首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ectodomain shedding generates soluble isoforms of cell-surface proteins, including angiotensin-converting enzyme (ACE). Increasing evidence suggests that the juxtamembrane stalk of ACE, where proteolytic cleavage-release occurs, is not the major site of sheddase recognition. The role of the cytoplasmic domain has not been completely defined. We deleted the cytoplasmic domain of human testis ACE and found that this truncation mutant (ACE-DeltaCYT) was shed constitutively from the surface of transfected CHO-K1 cells. Phorbol ester treatment produced only a slight increase in shedding of ACE-DeltaCYT, unlike the marked stimulation seen with wild-type ACE. However, for both wild-type ACE and ACE-DeltaCYT, shedding was inhibited by the peptide hydroxamate TAPI and the major cleavage site was identical, indicating the involvement of similar or identical sheddases. Cytochalasin D markedly increased the basal shedding of wild-type ACE but had little effect on the shedding of ACE-DeltaCYT. These data suggest that the cytoplasmic domain of ACE interacts with the actin cytoskeleton and that this interaction is a negative regulator of ectodomain shedding.  相似文献   

2.
Numerous transmembrane proteins, including the blood pressure regulating angiotensin converting enzyme (ACE) and the Alzheimer's disease amyloid precursor protein (APP), are proteolytically shed from the plasma membrane by metalloproteases. We have used an antisense oligonucleotide (ASO) approach to delineate the role of ADAM10 and tumour necrosis factor-alpha converting enzyme (TACE; ADAM17) in the ectodomain shedding of ACE and APP from human SH-SY5Y cells. Although the ADAM10 ASO and TACE ASO significantly reduced (> 81%) their respective mRNA levels and reduced the alpha-secretase shedding of APP by 60% and 30%, respectively, neither ASO reduced the shedding of ACE. The mercurial compound 4-aminophenylmercuric acetate (APMA) stimulated the shedding of ACE but not of APP. The APMA-stimulated secretase cleaved ACE at the same Arg-Ser bond in the juxtamembrane stalk as the constitutive secretase but was more sensitive to inhibition by a hydroxamate-based compound. The APMA-activated shedding of ACE was not reduced by the ADAM10 or TACE ASOs. These results indicate that neither ADAM10 nor TACE are involved in the shedding of ACE and that APMA, which activates a distinct ACE secretase, is the first pharmacological agent to distinguish between the shedding of ACE and APP.  相似文献   

3.
Lai ZW  Hanchapola I  Steer DL  Smith AI 《Biochemistry》2011,50(23):5182-5194
ADAM17, also known as tumor necrosis factor α-converting enzyme, is involved in the ectodomain shedding of many integral membrane proteins. We have previously reported that ADAM17 is able to mediate the cleavage secretion of the ectodomain of human angiotensin-converting enzyme 2 (ACE2), a functional receptor for the severe acute respiratory syndrome coronavirus. In this study, we demonstrate that purified recombinant human ADAM17 is able to cleave a 20-amino acid peptide mimetic corresponding to the extracellular juxtamembrane region of human ACE2 between Arg(708) and Ser(709). A series of peptide analogues were also synthesized, showing that glutamate subtitution at Arg(708) and/or Arg(710) attenuated the cleavage process, while alanine substitution at Arg(708) and/or Ser(709) did not inhibit peptide cleavage by recombinant ADAM17. Analysis of CD spectra showed a minimal difference in the secondary structure of the peptide analogues in the buffer system used for the ADAM17 cleavage assay. The observation of the shedding profiles of ACE2 mutants expressing CHO-K1 and CHO-P cells indicates that the Arg(708) → Glu(708) mutation and the Arg(708)Arg(710) → Glu(708)Glu(710) double mutation produced increases in the amount of ACE2 shed when stimulated by phorbol ester PMA. In summary, we have demonstrated that ADAM17 is able to cleave ACE2 peptide sequence analogues between Arg(708) and Ser(709). These findings also indicate that Arg(708) and Arg(710) play a role in site recognition in the regulation of ACE2 ectodomain shedding mediated by ADAM17.  相似文献   

