共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophage colony-stimulating factor (M-CSF) is a growth factor that is known to trigger several signalling pathways through receptor tyrosine kinase activation. We investigated the specific requirements for the activation of phospholipase C gamma 2 (PLC-γ2) during the differentiation of mouse bone marrow-derived macrophage precursors. M-CSF stimulation induced rapid PLC-γ2 translocation and phosphorylation from the cytosolic compartment to the cell periphery. Both events were dependent on cytoskeleton integrity and Src kinase activity, but only PLC-γ2 phosphorylation did not require PI3-kinase activity. Biochemical experiments as well as confocal microscopy analyses indicate that the translocation of PLC-γ2 is mediated by the direct association of this protein with the actin cytoskeleton. Using GST-fusion proteins containing various deletions of the PLC-γ2 Src homology region, it was found that PLC-γ2 binds to F-actin via its SH2 domains, a feature that has equally been found in a co-sedimentation assay. This association, which is increased during actin reorganisation and disrupted by cytoskeleton inhibitors, seems to be a primary means to recruit this enzyme to the cell periphery. These results indicate that, upon M-CSF stimulation, PLC-γ2 cellular localisation and phosphorylation are strongly dependent on cytoskeleton architecture of the macrophage precursor as well as the PI3-kinase and the Src kinases. 相似文献
2.
3.
4.
Regulated CD44 cleavage under the control of protein kinase C, calcium influx, and the Rho family of small G proteins. 总被引:4,自引:0,他引:4
I Okamoto Y Kawano M Matsumoto M Suga K Kaibuchi M Ando H Saya 《The Journal of biological chemistry》1999,274(36):25525-25534
CD44 is a cell surface receptor for several extracellular matrix components and is implicated in tumor cell invasion and metastasis. Our previous studies have shown that CD44 expressed in cancer cells is proteolytically cleaved at the extracellular domain through membrane-associated metalloproteases and that CD44 cleavage plays a critical role in CD44-mediated tumor cell migration (Okamoto, I., Kawano, Y., Tsuiki, H., Sasaki, J., Nakao, M., Matsumoto, M., Suga, M., Ando, M., Nakajima, M., and Saya, H. (1999) Oncogene 18, 1435-1446). In the present study, we first demonstrate rapid degradation of the membrane-tethered CD44 cleavage product through intracellular proteolytic pathways, and it occurs only after CD44 extracellular cleavage. To address the mechanisms regulating CD44 cleavage at the extracellular domain, we show that 12-O-tetradecanoylphorbol 13-acetate (TPA) and the calcium ionophore ionomycin rapidly enhance metalloprotease-mediated CD44 cleavage in U251MG cells via protein kinase C-dependent and -independent pathways, respectively, suggesting the existence of multiple distinct pathways for regulation of CD44 cleavage. Concomitant with TPA-induced CD44 cleavage, TPA treatment induces redistribution of CD44 and ERM proteins (ezrin, radixin, and moesin) to newly generated membrane ruffling areas. Treatment with lysophosphatidic acid, which is known to activate the Rho-dependent pathway, inhibits TPA-induced CD44 redistribution and CD44 cleavage. Furthermore, overexpression of Rac dominant active mutants results in the redistribution of CD44 to the Rac-induced ruffling areas and the enhancement of CD44 cleavage. These results suggest that the Rho family proteins play a role in regulation of CD44 distribution and cleavage. 相似文献
5.
BACKGROUND: The ability of a cell to polarize and move is governed by remodeling of the cellular adhesion/cytoskeletal network that is in turn controlled by the Rho family of small GTPases. However, it is not known what signals lie downstream of Rac1 and Cdc42 during peripheral actin and adhesion remodeling that is required for directional migration. RESULTS: We show here that individual members of the Rho family, RhoA, Rac1, and Cdc42, direct the specific intracellular targeting of c-Src tyrosine kinase to focal adhesions, lamellipodia, or filopodia, respectively, and that the adaptor function of c-Src (the combined SH3/SH2 domains coupled to green fluorescent protein) is sufficient for targeting. Furthermore, Src's catalytic activity is absolutely required at these peripheral cell-matrix attachment sites for remodeling that converts RhoA-dependent focal adhesions into smaller focal complexes along Rac1-induced lamellipodia (or Cdc42-induced filopodia). Consequently, cells in which kinase-deficient c-Src occupies peripheral adhesion sites exhibit impaired polarization toward migratory stimuli and reduced motility. Furthermore, phosphorylation of FAK, an Src adhesion substrate, is suppressed under these conditions. CONCLUSIONS: Our findings demonstrate that individual Rho GTPases specify Src's exact peripheral localization and that Rac1- and Cdc42-induced adhesion remodeling and directed cell migration require Src activity at peripheral adhesion sites. 相似文献
6.
Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members. 总被引:15,自引:7,他引:15 下载免费PDF全文
The mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that are regulated by distinct extracellular stimuli. The currently known members include extracellular signal-regulated protein kinase 1 (ERK1), ERK2, the c-Jun N-terminal kinase/stress-activated protein kinases (JNK/SAPKs), and p38 MAP kinases. We find that overexpression of the Ste20-related enzymes p21-activated kinase 1 (PAK1) and PAK2 in 293 cells is sufficient to activate JNK/SAPK and to a lesser extent p38 MAP kinase but not ERK2. Rat MAP/ERK kinase kinase 1 can stimulate the activity of each of these MAP kinases. Although neither activated Rac nor the PAKs stimulate ERK2 activity, overexpression of either dominant negative Rac2 or the N-terminal regulatory domain of PAK1 inhibits Ras-mediated activation of ERK2, suggesting a permissive role for Rac in the control of the ERK pathway. Furthermore, constitutively active Rac2, Cdc42hs, and RhoA synergize with an activated form of Raf to increase ERK2 activity. These findings reveal a previously unrecognized connection between Rho family small G proteins and the ERK pathway. 相似文献
7.
Src tyrosine kinase is a novel direct effector of G proteins 总被引:17,自引:0,他引:17
Heterotrimeric G proteins transduce signals from cell surface receptors to modulate the activity of cellular effectors. Src, the product of the first characterized proto-oncogene and the first identified protein tyrosine kinase, plays a critical role in the signal transduction of G protein-coupled receptors. However, the mechanism of biochemical regulation of Src by G proteins is not known. Here we demonstrate that Galphas and Galphai, but neither Galphaq, Galpha12 nor Gbetay, directly stimulate the kinase activity of downregulated c-Src. Galphas and Galphai similarly modulate Hck, another member of Src-family tyrosine kinases. Galphas and Galphai bind to the catalytic domain and change the conformation of Src, leading to increased accessibility of the active site to substrates. These data demonstrate that the Src family tyrosine kinases are direct effectors of G proteins. 相似文献
8.
Cyclin dependent kinase 4 is a key regulator of the cell cycle and its activity is frequently deregulated in cancer. The activity of cyclin dependent kinase 4 is controlled by multiple mechanisms, including phosphorylation of tyrosine 17. This site is equivalent to tyrosine 15 of cyclin dependent kinase 1, which undergoes inhibitory phosphorylation by WEE1 and MYT1; however, the kinases that phosphorylate cyclin dependent kinase 4 on tyrosine 17 are still unknown. In the present study, we generated a phosphospecific antibody to the tyrosine 17-phosphorylated form of cyclin dependent kinase 4, and showed that this site is phosphorylated to a low level in asynchronously proliferating HCT116 cells. We purified tyrosine 17 kinases from HeLa cells and found that the Src family non-receptor tyrosine kinase C-YES contributes a large fraction of the tyrosine 17 kinase activity in HeLa lysates. C-YES also phosphorylated cyclin dependent kinase 4 when transfected into HCT116 cells, and treatment of cells with Src family kinase inhibitors blocked the tyrosine 17 phosphorylation of cyclin dependent kinase 4. Taken together, the results obtained in the present study provide the first evidence that Src family kinases, but not WEE1 or MYT1, phosphorylate cyclin dependent kinase 4 on tyrosine 17, and help to resolve how the phosphorylation of this site is regulated. 相似文献
9.
Background
The guanine nucleotide exchange factor C3G (RapGEF1) along with its effector proteins participates in signaling pathways that regulate eukaryotic cell proliferation, adhesion, apoptosis and embryonic development. It activates Rap1, Rap2 and R-Ras members of the Ras family of GTPases. C3G is activated upon phosphorylation at tyrosine 504 and therefore, determining the localization of phosphorylated C3G would provide an insight into its site of action in the cellular context. 相似文献10.
