5 mM ouabain to inhibit the Na+ pump had no effect on the uptake, excluding the possibility that DOG/AA inhibited the uptake by modifying the cellular Na+ and K+ gradients. Loading the cells with Na+ and depleting them of K+ by a 2-3- h incubation with ouabain or DOG/AA increased the rate of BS 86Rb uptake to approximately 12 nmol/mg protein per min. The unidirectional BS 86Rb influx into control cells was approximately 10 times faster than the unidirectional BS 86Rb efflux. On the other hand, at steady state the unidirectional BS 86Rb influx and efflux in ouabain-treated cells were similar, suggesting that most of the BS 86Rb uptake into the ouabain-treated cells is due to K+/K+ exchange. The entire BS 86Rb uptake into ouabain-treated cells was insensitive to depletion of cellular ATP. However, the influx could be converted to ATP-sensitive influx by reducing cellular Cl- and/or Na+ in ouabain-treated cells to impose conditions for net uptake of the ions. The BS 86Rb uptake in ouabain-treated cells required the presence of Na+, K+, and Cl- in the extracellular medium. Thus, loading the cells with Na+ induced rapid 86Rb (K+) influx and efflux which, unlike net uptake, were insensitive to cellular ATP. Therefore, we suggest that ATP regulates a step in the turnover cycle of the cotransporter that is required for net but not K+/K+ exchange fluxes. Depleting control cells of Cl- increased BS 86Rb uptake from medium-containing physiological Na+ and K+ concentrations from 6 to approximately 15 nmol/mg protein per min. The uptake was blocked by depletion of cellular ATP with DOG/AA and required the presence of all three ions in the external medium. Thus, intracellular Cl- appears to influence net uptake by the cotransporter. Depletion of intracellular Na+ was as effective as depletion of Cl- in stimulating BS 86Rb uptake.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Transfer of LM(TK-) cells from normal growth medium to medium lacking K+ leads to a rapid loss of intracellular K+, which is 50-70% inhibited by furosemide or bumetanide. The diuretic-sensitive component of K+ efflux requires both Na+ and Cl-, and is presumably mediated by a K+, Na+, Cl- cotransport system of the kind described in avian erythrocytes and Ehrlich ascites cells. It can be calculated that such a system should be near equilibrium under normal growth conditions but should mediate net efflux (as observed) when the driving force is altered by reducing extracellular K+. The diuretic-sensitive component of net K+ efflux is also sensitive to amiloride. This effect is probably indirect, however, with amiloride acting to block the Na+ influx that supplies Na+ to the cotransport system. At the low extracellular K+ concentrations employed in these studies, the diuretic-sensitive system is a physiologically important pathway of K+ loss. The rate of growth in low-K+ medium can be increased (or the rate of cell lysis decreased) by adding diuretic or by reducing external Na+ or Cl-.  相似文献   

9.
Squid axons display a high activity of Na+/Ca2+ exchange which is largely increased by the presence of external K+, Li+, Rb+ and NH+4. In this work we have investigated whether this effect is associated with the cotransport of the monovalent cation along with Ca2+ ions. 86Rb+ influx and efflux have been measured in dialyzed squid axons during the activation (presence of Ca2+i) of Ca2+o/Na+i and Ca2+i/Ca2+o exchanges, while 86Rb+ uptake was determined in squid optic nerve membrane vesicles under equilibrium Ca2+/Ca2+ exchange conditions. Our results show that although K+o significantly increases Na+i-dependent Ca2+ influx (reverse Na+/Ca2+ exchange) and Rb+i stimulates Ca2+o-dependent Ca2+ efflux (Ca2+/Ca2+ exchange), no sizable transport of rubidium ions is coupled to calcium movement through the exchanger. Moreover, in the isolated membrane preparation no 86Rb+ uptake was associated with Ca2+/Ca2+ exchange. We conclude that in squid axons although monovalent cations activate the Na+/Ca2+ exchange they are not cotransported.  相似文献   