4.
ACE chimeric proteins and N domain monoclonal antibodies (mAbs) were used to determine the influence of the N domain, and particular regions thereof, on the rate of ACE ectodomain shedding. Somatic ACE (having both N and C domains) was shed at a rate of 20%/24 h. Deletion of the C domain of somatic ACE generated an N domain construct (ACEDeltaC) which demonstrated the lowest rate of shedding (12%). However, deletion of the N domain of somatic ACE (ACEDeltaN) dramatically increased shedding (212%). Testicular ACE (tACE) having 36 amino acid residues (heavily O-glycosylated) at the N-terminus of the C domain shows a 4-fold decrease in the rate of shedding (49%) compared to that of ACEDeltaN. When the N-terminal region of the C domain was replaced with the corresponding homologous 141 amino acids of the N domain (N-delACE) the rate of shedding of the ACEDeltaN was only slightly decreased (174%), but shedding was still 3.5-fold more efficient than wild-type testicular ACE. Monoclonal antibodies specific for distinct, but overlapping, N-domain epitopes altered the rate of ACE shedding. The mAb 3G8 decreased the rate of shedding by 30%, whereas mAbs 9B9 and 3A5 stimulated ACE shedding 2- to 4-fold. Epitope mapping of these mAbs in conjunction with a homology model of ACE N domain structure, localized a region in the N-domain that may play a role in determining the relatively low rate of shedding of somatic ACE from the cell surface.  相似文献   

5.

Background

Angiotensin I-converting enzyme (ACE) metabolizes a range of peptidic substrates and plays a key role in blood pressure regulation and vascular remodeling. Thus, elevated ACE levels may be associated with an increased risk for different cardiovascular or respiratory diseases. Previously, a striking familial elevation in blood ACE was explained by mutations in the ACE juxtamembrane region that enhanced the cleavage-secretion process. Recently, we found a family whose affected members had a 6-fold increase in blood ACE and a Tyr465Asp (Y465D) substitution, distal to the stalk region, in the N domain of ACE.

Methodology/Principal Findings

HEK and CHO cells expressing mutant (Tyr465Asp) ACE demonstrate a 3- and 8-fold increase, respectively, in the rate of ACE shedding compared to wild-type ACE. Conformational fingerprinting of mutant ACE demonstrated dramatic changes in ACE conformation in several different epitopes of ACE. Cell ELISA carried out on CHO-ACE cells also demonstrated significant changes in local ACE conformation, particularly proximal to the stalk region. However, the cleavage site of the mutant ACE - between Arg1203 and Ser1204 - was the same as that of WT ACE. The Y465D substitution is localized in the interface of the N-domain dimer (from the crystal structure) and abolishes a hydrogen bond between Tyr465 in one monomer and Asp462 in another.

Conclusions/Significance

The Y465D substitution results in dramatic increase in the rate of ACE shedding and is associated with significant local conformational changes in ACE. These changes could result in increased ACE dimerization and accessibility of the stalk region or the entire sACE, thus increasing the rate of cleavage by the putative ACE secretase (sheddase).  相似文献   

6.
Epidermal growth factor (EGF) family ligands are derived by proteolytic cleavage of the ectodomains of integral membrane precursors. Previously, we established that tumor necrosis factor alpha-converting enzyme (TACE/ADAM17) is a physiologic transforming growth factor-alpha (TGF-alpha) sheddase, and we also demonstrated enhanced shedding of amphiregulin (AR) and heparin-binding (HB)-EGF upon restoration of TACE activity in TACE-deficient EC-2 fibroblasts. Here we extended these results by showing that purified soluble TACE cleaved single sites in the juxtamembrane stalks of mouse pro-HB-EGF and pro-AR ectodomains in vitro. For pro-HB-EGF, this site matched the C terminus of the purified human growth factor, and we speculate that the AR cleavage site is also physiologically relevant. In contrast, ADAM9 and -10, both implicated in HB-EGF shedding, failed to cleave the ectodomain or cleaved at a nonphysiologic site, respectively. Cotransfection of TACE in EC-2 cells enhanced phorbol myristate acetate-induced but not constitutive shedding of epiregulin and had no effect on betacellulin (BTC) processing. Additionally, soluble TACE did not cleave the juxtamembrane stalks of either pro-BTC or pro-epiregulin ectodomains in vitro. Substitution of the shorter pro-BTC juxtamembrane stalk or truncation of the pro-TGF-alpha stalk to match the pro-BTC length reduced TGF-alpha shedding from transfected cells to background levels, whereas substitution of the pro-BTC P2-P2' sequence reduced TGF-alpha shedding less dramatically. Conversely, substitution of the pro-TGF-alpha stalk or lengthening of the pro-BTC stalk, especially when combined with substitution of the pro-TGF-alpha P2-P2' sequence, markedly increased BTC shedding. These results indicate that efficient TACE cleavage is determined by a combination of stalk length and scissile bond sequence.  相似文献   