Takuwa Y 《Biochimica et biophysica acta》2002,1582(1-3):112-120
One of the striking activities of the Edg family sphingosine-1-phosphate (S1P) receptors includes receptor isotype-specific, bimodal regulatory activity on cell migration. While Edg1 and Edg3 act as typical chemotactic receptors, Edg5 uniquely acts as a chemorepellant receptor. Consistent with this, Edg1 and Edg3, and Edg5 regulate the activity of the Rho family GTPase Rac positively and negatively, respectively. Thus, Edg isotype-specific, differential regulatory activities on Rac seem to be important as mechanisms underlying the bimodal regulation of cell migration by S1P. Edg5-mediated Rac inhibition involves stimulation of Rac-GTPase-activating protein (GAP) activity, rather than inhibition of Rac-guanine nucleotide exchange factor (GEF) activity. Many cell types including vascular smooth muscle and endothelial cells express more than a single S1P receptor isotype. In these cells, it appears that an integration of the Edg isotype-selective, positive and negative signals on cellular Rac activity is a critical determinant for eventual direction of regulation on cell motility by S1P. Physiological and pathological roles for the repulsive activity of Edg5 receptor remain to be clarified. 相似文献
11.
An active Src kinase-beta-actin association is linked to actin dynamics at the periphery of colon cancer cells 总被引:2,自引:0,他引:2
Avizienyte E Keppler M Sandilands E Brunton VG Winder SJ Ng T Frame MC 《Experimental cell research》2007,313(15):3175-3188
Src controls the dynamic actin cytoskeleton in fibroblasts and in cancer cells, although it is not known how direct its effects are. Using FRET/FLIM imaging, we found that wild type Src associates directly, or indirectly, with peripheral beta-actin at integrin adhesions after serum stimulation, and that an active Src kinase domain is essential. Beta-actin can be directly tyrosine-phosphorylated by Src in vitro, and in a Src-dependent manner in cells. Moreover, beta-actin dynamics are suppressed when Src is rendered kinase-inactive. Surprisingly, debilitating mutations in the Src SH2 or SH3 domains do not suppress association of Src with beta-actin. This may therefore be an example of a spatially regulated Src kinase/substrate interaction that is controlling peripheral actin dynamics. Interestingly, there is no FRET between Src and beta-actin at cadherin-mediated cell-cell contacts, despite apparent co-localization there, demonstrating precise spatial specificity of Src/beta-actin complexes. 相似文献
12.
Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. 总被引:59,自引:0,他引:59 下载免费PDF全文
Soluble factors from serum such as lysophosphatidic acid (LPA) are thought to activate the small GTP-binding protein Rho based on their ability to induce actin stress fibers and focal adhesions in a Rho-dependent manner. Cell adhesion to extracellular matrices (ECM) has also been proposed to activate Rho, but this point has been controversial due to the difficulty of distinguishing changes in Rho activity from the structural contributions of ECM to the formation of focal adhesions. To address these questions, we established an assay for GTP-bound cellular Rho. Plating Swiss 3T3 cells on fibronectin-coated dishes elicited a transient inhibition of Rho, followed by a phase of Rho activation. The activation phase was greatly enhanced by serum. In serum-starved adherent cells, LPA induced transient Rho activation, whereas in suspended cells Rho activation was sustained. Furthermore, suspended cells showed higher Rho activity than adherent cells in the presence of serum. These data indicate the existence of an adhesion-dependent negative-feedback loop. We also observed that both cytochalasin D and colchicine trigger Rho activation despite their opposite effects on stress fibers and focal adhesions. Our results show that ECM, cytoskeletal structures and soluble factors all contribute to regulation of Rho activity. 相似文献
13.
A novel mechanism of TGFbeta-induced actin reorganization mediated by Smad proteins and Rho GTPases 总被引:1,自引:0,他引:1
Vardouli L Vasilaki E Papadimitriou E Kardassis D Stournaras C 《The FEBS journal》2008,275(16):4074-4087
14.
