首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We have demonstrated earlier that protein microenvironments were conserved around disulfide‐bridged cystine motifs with similar functions, irrespective of diversity in protein sequences. Here, cysteine thiol modifications were characterized based on protein microenvironments, secondary structures and specific protein functions. Protein microenvironment around an amino acid was defined as the summation of hydrophobic contributions from the surrounding protein fragments and the solvent molecules present within its first contact shell. Cysteine functions (modifications) were grouped into enzymatic and non‐enzymatic classes. Modifications studied were—disulfide formation, thio‐ether formation, metal‐binding, nitrosylation, acylation, selenylation, glutathionylation, sulfenylation, and ribosylation. 1079 enzymatic proteins were reported from high‐resolution crystal structures. Protein microenvironments around cysteine thiol, derived from above crystal structures, were clustered into 3 groups—buried‐hydrophobic, intermediate and exposed‐hydrophilic clusters. Characterization of cysteine functions were statistically meaningful for 4 modifications (disulfide formation, thioether formation, sulfenylation, and iron/zinc binding) those have sufficient amount of data in the current dataset. Results showed that protein microenvironment, secondary structure and protein functions were conserved for enzymatic cysteine functions, in contrast to the same function from non‐enzymatic cysteines. Disulfide forming enzymatic cysteines were tightly packed within intermediate protein microenvironment cluster, have alpha‐helical conformation and mostly belonged to CxxC motif of electron transport proteins. Disulfide forming non‐enzymatic cysteines did not belong to conserved motif and have variable secondary structures. Similarly, enzymatic thioether forming cysteines have conserved microenvironment compared to non‐enzymatic cystienes. Based on the compatibility between protein microenvironment and cysteine modifications, more efficient drug molecules could be designed against cysteine‐related diseases.  相似文献   

2.
The third variable (V3) domain has been implicated in determining the human immunodeficiency virus (HIV) phenotype, including fusion capacity and monocytotropism. In a large set of primary HIV type 1 (HIV-1) isolates, V3 sequence analysis revealed that fast-replicating, syncytium-inducing isolates contained V3 sequences with a significantly higher positive charge than those of slow-replicating, non-syncytium-inducing monocytotropic isolates. It appeared that these differences in charge could be attributed to highly variable amino acid residues located on either side of the V3 loop, midway between the cysteine residues and the central GPG motif. In non-syncytium-inducing monocytotropic isolates, these residues were negatively charged or uncharged, whereas in syncytium-inducing nonmonocytotropic isolates, either one or both were positively charged. The substitutions at these positions result in changes in the predicted secondary structure of the V3 loop. Our data suggest that two amino acid residues in the highly variable V3 domain are responsible for phenotype differences and point to conformational differences in V3 loops from phenotypically distinct HIV-1 isolates.  相似文献   

3.
Cysteine proteinase inhibitors of the cystatin superfamily have several important functions in plants, including the inhibition of exogenous cysteine proteinases during herbivory or infection. Here we used a maximum-likelihood approach to assess whether plant cystatins, like other proteins implicated in host-pest interactions, have been subject to positive selection during the course of their evolution. Several amino acid sites were identified as being positively selected in cystatins from either Poaceae (monocots) and Solanaceae (dicots). These hypervariable sites were located at strategic positions on the protein: on each side of the conserved glycine residues in the N-terminal trunk, within the first and second inhibitory loops entering the active site of target enzymes, and surrounding the larfav motif, a sequence of unknown function conserved among plant cystatins. Supporting the assumption that positively selected, hypervariable sites are indicative of amino acid sites implicated in functional diversity, mutants of the 8th cystatin unit of tomato multicystatin including alternative residues at positively selected sites in the N-terminal trunk exhibited highly variable affinities for the cysteine proteases papain, cathepsin B and cathepsin H. Overall, these observations support the hypothesis that plant cystatins have been under selective pressure to evolve in response to predatory challenges by herbivorous enemies. They also indicate the potential of site-directed mutagenesis at positively selected sites for the generation of cystatins with improved binding properties.  相似文献   