7.
Angiotensin-converting enzyme (ACE), an enzyme that plays a major role in vasoactive peptide metabolism, is a type 1 ectoprotein, which is released from the plasma membrane by a proteolytic cleavage occurring in the stalk sequence adjacent to the membrane anchor. In this study, we have discovered the molecular mechanism underlying the marked increase of plasma ACE levels observed in three unrelated individuals. We have identified a Pro(1199) --> Leu mutation in the juxtamembrane stalk region. In vitro analysis revealed that the shedding of [Leu(1199)]ACE was enhanced compared with wild-type ACE. The solubilization process of [Leu(1199)]ACE was stimulated by phorbol esters and inhibited by compound 3, an inhibitor of ACE-secretase. The results of Western blot analysis were consistent with a cleavage at the major described site (Arg(1203)/Ser(1204)). Two-dimensional structural analysis of ACE showed that the mutated residue was critical for the positioning of a specific loop containing the cleavage site. We therefore propose that a local conformational modification caused by the Pro(1199) --> Leu mutation leads to more accessibility at the stalk region for ACE secretase and is responsible for the enhancement of the cleavage-secretion process. Our results show that different molecular mechanisms are responsible for the common genetic variation of plasma ACE and for its more rare familial elevation.  相似文献   

8.
Angiotensin-converting enzyme (ACE) is an example of a membrane-bound protein, which is shed from the cell surface in a soluble form by a post-translational proteolytic cleavage event involving a secretase. The secretase cleavage site in somatic ACE has been mapped to Arg-1203/Ser-1204, 24 residues proximal to the membrane-anchoring domain and the ADAM ('a disintegrin and metalloprotease') family of proteins may be involved in ACE shedding.  相似文献   

9.
Dassler K  Kaup M  Tauber R  Fuchs H 《FEBS letters》2003,536(1-3):25-29
The human transferrin receptor (TfR) is proteolytically cleaved at R100 within the juxtamembrane stalk and to a lesser extent at an alternative site. We examined the effect of stalk mutations on human TfR shedding in transfected CHO cells. Point mutations at R100 led to an increase in alternative shedding while the R100 cleavage product was undetectable. Replacing the TfR-stalk by the corresponding sequences from tumor necrosis factor-alpha or interleukin-6 receptor also led to TfR ectodomain shedding. These results show that cleavage at alternative sites can compensate for suppressed cleavage at the major site and inhibitor studies reveal that at least three metalloproteases are involved in the shedding process.  相似文献   

10.
Epidermal growth factor receptor (EGFR) ligands are synthesized as type I membrane protein precursors exposed at the cell surface. Shedding of the ectodomain of these proteins is the way cells regulate the equilibrium between cell-associated and diffusible forms of these growth factors. Whereas the regulated shedding of transforming growth factor-alpha, HB-EGF, and amphiregulin precursors have been clearly established, regulation of full-length pro-EGF shedding has not been clearly demonstrated. Here, using both wild-type and M2 mutant CHO-K1 as well as HeLa cell lines transiently transfected with epitope-tagged rat pro-EGF expression plasmid, we demonstrate that these cells synthesize EGF as a high molecular weight membrane-associated precursor glycoprotein expressed at the cell surface. All cell lines are able to release the entire ectodomain of pro-EGF in the extracellular medium following juxtamembrane cleavage of the precursor once it is present at the cell surface. More significantly we clearly established that CHO-M2 and HeLa cells only constitutively release low levels of pro-EGF. This shedding is a regulated phenomenon in wild-type CHO cells where it can be induced by different agents such as phorbol 12-myristate 13-acetate (PMA), pervanadate, and serum but not by calcium ionophores. Using specific inhibitors as well as protein kinase C (PKC) depletion, PMA stimulation was shown to be completely dependent on PKC activation whereas pervanadate and serum stimulation were not. Regulated ectodomain shedding involves the activity of a zinc metalloprotease as determined by inhibition with phenantrolin and TAPI-2 and by the results obtained with the CHO-M2 shedding defective mutant cell line. Comparison of the ability of CHO and HeLa cell lines to shed pro-EGF and pro-TNF-alpha upon stimulation greatly suggests that TACE (ADAM 17) may not be the ectoprotease involved in the secretion of pro-EGF ectodomain and that this protease, which remains to be identified, shows a restricted cellular expression pattern.  相似文献   