G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes activated G protein-coupled receptors (GPCRs). Here, we identify ezrin as a novel non-GPCR substrate of GRK2. GRK2 phosphorylates glutathione S-transferase (GST)-ezrin, but not an ezrin fusion protein lacking threonine 567 (T567), in vitro. These results suggest that T567, the regulatory phosphorylation site responsible for maintaining ezrin in its active conformation, represents the principle site of GRK2-mediated phosphorylation. Two lines of evidence indicate that GRK2-mediated ezrin-radixinmoesin (ERM) phosphorylation serves to link GPCR activation to cytoskeletal reorganization. First, in Hep2 cells muscarinic M1 receptor (M1MR) activation causes membrane ruffling. This ruffling response is ERM dependent and is accompanied by ERM phosphorylation. Inhibition of GRK2, but not rho kinase or protein kinase C, prevents ERM phosphorylation and membrane ruffling. Second, agonist-induced internalization of the beta2-adrenergic receptor (beta2AR) and M1MR is accompanied by ERM phosphorylation and localization of phosphorylated ERM to receptor-containing endocytic vesicles. The colocalization of internalized beta2AR and phosphorylated ERM is not dependent on Na+/H+ exchanger regulatory factor binding to the beta2AR. Inhibition of ezrin function impedes beta2AR internalization, further linking GPCR activation, GRK activity, and ezrin function. Overall, our results suggest that GRK2 serves not only to attenuate but also to transduce GPCR-mediated signals. 相似文献
15.
Shun Nakano Masashi Nishikawa Tomoyo Kobayashi Eka Wahyuni Harlin Takuya Ito Katsuya Sato Tsuyoshi Sugiyama Hisashi Yamakawa Takahiro Nagase Hiroshi Ueda 《The Journal of biological chemistry》2022,298(2)
Rho family small GTPases (Rho) regulate various cell motility processes by spatiotemporally controlling the actin cytoskeleton. Some Rho-specific guanine nucleotide exchange factors (RhoGEFs) are regulated via tyrosine phosphorylation by Src family tyrosine kinase (SFK). We also previously reported that PLEKHG2, a RhoGEF for the GTPases Rac1 and Cdc42, is tyrosine-phosphorylated by SRC. However, the details of the mechanisms by which SFK regulates RhoGEFs are not well understood. In this study, we found for the first time that PLEKHG1, which has very high homology to the Dbl and pleckstrin homology domains of PLEKHG2, activates Cdc42 following activation by FYN, a member of the SFK family. We also show that this activation of PLEKHG1 by FYN requires interaction between these two proteins and FYN-induced tyrosine phosphorylation of PLEKHG1. We also found that the region containing the Src homology 3 and Src homology 2 domains of FYN is required for this interaction. Finally, we demonstrated that tyrosine phosphorylation of Tyr-720 and Tyr-801 in PLEKHG1 is important for the activation of PLEKHG1. These results suggest that FYN is a regulator of PLEKHG1 and may regulate cell morphology through Rho signaling via the interaction with and tyrosine phosphorylation of PLEKHG1. 相似文献
16.
Regulation of Rho and Rac signaling to the actin cytoskeleton by paxillin during Drosophila development 下载免费PDF全文
Chen GC Turano B Ruest PJ Hagel M Settleman J Thomas SM 《Molecular and cellular biology》2005,25(3):979-987
Paxillin is a prominent focal adhesion docking protein that regulates cell adhesion and migration. Although numerous paxillin-binding proteins have been identified and paxillin is required for normal embryogenesis, the precise mechanism by which paxillin functions in vivo has not yet been determined. We identified an ortholog of mammalian paxillin in Drosophila (Dpax) and have undertaken a genetic analysis of paxillin function during development. Overexpression of Dpax disrupted leg and wing development, suggesting a role for paxillin in imaginal disc morphogenesis. These defects may reflect a function for paxillin in regulation of Rho family GTPase signaling as paxillin interacts genetically with Rac and Rho in the developing eye. Moreover, a gain-of-function suppressor screen identified a genetic interaction between Dpax and cdi in wing development. cdi belongs to the cofilin kinase family, which includes the downstream Rho target, LIM kinase (LIMK). Significantly, strong genetic interactions were detected between Dpax and Dlimk, as well as downstream effectors of Dlimk. Supporting these genetic data, biochemical studies indicate that paxillin regulates Rac and Rho activity, positively regulating Rac and negatively regulating Rho. Taken together, these data indicate the importance of paxillin modulation of Rho family GTPases during development and identify the LIMK pathway as a critical target of paxillin-mediated Rho regulation. 相似文献
17.
Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton 总被引:25,自引:0,他引:25
Hall A Nobes CD 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2000,355(1399):965-970
The actin cytoskeleton plays a fundamental role in all eukaryotic cells it is a major determinant of cell morphology and polarity and the assembly and disassembly of filamentous actin structures provides a driving force for dynamic processes such as cell motility, phagocytosis, growth cone guidance and cytokinesis. The ability to reorganize actin filaments is a fundamental property of embryonic cells during development; the shape changes accompanying gastrulation and dorsal closure, for example, are dependent on the plasticity of the actin cytoskeleton, while the ability of cells or cell extensions, such as axons, to migrate within the developing embryo requires rapid and spatially organized changes to the actin cytoskeleton in response to the external environment. Work in mammalian cells over the last decade has demonstrated the central role played by the highly conserved Rho family of small GTPases in signal transduction pathways that link plasma membrane receptors to the organization of the actin cytoskeleton. 相似文献
18.