10.
The interaction between furosemide, calcium and D-glucose on the 86Rb+ efflux from beta-cell-rich mouse pancreatic islets was investigated in a perifusion system with high temporal resolution. Raising the glucose concentration from 4 to 20 mM induced an initial decrease in 86Rb+ efflux, which was followed by a steep increase and then a secondary decrease. Removal of extracellular calcium increased the 86Rb+ efflux at 4 mM D-glucose but reduced it at 20 mM. The initial biphasic changes in 86Rb+ efflux induced by 20 mM D-glucose were inhibited by calcium deficiency. Furosemide (100 microM) reduced the 86Rb+ efflux rate both at 4 and 20 mM D-glucose and the magnitudes appeared to be similar at either glucose concentration. Furosemide (100 microM) reduced the glucose-induced (10 mM) 45Ca+ uptake but did not affect the basal (3 mM D-glucose) 45Ca+ uptake. However, the ability of furosemide (100 microM) to reduce the 86Rb+ efflux at a high glucose concentration (20 mM) was independent of extracellular calcium. The inhibitory effects of furosemide and calcium deficiency on the 86Rb+ efflux rate appeared to be additive. It is concluded that the effect of furosemide on 86Rb+ efflux is not secondary to reduced calcium uptake and that the effects of furosemide and calcium deficiency are mediated by different mechanisms. The effect of furosemide is compatible with inhibition of loop diuretic-sensitive co-transport of Na+, K+ and Cl- and the effect of calcium deficiency with reduced activity of calcium-regulated potassium channels.  相似文献   

11.
Neurotoxins which modify the gating system of the Na+ channel in neuroblastoma cells and increase the initial rate of 22Na+ influx through this channel also give rise to the efflux of 86Rb+ and 42K+. These effluxes are inhibited by tetrodotoxin and are dependent on the presence in the extracellular medium of cations permeable to the Na+ channel. These stimulated effluxes are not due to membrane depolarization or increases in the intracellular content of Na+ and Ca2+ which occur subsequent to the action of neurotoxins. The relationships of 22Na+ influx and 42K+ (or 86Rb+) effluxes to both the concentration of neurotoxins and the concentration of external permeant cations strongly suggest that the open form of the Na+ channel stabilized by neurotoxins permits an efflux of K+ ions. Our results indicate that for the efflux of each K+ ion there is a corresponding influx of two Na+ ions into the Na+ channel.  相似文献   

12.
The bumetanide-sensitive transport system performed a net efflux of K+ in serum deprived quiescent cells. The addition of partially purified fibroblast growth factor (FGF) to G0/G1 phase 3T3 fibroblasts induced a transient net influx of K+, carried out by the bumetanide-sensitive transport system for 2-6 minutes. The stimulation of the bumetanide-sensitive K+ influx by FGF was followed by stimulation of the ouabain-sensitive K+ influx. In addition, both the bumetanide-sensitive and the ouabain-sensitive K+ influxes were found to be similarly stimulated when the G0/G1 3T3 cells were treated with insulin. These results suggest that growth factors such as FGF and insulin induce a change in the action of the bumetanide-sensitive transporter from performing net K+ efflux along its concentration gradient to an uphill transport pumping of K+ into the cell. We propose, therefore, that the bumetanide-sensitive transporter contributes to the increase in the intracellular K+ (and probable Na+) stimulated by growth factors such as FGF and insulin in early G1 phase of the cell cycle.  相似文献   

13.
A BALB/c 3T3 cell mutant (3T3-E12) was isolated by its ability to survive at a low extracellular K+ concentration (0.14 mM). The growth rate of mutant cells was less dependent on external K+ than parental cells. Analysis of potassium transport revealed that 3T3-E12 cells have a decreased activity of the furosemide-sensitive Na+K+Cl- cotransport system, both in the efflux and influx modes. This is shown to be a result of a decrease in the apparent affinity of the transport system for K+ and Na+, but not Cl-. Upon exposure to the phorbol ester 12-0-tetradecanoyl-phorbol-13-acetate (TPA), BALB/c 3T3 cells exhibited a maximal volume decrease of 20%, while mutant cells shrunk by only 7%, suggesting that regulation of cell volume, at least four exposure to a tumor promoter, is impaired in mutant cells compared to parental 3T3 cells.  相似文献   