11.
There are evidence that both a disintegrin and metalloproteinase 17 (ADAM17) and calpain are involved in platelet glycoprotein (GP)Ibα ectodomain cleavage. However, the relationship between the two enzymes in the shedding process remains unclear. Here we show that calcium ionophore A23187- and α-thrombin-induced GPIbα shedding is completely inhibited by the metalloproteinase inhibitor GM6001, whereas it is only partially inhibited by calpain inhibitors. Calpain activator dibucaine-induced GPIbα shedding was completely inhibited by both metalloproteinase and calpain inhibitors. On the other hand, calpain inhibitors did not inhibit GPIbα shedding induced by the reagents that specifically activate ADAM17. Furthermore, A23187-induced GPIbα shedding in Chinese hamster ovary cells expressing wild-type or mutant GPIb-IX was also partially inhibited by calpain inhibitors and almost completely inhibited by GM6001. Therefore, these data indicate that calpain plays an important role in the regulation of ADAM17-dependent GPIbα ectodomain shedding in both platelets and nucleated cells.  相似文献   

12.
Betacellulin belongs to the family of epidermal growth factor-like growth factors that are expressed as transmembrane precursors and undergo proteolytic ectodomain shedding to release a soluble mature growth factor. In this study, we investigated the ectodomain shedding of the betacellulin precursor (pro-BTC) in conditionally immortalized wild-type (WT) and ADAM-deficient cell lines. Sequential ectodomain cleavage of the predominant cell-surface 40-kDa form of pro-BTC generated a major (26-28 kDa) and two minor (20 and 15 kDa) soluble forms and a cellular remnant lacking the ectodomain (12 kDa). Pro-BTC shedding was activated by calcium ionophore (A23187) and by the metalloprotease activator p-aminophenylmercuric acetate (APMA), but not by phorbol esters. Culturing cells in calcium-free medium or with the protein kinase Cdelta inhibitor rottlerin, but not with broad-based protein kinase C inhibitors, blocked A23187-activated pro-BTC shedding. These same treatments were without effect for constitutive and APMA-induced cleavage events. All pro-BTC shedding was blocked by treatment with a broad-spectrum metalloprotease inhibitor (GM6001). In addition, constitutive and activated pro-BTC shedding was differentially blocked by TIMP-1 or TIMP-3, but was insensitive to treatment with TIMP-2. Pro-BTC shedding was functional in cells from ADAM17- and ADAM9-deficient mice and in cells overexpressing WT or catalytically inactive ADAM17. In contrast, overexpression of WT ADAM10 enhanced constitutive and activated shedding of pro-BTC, whereas overexpression of catalytically inactive ADAM10 reduced shedding. These results demonstrate, for the first time, activated pro-BTC shedding in response to extracellular calcium influx and APMA and provide evidence that ADAM10 mediates constitutive and activated pro-BTC shedding.  相似文献   

13.
The membrane type 1-matrix metalloproteinase (MT1-MMP) is a membrane-anchored protease that its entire ectodomain is shed from the cell surface. Here we show that in HT1080 cells MT1-MMP is shed as two soluble forms of approximately 52 and approximately 50kDa. Analyses in purified HT1080 plasma membranes show that release of these species is a two-step time-dependent process that is mediated by integral membrane metalloprotease(s). Differential sensitivity to TIMP-3 inhibition of the shedding process suggests that the second cleavage step leading to the formation of the 50-kDa soluble species is mediated by an ADAM. We also show that shedding of MT1-MMP is independent of its partition into lipid rafts because both wild type and glycosylphosphatidylinositol (GPI)-anchored MT1-MMP are shed. These studies provide new insights into the process of MT1-MMP ectodomain shedding, which may regulate pericellular proteolysis.  相似文献   