Ishizaki T Morishima Y Okamoto M Furuyashiki T Kato T Narumiya S 《Nature cell biology》2001,3(1):8-14
Coordination of microtubules and the actin cytoskeleton is important in several types of cell movement. mDia1 is a member of the formin-homology family of proteins and an effector of the small GTPase Rho. It contains the Rho-binding domain in its amino terminus and two distinct regions of formin homology, FH1 in the middle and FH2 in the carboxy terminus. Here we show that expression of mDia1(DeltaN3), an active mDia1 mutant containing the FH1 and FH2 regions without the Rho-binding domain, induces bipolar elongation of HeLa cells and aligns microtubules in parallel to F-actin bundles along the long axis of the cell. The cell elongation and microtubule alignment caused by this mutant is abolished by co-expression of an FH2-region fragment, and expression of mDia1(DeltaN3) containing point mutations in the FH2 region causes an increase in the amount of disorganized F-actin without cell elongation and microtubule alignment. These results indicate that mDia1 may coordinate microtubules and F-actin through its FH2 and FH1 regions, respectively. 相似文献
19.
Trouet D Carton I Hermans D Droogmans G Nilius B Eggermont J 《American journal of physiology. Cell physiology》2001,281(1):C248-C256
We used the whole cell patch-clamp technique in calf pulmonary endothelial (CPAE) cells to investigate the effect of wild-type and mutant c-Src tyrosine kinase on I(Cl,swell), the swelling-induced Cl- current through volume-regulated anion channels (VRAC). Transient transfection of wild-type c-Src in CPAE cells did not significantly affect I(Cl,swell). However, transfection of c-Src with a Ser3Cys mutation that introduces a dual acylation signal and targets c-Src to lipid rafts and caveolae strongly repressed hypotonicity-induced I(Cl,swell) in CPAE cells. Kinase activity was dispensable for the inhibition of I(Cl,swell), since kinase-deficient c-Src Ser3Cys either with an inactivating point mutation in the kinase domain or with the entire kinase domain deleted still suppressed VRAC activity. Again, the Ser3Cys mutation was required to obtain maximal inhibition by the kinase-deleted c-Src. In contrast, the inhibitory effect was completely lost when the Src homology domains 2 and 3 were deleted in c-Src. We therefore conclude that c-Src-mediated inhibition of VRAC requires compartmentalization of c-Src to caveolae and that the Src homology domains 2 and/or 3 are necessary and sufficient for inhibition. 相似文献
20.
Clustering of membrane raft proteins by the actin cytoskeleton 总被引:4,自引:0,他引:4
Cell membranes are laterally organized into functionally discrete domains that include the cholesterol-dependent membrane "rafts." However, how membrane domains are established and maintained remains unresolved and controversial but often requires the actin cytoskeleton. In this study, we used fluorescence resonance energy transfer to measure the role of the actin cytoskeleton in the co-clustering of membrane raft-associated fluorescent proteins (FPs) and FPs targeted to the nonraft membrane fraction. By fitting the fluorescence resonance energy transfer data to an isothermal binding equation, we observed a specific co-clustering of raft-associated donor and acceptor probes that was sensitive to latrunculin B (Lat B), which disrupts the actin cytoskeleton. Conversely, treating with jasplakinolide to enhance actin polymerization increased co-clustering of the raft-associated FPs over that of the nonraft probes. We also observed by immunoblotting experiments that the actin-dependent co-clustering coincided with regulation of the raft-associated Src family kinase Lck. Specifically, Lat B decreased the phosphorylation of the C-terminal regulatory tyrosine of Lck (Tyr505), and combining the Lat B with filipin further decreased the Tyr505 phosphorylation. Furthermore, the Lat B-dependent changes in Lck regulation required CD45 because no significant changes occurred in treated T cells lacking CD45 expression. These data define a role for the actin cytoskeleton in promoting co-clustering of raft-associated proteins and show that this property is important toward regulating raft-associated signaling proteins such as Lck. 相似文献