4.
Among the proteins that accumulate as plant seeds desiccate are several protein families that are composed principally of a tandemly repeated 11-mer amino acid motif. Proteins containing the same motif accumulate in the desiccating leaves of a desiccation-tolerant plant species. This motif is characterized by apolar residues in positions 1, 2, 5 and 9, and charged or amide residues in positions 3, 6, 7, 8 and 11. An α helical arrangement of the 11-mer repeating unit gives an amphiphilic helix whose hydrophobic stripe twists in a right-handed fashion around the helix. Should these proteins dimerize via binding of their hydrophobic faces, a right-handed coiled coil would be formed. Such a structure has not previously been observed. A conceivable function for these proteins in ion sequestration in the desiccated state is proposed.  相似文献   

5.
6.
Snake venom contains a diverse array of proteins and polypeptides. Cytotoxins and short neurotoxins are non-enzymatic polypeptide components of snake venom. The three-dimensional structure of cytotoxin and short neurotoxin resembles a three finger appearance of three-finger protein super family. Different family members of three-finger protein super family are employed in diverse biological functions. In this work we analyzed the cytotoxin, short neurotoxin and related non-toxin proteins of other chordates in terms of functional analysis, amino acid compositional (%) profile, number of amino acids, molecular weight, theoretical isoelectric point (pI), number of positively charged and negatively charged amino acid residues, instability index and grand average of hydropathy with the help of different bioinformatical tools. Among all interesting results, profile of amino acid composition (%) depicts that all sequences contain a conserved cysteine amount but differential amount of different amino acid residues which have a family specific pattern. Involvement in different biological functions is one of the driving forces which contribute the vivid amino acid composition profile of these proteins. Different biological system dependent adaptation gives the birth of enriched bio-molecules. Understanding of physicochemical properties of these proteins will help to generate medicinally important therapeutic molecules for betterment of human lives.  相似文献   

7.
Quasi-repetitive, glycine-rich peptide sequences are widespread in at least three distinct families of proteins: the keratins and other intermediate filament proteins, including nuclear lamins; loricrins, which are major envelope components of terminally differentiated epithelial cells; and single-stranded RNA binding proteins. We propose that such sequences comprise a new structural motif termed the 'glycine loop'. The defining characteristics of glycine loop sequences are: (1) they have the form x(y)n, where x is usually an aromatic or occasionally a long-chain aliphatic residue; y is usually glycine but may include polar residues such as serine, asparagine, arginine, cysteine, and rarely other residues; and the value of n is highly variable, ranging from 1 to 35 in examples identified to date. (2) Glycine-loop-containing domains are thought to form when at least two and to date, as many as 18, such quasi-repeats are configured in tandem, so that the entire domain in a protein may be 50-150 residues long. (3) The average value of n, the pattern of residues found in the x position and the non-glycine substitutions in the y position appear to be characteristic of a given glycine loop containing domain, whereas the actual number of repeats is less constrained. (4) Glycine loop sequences display a high degree of evolutionary sequence variability and even allelic variations among different individuals of the same vertebrate species. (5) Glycine loop sequences are expected to be highly flexible, but possess little other regular secondary structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
The three-dimensional crystal structure of recombinant annexin Gh1 from Gossypium hirsutum (cotton fibre) has been determined and refined to the final R-factor of 0.219 at the resolution of 2.1 A. This plant annexin consists of the typical 'annexin fold' and is similar to the previously solved bell pepper annexin Anx24(Ca32), but significant differences are seen when compared to the structure of nonplant annexins. A comparison with the structure of the mammalian annexin AnxA5 indicates that canonical calcium binding is geometrically possible within the membrane loops in domains I and II of Anx(Gh1) in their present conformation. All plant annexins possess a conserved tryptophan residue in the AB loop of the first domain; this residue was found to adopt both a loop-in and a loop-out conformation in the bell pepper annexin Anx24(Ca32). In Anx(Gh1), the conserved tryptophan residue is in a surface-exposed position, half way between both conformations observed in Anx24(Ca32). The present structure reveals an unusual sulfur cluster formed by two cysteines and a methionine in domains II and III, respectively. While both cysteines adopt the reduced thiolate forms and are separated by a distance of about 5.5 A, the sulfur atom of the methionine residue is in their close vicinity and apparently interacts with both cysteine sulfur atoms. While the cysteine residues are conserved in at least five plant annexins and in several mammalian members of the annexin family of proteins, the methionine residue is conserved only in three plant proteins. Several of these annexins carrying the conserved residues have been implicated in oxidative stress response. We therefore hypothesize that the cysteine motif found in the present structure, or possibly even the entire sulfur cluster, forms the molecular basis for annexin function in oxidative stress response.  相似文献   