14.
Like other members of the epidermal growth factor family, heparin-binding epidermal growth factor-like growth factor (HB-EGF) is synthesized as a transmembrane protein that can be shed enzymatically to release a soluble growth factor. Ectodomain shedding is essential to the biological functions of HB-EGF and is strictly regulated. However, the mechanism that induces the shedding remains unclear. We have recently identified nardilysin (N-arginine dibasic convertase (NRDc)), a metalloendopeptidase of the M16 family, as a protein that specifically binds HB-EGF (Nishi, E., Prat, A., Hospital, V., Elenius, K., and Klagsbrun, M. (2001) EMBO J. 20, 3342-3350). Here, we show that NRDc enhances ectodomain shedding of HB-EGF. When expressed in cells, NRDc enhanced the shedding in cooperation with tumor necrosis factor-alpha-converting enzyme (TACE; ADAM17). NRDc formed a complex with TACE, a process promoted by phorbol esters, general activators of ectodomain shedding. NRDc enhanced TACE-induced HB-EGF cleavage in a peptide cleavage assay, indicating that the interaction with NRDc potentiates the catalytic activity of TACE. The metalloendopeptidase activity of NRDc was not required for the enhancement of HB-EGF shedding. Notably, a reduction in the expression of NRDc caused by RNA interference was accompanied by a decrease in ectodomain shedding of HB-EGF. These results indicate the essential role of NRDc in HB-EGF ectodomain shedding and reveal how the shedding is regulated by the modulation of sheddase activity.  相似文献   

15.
Kuruppu S  Reeve S  Ian Smith A 《FEBS letters》2007,581(23):4501-4506
The aim of this study was to determine if endothelin converting enzyme-1 (ECE-1) like other members of this metalloprotease family undergoes ectodomain shedding. The release/shedding of catalytically active ECE-1 was measured by monitoring the fluorescence resulting from the cleavage of a specific quenched fluorescent substrate. Catalytically active ECE-1 was detected in the media of human umbilical vein endothelial cells, and was confirmed by mass spectrometry based assays. Specificity of cleavage was confirmed by using both narrow and broad specificity inhibitors. In conclusion we demonstrate and characterize for the first time, ECE-1 shedding from the surface of endothelial cells.  相似文献   

16.
Preadipocyte factor 1 (Pref-1), an epidermal growth factor repeat containing transmembrane protein found in the preadipocytes, inhibits adipocyte differentiation in vitro and in vivo. Here, we examined the processing of membrane form of Pref-1A to release the 50-kDa soluble form that inhibits adipocyte differentiation. The ectodomain cleavage of Pref-1 is markedly enhanced by phorbol 12-myristate 13-acetate in a dose- and time-dependent manner. The basal and stimulated cleavage is inhibited by the broad metalloproteinase inhibitor GM6001, a fact that suggests that cleavage of membrane Pref-1A is dependent on a metalloproteinase. Next, we showed that release of soluble Pref-1A is inhibited by TAPI-0 and by a tissue inhibitor of metalloproteinase-3, TIMP-3, that can inhibit tumor necrosis factor alpha converting enzyme (TACE), but not by TIMP-1 or TIMP-2. On the other hand, overexpression of TACE increases Pref-1 cleavage to produce the 50-kDa soluble form. Furthermore, this cleavage was not detected in cells with TACE mutation or with TACE small interfering RNA. TACE-mediated shedding of Pref-1 ectodomain inhibits adipocyte differentiation of 3T3-L1 cells and in Pref-1-null mouse embryo fibroblasts transduced with Pref-1A. Identification of TACE as the major protease responsible for conversion of membrane-bound Pref-1 to the biologically active diffusible form provides a new insight into Pref-1 function in adipocyte differentiation.  相似文献   

17.
Previous studies from our laboratory [Philip, A. & O'Connor-McCourt, M. D. (1991) J. Biol. Chem. 266, 22290--22296] have shown that the lung exhibited the highest uptake of circulating [125I]-transforming growth factor-beta1 (TGF-beta1) on a per gram basis. This observation, together with the lack of information on TGF-beta receptor expression in the lung, prompted us to attempt to characterize TGF-beta receptors in this tissue. In the present report we show that the type III TGF-beta receptor is the most abundant TGF-beta binding protein in rat lung membranes and that it exhibits a 10-fold higher affinity for TGF-beta2 than for TGF-beta1. We observed that the majority of the type III receptor population in lung membranes is cleaved at a site in the central portion of the ectodomain, the resulting two fragments (95 kDa and 58 kDa) being held together by disulfide bonds. Furthermore, we demonstrate that a soluble form of the ectodomain of the type III receptor is shed from rat lung membranes in an efficient manner, with protease cleavage occurring at a site close to the transmembrane domain. This shedding is controllable by temperature, thus providing a system to study the mechanism of ectodomain release. Using this system, we show that the shedding is inhibited by prior ligand binding and by membrane solubilization. The identification of a membrane preparation which exhibits controllable and quantitative release of the type III receptor ectodomain provides a unique cell-free system for further studies of the mechanism of shedding of the type III TGF-beta receptor ectodomain.  相似文献   