14.
Three independent mutants of the Madin-Darby canine kidney cell line (MDCK) have been isolated which were capable of growth in media containing low concentrations of potassium. All three mutants were deficient to varying extents in furosemide- and bumetanide-sensitive 22Na+, 86+b+, and 36Cl- uptake. The two mutants most resistant to low K+ media had lost essentially all of the 22Na+, 86Rb+, and 36Cl- uptake activities of this system. The third mutant was partially resistant to low K+ media and had reduced levels of bumetanide-sensitive uptake for all three ions. Extrapolated initial uptake rates for 22Na+, 86Rb+, and 36Cl- revealed that the partial mutant exhibited approximately 50% of the parental uptake rates for all three ions. The stoichiometries of bumetanide-sensitive uptake in both the parental cell line and the partial mutant approximated 1 Rb+:1 Na+:2 Cl-. The results of this study provide genetic evidence for a single tightly-coupled NaCl/KCl symporter in MDCK cells. The correlation between the ability to grow in low K+ media and decreased activity of the bumetanide-sensitive co-transport system suggests that the bumetanide-sensitive transport system catalyzes net K+ efflux from cells in low K+ media. The results of 86Rb+ efflux studies conducted on ouabain-pretreated mutant and parental cells are consistent with this interpretation. Cell volume measurements made on cells at different densities in media containing normal K+ concentrations showed that none of the mutants differed significantly in volume from the parental strain at a similar cell density. Furthermore, all three mutants were able to readjust their volume after suspension in hypotonic media. These results suggest that in the MDCK cell line, the bumetanide-sensitive NaCl/KCl symport system does not function in the regulation of cell volume under the conditions employed.  相似文献   

15.
The modulation of rat brain Na(+)-Ca2+ exchange by K+   总被引:1,自引:0,他引:1  
The involvement of potassium ions in the Na(+)-Ca2+ exchange process was studied in rat brain synaptic plasma membrane (SPM) vesicles. Addition of equimolar [K+] to the intravesicular and the extravesicular medium led to a stimulation of the Na+ gradient-dependent Ca2+ influx; this stimulation was noticeable already at 0.5 mM and reached its maximum at 2 mM K+. The magnitude of the K+ stimulation was between 1.3-2.5-fold in different SPM preparations. K+ ions also stimulated the Na(+)-dependent Ca2+ efflux. K+ stimulation of Na(+)-Ca2+ exchange is of considerable specificity, since it is not mimicked by either Li+ or H+. The following lines of evidence suggest that K+ modulation of Na(+)-Ca2+ exchange involves the catalytic moiety of the transporter itself and not an unrelated K+ channel which modulates the membrane potential. 1) K+ stimulation of the transport process was conserved following reconstitution of the transporter into phospholipid-rich liposomes, an experimental condition which presumably separates the native membrane proteins among different vesicular structures. 2) K+ stimulation of Na+ gradient-dependent Ca2+ influx persists also when the build up of negative inside membrane potential is prevented by addition of carbonyl cyanide p-trifluoromethoxy phenylhydrazone which renders the membrane highly permeable to protons both in the native and the reconstituted preparation. 3) K+ stimulation of Na+ gradient-dependent Ca2+ influx is obtained also when tetraethylammonium chloride, 2,3-diaminopyridine and Cs+ are added to the Ca2+ uptake medium. Reconstituted SPM vesicles take up 86Rb+ in response to activation of Na+ gradient-dependent Ca2+ influx. The ratio of Ca2+ taken up by SPM vesicles in a Na+ gradient-dependent manner to the corresponding amounts of Rb+ taken up varies between 8-5 in different SPM preparations. If the stoichiometry of the process is 1 Rb+/1 Ca2+, then Rb+ cotransport is mediated by 10-20% of the transporters present in the preparation.  相似文献   