10.
11.
Transmembrane helices and the helical bundles which they form are the major building blocks of membrane proteins. Since helices are characterized by a given periodicity, it is possible to search for patterns of traits which typify one side of the helix and not the other (e.g. amphipathic helices contain a polar and apolar sides). Using Fourier transformation we have analyzed solved membrane protein structures as well as sequences of membrane proteins from the Swiss-Prot database. The traits searched included aromaticity, volume and ionization. While a number of motifs were already recognized in the literature, many were not. One particular example involved helix VII of lactose permease which contains seven aromatic residues on six helical turns. Similarly six glycine residues in four consecutive helical turns were identified as forming a motif in the chloride channel. A tabulation of all the findings is presented as well as a possible rationalization of the function of the motif.  相似文献   

12.
Lack of crystal structure data of folate binding proteins has left so many questions unanswered (for example, important residues in active site, binding domain, important amino acid residues involved in interactions between ligand and receptor). With sequence alignment and PROSITE motif identification, we attempted to answer evolutionarily significant residues that are of functional importance for ligand binding and that form catalytic sites. We have analyzed 46 different FRs and FBP sequences of various organisms obtained from Genbank. Multiple sequence alignment identified 44 highly conserved identical amino acid residues with 10 cysteine residues and 12 motifs including ECSPNLGPW (which might help in the structural stability of FR).  相似文献   

13.
M Kster  T Pieler  A Pting    W Knchel 《The EMBO journal》1988,7(6):1735-1741
We have screened Xenopus laevis cDNA and genomic libraries for finger motif encoding sequences by use of a synthetic oligonucleotide probe coding for a stretch of conserved amino acids, the H/C-link, which joins individual finger loops in several multi-fingered proteins. Our studies reveal that a large number of different cDNA clones encode amino acid sequences predicting multiple units of the metal-coordinating finger structure. Derived proteins are different from each other as well as from the two examples of Xenopus finger proteins reported to date, TFIIIA and X.fin. The 109 finger repeats characterized are derived from 14 different cDNA clones and have been analysed for the presence of conserved and highly variable amino acids, revealing a close structural relatedness among each other as well as with a few selected finger domains from Drosophila and mouse proteins. The results from this comparative sequence analysis are also discussed in terms of the existing models for DNA binding. All sequences are identified in an ovary cDNA library but the patterns of mRNA level for individual finger clones vary greatly during early development. The prevalence of these structures in the oocyte suggests that part of the maternal information for the realization of the developmental program utilized in Xenopus embryogenesis might be transmitted in the form of regulatory, nucleic-acid-binding proteins.  相似文献   