18.
Tumor necrosis factor-α (TNF-α) is released from cells by proteolytic cleavage of a membrane-anchored precursor. The TNF-α-converting enzyme (TACE/ADAM17) is the major sheddase for ectodomain shedding of TNF-α. At present, however, it is poorly understood how its catalytic activity is regulated. Here, we show that nardilysin (N-arginine dibasic convertase; NRDc) enhanced TNF-α shedding. In a cell-based shedding assay, expression of NRDc synergistically enhanced TACE-induced TNF-α shedding. A peptide cleavage assay in vitro showed that recombinant NRDc enhances the cleavage of TNF-α induced by TACE. Notably, co-incubation of NRDc completely reversed the inhibitory effect of a physiological concentration of salt on TACE’s activity in vitro. Overexpression of NRDc in TACE-deficient fibroblasts resulted in an increase in the amount of TNF-α released. Co-expression of NRDc with ADAM10 promoted the release compared with the sole expression of ADAM10. These results suggested that NRDc enhances TNF-α shedding through activation of not only TACE but ADAM10. Our results indicate the involvement of NRDc in ectodomain shedding of TNF-α, which may be a novel target for anti-inflammatory therapies.  相似文献   

19.
Formation of the paranodal axo-glial junction requires the oligodendrocyte-specific 155-kDa isoform of neurofascin (NF155). Here, we report the presence of two peptides in cultured oligodendrocytes, which are recognized by distinct NF155-specific antibodies and correspond to a membrane anchor of 30 kDa and a 125 kDa peptide, which is shed from the cells, indicating that it consists of the NF155 ectodomain. Transfection of OLN-93 cells with NF155 verified that both peptides originate from NF155 cleavage, and we present evidence that metalloproteases mediate NF155 processing. Interestingly, metalloprotease activity is required for NF155 transport into oligodendrocyte processes supporting the functional significance of NF155 cleavage. To further characterize NF155 cleavage and function, we transfected MDCK cells with NF155. Although ectodomain shedding was observed in polarized and non-polarized MDCK cells, surface localization of NF155 was restricted to the lateral membrane of polarized cells consistent with a role in cell-cell adhesion. Aggregation assays performed with OLN-93 cells confirmed that NF155 accelerates cell-cell adhesion in a metalloprotease-dependent manner. The physiological relevance of NF155 processing is corroborated by the presence of NF155 cleavage products in heavy myelin, suggesting a role of NF155 ectodomain shedding for the generation and/or stabilization of the nodal/paranodal architecture.  相似文献   

20.
The ectodomain of the human transferrin receptor (TfR) is released as soluble TfR into the blood by cleavage within a stalk. The major cleavage site is located C-terminally of Arg-100; alternative cleavage sites are also present. Since the cleavage process is still unclear, we looked for proteases involved in TfR ectodomain release. In the supernatant of U937 histiocytic cells we detected alternatively cleaved TfR (at Glu-110). In membrane fractions of these cells we identified two distinct proteolytic activities responsible for TfR cleavage within the stalk at either Val-108 or Lys-95. Both activities could be inhibited by serine protease inhibitors, but not by inhibitors of any other class of proteases. Protein purification yielded a 28 kDa protein that generated the Val-108 terminus. The protease activity could be ascribed to neutrophil elastase according to the substrate specificity determined by amino acid substitution analysis of synthetic peptides, an inhibitor profile, the size of the protease and the use of specific antibodies. The results of analogous experiments suggest that the second activity is represented by another serine protease, cathepsin G. Thus, membrane-associated forms of neutrophil elastase and cathepsin G may be involved in alternative TfR shedding in U937 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号