16.
The interaction between Ba2+, furosemide and D-glucose on 86Rb+ fluxes in ob/ob mouse islets was investigated. Ba2+ (2 mM) significantly reduced the ouabain-resistant 86Rb+ influx, without affecting the ouabain-sensitive influx. D-Glucose (20 mM) reduced the 86Rb+ influx in the absence of Ba2+ (2 mM) but not in the presence of the cation. Furosemide, an inhibitor of Na+, K+, Cl- co-transport, reduced the 86Rb+ influx and the effect was partly additive to the effect of 2 mM Ba2+. When the islets were preincubated with Ba2+ (2 mM) the specific effect of 1 mM furosemide on the 86Rb+ influx was reduced, whereas, in acute experiments, Ba2+ (2 mM) did not affect the specific effect of furosemide on 86Rb+ influx. 86Rb+ efflux from preloaded islets was significantly reduced by 2 mM Ba2+ and during the first 5 min of ion efflux the effect of the combination of 2 mM Ba2+ and 1 mM furosemide was stronger than the effect of Ba2+ alone. The data show that Ba2+ reduces 86Rb+ fluxes in the beta-cells and suggest that this is mainly mediated by inhibition of K+ channels in the beta-cell plasma membrane. Long-term exposure to Ba2+ may also reduce the activity of the Na+, K+, Cl- co-transport system. The effect of Ba2+ on K+ channels may help to explain the stimulatory effect on insulin release in the absence of nutrient secretagogues.  相似文献   

17.
本文采用Oak's脱膜方法与火焰光度测定经吡喹酮,吐酒石和敌百虫作用后的日本血吸虫体表膜液内的K~+,Na~+的含量实验结果,吡喹酮和吐酒石能刺激K~+从虫体表膜内向外流,分别降低K~+浓度约50%和20%,但对Na~+转运无显著影响.敌百虫的作用是减少膜内K~+外流,导致了膜内K~+浓度升高.这些结果是与体外~(86)Rb渗入虫膜实验一致的.我们也测定了药物作用后虫体表膜液内的H~+,其结果是K~+的外流与H~+的内流有关.  相似文献   

18.
Since the mechanism underlying the insulin stimulation of (Na+,K+)-ATPase transport activity observed in multiple tissues has remained undetermined, we have examined (Na+,K+)-ATPase transport activity (ouabain-sensitive 86Rb+ uptake) and Na+/H+ exchange transport (amiloride-sensitive 22Na+ influx) in differentiated BC3H-1 cultured myocytes as a model of insulin action in muscle. The active uptake of 86Rb+ was sensitive to physiological insulin concentrations (1 nM), yielding a maximum increase of 60% without any change in 86Rb+ permeability. In order to determine the mechanism of insulin stimulation of (Na+,K+)-ATPase activity, we demonstrated that insulin also stimulates passive 22Na+ influx by Na+/H+ exchange transport (maximal 200% increase) and an 80% increase in intracellular Na+ concentration with an identical time course and dose-response curve as insulin-stimulated (Na+,K+)-ATPase transport activity. Incubation of the cells with high [Na+] (195 mM) significantly potentiated insulin stimulation of ouabain-inhibitable 86Rb+ uptake. The ionophore monensin, which also promotes passive Na+ entry into BC3H-1 cells, mimics the insulin stimulation of ouabain-inhibitable 86Rb+ uptake. In contrast, incubation with amiloride or low [Na+] (10 mM), both of which inhibit Na+/H+ exchange transport, abolished the insulin stimulation of (Na+,K+)-ATPase transport activity. Furthermore, each of these insulin-stimulated transport activities displayed a similar sensitivity to amiloride. These results indicate that insulin stimulates a large increase in Na+/H+ exchange transport and that the resulting Na+ influx increases the intracellular Na+ concentration, thus activating the internal Na+ transport sites of the (Na+,K+)-ATPase. This Na+ influx is, therefore, the mediator of the insulin-induced stimulation of membrane (Na+,K+)-ATPase transport activity classically observed in muscle.  相似文献   