14.
Shiu JH  Chen CY  Chang LS  Chen YC  Chen YC  Lo YH  Liu YC  Chuang WJ 《Proteins》2004,57(4):839-849
Gamma-bungarotoxin, a snake venom protein isolated from Bungarus multicinctus, contains 68 amino acids, including 10 cysteine residues and a TAVRGDGP sequence at positions 30-37. The solution structure of gamma-bungarotoxin has been determined by nuclear magnetic resonance (NMR) spectroscopy. The structure is similar to that of the short-chain neurotoxins that contain three loops extending from a disulfide-bridged core. The tripeptide Arg-Gly-Asp (RGD) sequence is located at the apex of the flexible loop and is similar to that of other RGD-containing proteins. However, gamma-bungarotoxin only inhibits platelet aggregations with an IC50 of 34 microM. To understand its weak activity in inhibiting platelet aggregation, we mutated the RGD loop sequences of rhodostomin, a potent platelet aggregation inhibitor, from RIPRGDMP to TAVRGDGP, resulting in a 196-fold decrease in activity. In addition, the average Calpha-to-Calpha distance between R33 and G36 of gamma-bungarotoxin is 6.02 A, i.e., shorter than that of other RGD-containing proteins that range from 6.55 to 7.46 A. These results suggested that the amino acid residues flanking the RGD motif might control the width of the RGD loop. This structural difference may be responsible for its decrease in platelet aggregation inhibition compared with other RGD-containing proteins.  相似文献   

15.
Acher FC  Bertrand HO 《Biopolymers》2005,80(2-3):357-366
A motif foramino acid recognition by proteins or domains of the periplasmic binding protein-like I superfamily has been identified. An initial pattern of 5 residues was based on a multiple sequence alignment of selected proteins of that fold family and on common structural features observed in the crystal structure of some members of the family [leucine isoleucine valine binding protein (LIVBP), leucine binding protein (LBP), and metabotropic glutamate receptor type 1 (mGlu1R) amino terminal domain)]. This pattern was used against the PIR-NREF sequence database and further refined to retrieve all sequences of proteins that belong to the family and eliminate those that do not belong to it. A motif of 8 residues was finally selected to build up the general signature. A total of 232 sequences were retrieved. They were found to belong to only three families of proteins: bacterial periplasmic binding proteins (PBP, 71 sequences), family 3 (or C) of G-protein coupled receptor (GPCR) (146 sequences), and plant putative ionotropic glutamate receptors (iGluR, 15 sequences). PBPs are known to adopt a bilobate structure also named Venus flytrap domain, or LIVBP domain in the present case. Family 3/C GPCRs are also known to hold such a domain. However, for plant iGluRs, it was previously detected by classical similarity searches but not specifically described. Thus plant iGluRs carry two Venus flytrap domains, one that binds glutamate and an additional one that would be a modulatory LIVBP domain. In some cases, the modulator binding to that domain would be an amino acid.  相似文献   

16.
A protein acting as a powerful inhibitor of plant pectin methylesterase was isolated from kiwi (Actinidia chinensis) fruit. The complete amino-acid sequence of the pectin methylesterase inhibitor (PMEI) was determined by direct protein analysis. The sequence comprises 152 amino-acid residues, accounting for a molecular mass of 16 277 Da. The far-UV CD spectrum indicated a predominant alpha-helix conformation in the secondary structure. The protein has five cysteine residues but neither tryptophan nor methionine. Analysis of fragments obtained after digestion of the protein alkylated without previous reduction identified two disulfide bridges connecting Cys9 with Cys18, and Cys74 with Cys114; Cys140 bears a free thiol group. A database search pointed out a similarity between PMEI and plant invertase inhibitors. In particular, the four Cys residues, which in PMEI are involved in the disulfide bridges, are conserved. This allows us to infer that also in the homologous proteins, whose primary structure was deduced only by cDNA sequencing, those cysteine residues are engaged in two disulfide bridges, and constitute a common structural motif. The comparison of the sequence of these inhibitors confirms the existence of a novel class of proteins with moderate but significant sequence conservation, comprising plant proteins acting as inhibitors of sugar metabolism enzymes, and probably involved in various steps of plant development.  相似文献   

17.
Phytophthora capsici is an aggressive plant pathogen that affects solanaceous and cucurbitaceous hosts. Necrosis-inducing Phytophthora proteins (NPPs) are a group of secreted toxins found particularly in oomycetes. Several NPPs from Phytophthora species trigger plant cell death and activate host defense gene expression. We isolated 18 P. capsici NPP genes, of which 12 were active during hypha growth from a Phytophthora stain isolated from pepper (Capsicum annuum) plants in China. The 18 predicted proteins had a sequence homology of 46.26%. The 18 Pcnpp sequences had a conserved GHRHDWE motif and fell into two groups. Eleven sequences in group 1 had two conserved cysteine residues, whereas the other seven sequences in group 2 lacked these two cysteine residues. A phylogenetic tree was constructed on the basis of the alignment of the predicted protein sequences of 52 selected NPP genes from oomycetes, fungi and bacteria from Genbank. The tree did not rigorously follow the taxonomic classification of the species; all the NPPs from oomycetes formed their own clusters, while fungal sequences were grouped into two separate clades, indicating that based on NPPs, we can separate oomycetes from fungi and bacteria, and that expansion of the NPP family was a feature of Phytophthora evolution.  相似文献   

18.
Cysteine‐rich proteins (CRPs) encoded by some plant viruses in diverse genera function as RNA silencing suppressors. Within the N‐terminal portion of CRPs encoded by furoviruses, there are six conserved cysteine residues and a Cys–Gly–X–X–His motif (Cys, cysteine; Gly, glycine; His, histidine; X, any amino acid residue) with unknown function. The central domains contain coiled‐coil heptad amino acid repeats that usually mediate protein dimerization. Here, we present evidence that the conserved cysteine residues and Cys–Gly–X–X–His motif in the CRP of Chinese wheat mosaic virus (CWMV) are critical for protein stability and silencing suppression activity. Mutation of a leucine residue in the third coiled‐coil heptad impaired CWMV CRP activity for suppression of local silencing, but not for the promotion of cell‐to‐cell movement of Potato virus X (PVX). In planta and in vitro analysis of wild‐type and mutant proteins indicated that the ability of the CRP to self‐interact was correlated with its suppression activity. Deletion of up to 40 amino acids at the C‐terminus did not abolish suppression activity, but disrupted the association of CRP with endoplasmic reticulum (ER), and reduced its activity in the enhancement of PVX symptom severity. Interestingly, a short region in the C‐terminal domain, predicted to form an amphipathic α‐helical structure, was responsible for the association of CWMV CRP with ER. Overall, our results demonstrate that the N‐terminal and central regions are the functional domains for suppression activity, whereas the C‐terminal region primarily functions to target CWMV CRP to the ER.  相似文献   

19.
The scavenger receptor cysteine-rich (SRCR) proteins form an archaic group of metazoan proteins characterized by the presence of SRCR domains. These proteins are classified in group A and B based on the number of conserved cysteine residues in their SRCR domains, i.e. six for group A and eight for group B. The protein DMBT1 (deleted in malignant brain tumors 1), which is identical to salivary agglutinin and lung gp-340, belongs to the group B SRCR proteins and is considered to be involved in tumor suppression and host defense by pathogen binding. In a previous study we used nonoverlapping synthetic peptides covering the SRCR consensus sequence to identify a 16-amino acid bacteria-binding protein loop (peptide SRCRP2; QGRVEVLYRGSWGTVC) within the SRCR domains. In this study, using overlapping peptides, we pinpointed the minimal bacteria-binding site on SRCRP2, and thus DMBT1, to an 11-amino acid motif (DMBT1 pathogen-binding site 1 or DMBT1pbs1; GRVEVLYRGSW). An alanine substitution scan revealed that VEVL and Trp are critical residues in this motif. Bacteria binding by DMBT1pbs1 was different from the bacteria binding by the macrophage receptor MARCO in which an RXR motif was critical. In addition, the homologous consensus sequences of a number of SRCR proteins were synthesized and tested for bacteria binding. Only consensus sequences of DMBT1 orthologues bound bacteria by this motif.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号