19.
Summary Investigations in numerous laboratories have characterized a salt transport system, present in many animal cell types, which catalyzes the transmembrane transport of NaCl and KCI in a tightly coupled process. The system is inhibited by loop diuretics such as furosemide and bumetanide. This transport system has been designated the loop diuretic-sensitive NaCl/KCl symporter. It has been implicated in transepithelial salt secretion and absorption as well as in cell volume regulation, and it may be defective in patients suffering from essential hypertension. This review serves to evaluate research conducted to date regarding the mechanism, mode of regulation, and physiological significance of the transport system.Ion binding specificities and absolute binding constants for all three naturally occurring ions have been determined in one cell system, the MDCK kidney epithelial cell line. In that same cell line, substrate binding was shown to exhibit apparent positive cooperativity. Although a few reports suggest unidirectional transport of ions via this system under certain conditions, the consensus of reports indicates fully reversible, bidirectional salt transport with the direction of net flux determined by the magnitudes of the gradients of the three transported ions. Growth of cells in media containing a low concentration of K+ (<0.25 mM) allows selection of mutants lacking or defective in the symporter.Kinetic analyses with the MDCK cell line have shown that the symporter catalyzes accelerative exchange transport. However, exchange transport of one ion in the absence of one of the other two ionic substrates has not been documented. Comparison with other well-characterized transmembrane transport systems has shown that the characteristics of the NaCl/KCl symporter most resemble those of two-species facilitators (chemiosmotically-coupled symporters) found in prokaryotes and eukaryotes alike. These two-species facilitators consist of a single transmembrane protein and may function by a carrier-type mechanism as originally proposed by Peter Mitchell. A molecular model for the NaCl/KCl symporter is presented and discussed.Activation of symport activity requires ATP and probably occurs by a protein kinase-catalyzed mechanism. In some cell types activation is cyclic AMP dependent. ATP hydrolysis is not stoichiometric with transport. Phosphorylation of an integral membrane protein with an apparent size of 240 000 daltons correlates with activation of transport. It is postulated that this protein is the loop diuretic-sensitive NaCl/KCl symporter.  相似文献   

20.
Addition of either vasoactive intestinal peptide (VIP) or the Ca2+ ionophore, A23187, to confluent monolayers of the T84 epithelial cell line derived from a human colon carcinoma increased the rate of 86Rb+ or 42K+ efflux from preloaded cells. Stimulation of the rate of efflux by VIP and A23187 still occurred in the presence of ouabain and bumetanide, inhibitors of the Na+,K+-ATPase and Na+,K+,Cl- cotransport, respectively. The effect of A23187 required extracellular Ca2+, while that of VIP correlated with its known effect on cyclic AMP production. Other agents which increased cyclic AMP production or mimicked its effect also increased 86Rb+ efflux. VIP- or A23187-stimulated efflux was inhibited by 5 mM Ba2+ or 1 mM quinidine, but not by 20 mM tetraethylammonium, 4 mM 4-aminopyridine, or 1 microM apamin. Under appropriate conditions, VIP and A23187 also increased the rate of 86Rb+ or 42K+ uptake. Stimulation of the initial rate of uptake by either agent required high intracellular K+ and was not markedly affected by the imposition of transcellular pH gradients. The effect of A23187, but not VIP or dibutyryl cyclic AMP, was refractory to depletion of cellular energy stores. A23187-stimulated uptake was not significantly affected by anion substitution, however, stimulation of uptake by VIP required the presence of a permeant anion. This result may be due to the simultaneous activation of a cyclic AMP-dependent Cl- transport system. The kinetics of both VIP- and A23187-stimulated uptake and efflux were consistent with a channel-rather than a carrier-mediated K+ transport mechanism. The results also suggest that cyclic AMP and Ca2+ may activate two different kinds of K+ transport systems. Finally, both transport systems have been localized to the basolateral membrane of T84 monolayers, a result compatible with their possible regulatory role in hormone-activated electrogenic Cl- secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号