首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The health benefits conferred by numerous carotenoids have led to attempts to elevate their levels in foodstuffs. Tomato fruit and its products contain the potent antioxidant lycopene and are the predominant source of lycopene in the human diet. In addition, tomato products are an important source of provitamin A (β-carotene). The presence of other health promoting phytochemicals such as tocopherols and flavonoids in tomato has led to tomato and its products being termed a functional food. Over the past decade genetic/metabolic engineering of carotenoid biosynthesis and accumulation has resulted in the generation of transgenic varieties containing high lycopene and β-carotene contents. In achieving this important goal many fundamental lessons have been learnt. Most notably is the observation that the endogenous carotenoid pathways in higher plants appear to resist engineered changes. Typically, this resistance manifests itself through intrinsic regulatory mechanisms that are “silent” until manipulation of the pathway is initiated. These mechanisms may include feedback inhibition, forward feed, metabolite channelling, and counteractive metabolic and cellular perturbations. In the present article we will review progress made in the genetic engineering of carotenoids in tomato fruit, highlighting the limiting regulatory mechanisms that have been observed experimentally. The predictability and efficiency of the present engineering strategies will be questioned and the potential of more Systems and Synthetic Biology approaches to the enhancement of carotenoids will be assessed.  相似文献   

2.
Carotenoids and tocopherols are lipophilic antioxidants with important functions in plants and humans. Due to their nutritional value and putative health benefits, they have become a focus of intensive research. The identification of all genes of the carotenoid and tocopherol biosynthesis has enabled the manipulation of their biosynthetic pathways, aiming for quantitative and qualitative improvement. In plants, carotenoids and tocopherols are of crucial importance because of their protective abilities, which help to keep them alive even under light stress conditions. A wealth of information has accumulated concerning the responses of plants to various environmental stress factors. Here, we summarize some of the recent data concentrating on the impact and possible interaction of lipophilic antioxidants in mutants and transgenic plants with altered status of lipophilic antioxidants.  相似文献   

3.
4.
5.
Tomatoes are an excellent source of the carotenoid lycopene, a compound that is thought to be protective against prostate cancer. They also contain small amounts of flavonoids in their peel ( approximately 5-10 mg/kg fresh weight), mainly naringenin chalcone and the flavonol rutin, a quercetin glycoside. Flavonols are very potent antioxidants, and an increasing body of epidemiological data suggests that high flavonoid intake is correlated with a decreased risk for cardiovascular disease. We have upregulated flavonol biosynthesis in the tomato in order to generate fruit with increased antioxidant capacity and a wider range of potential health benefit properties. This involved transformation of tomato with the Petunia chi-a gene encoding chalcone isomerase. Resulting transgenic tomato lines produced an increase of up to 78 fold in fruit peel flavonols, mainly due to an accumulation of rutin. No gross phenotypical differences were observed between high-flavonol transgenic and control lines. The phenotype segregated with the transgene and demonstrated a stable inheritance pattern over four subsequent generations tested thus far. Whole-fruit flavonol levels in the best of these lines are similar to those found in onions, a crop with naturally high levels of flavonol compounds. Processing of high-flavonol tomatoes demonstrated that 65% of flavonols present in the fresh fruit were retained in the processed paste, supporting their potential as raw materials for tomato-based functional food products.  相似文献   

6.
This research is focused on the antioxidant properties of dietary components, in particular phenolics and carotenoids and the assessment of the contribution of the combined antioxidants to the total antioxidant activity (TAA) of tomato fruit. The aim of this study was to analyse the effects of processing on the antioxidant properties of tomato. The effects of three different methods of processing fresh tomatoes into tomato sauce were investigated with respect to the antioxidant properties of the fruit. Identification and quantification of the main carotenoids and flavonoids present in tomatoes was achieved by HPLC analysis and the effect on the concentration and availability of these compounds was investigated at different stages of the processing. The processing affected mainly naringenin causing a reduction in the concentration. Conversely, levels of chlorogenic acid were increased suggesting an improvement in availability of this compound to extraction. The concentration of all- trans -lycopene was also increased following processing. Less than 10% isomerisation of all- trans -lycopene to the cis form was detected for all the methods analysed. The effects of processing on the overall antioxidant activity support the theory of a general improvement in availability of individual antioxidants. For both hydrophilic and lipophilic extracts TAA values were increased.  相似文献   

7.
This research is focused on the antioxidant properties of dietary components, in particular phenolics and carotenoids and the assessment of the contribution of the combined antioxidants to the total antioxidant activity (TAA) of tomato fruit. The aim of this study was to analyse the effects of processing on the antioxidant properties of tomato. The effects of three different methods of processing fresh tomatoes into tomato sauce were investigated with respect to the antioxidant properties of the fruit. Identification and quantification of the main carotenoids and flavonoids present in tomatoes was achieved by HPLC analysis and the effect on the concentration and availability of these compounds was investigated at different stages of the processing. The processing affected mainly naringenin causing a reduction in the concentration. Conversely, levels of chlorogenic acid were increased suggesting an improvement in availability of this compound to extraction. The concentration of all- trans -lycopene was also increased following processing. Less than 10% isomerisation of all- trans -lycopene to the cis form was detected for all the methods analysed. The effects of processing on the overall antioxidant activity support the theory of a general improvement in availability of individual antioxidants. For both hydrophilic and lipophilic extracts TAA values were increased.  相似文献   

8.
Carotenoids, found in many fruits and vegetables, are antioxidants that protect human skin from UV radiation. In humans, fruit and vegetable intake increases carotenoid contents in skin, which are conventionally assessed by invasive blood tests. In this study, 47 healthy Korean subjects (volunteers) consumed fruit juice containing tomato, apple, strawberry, or grape three times per week for 6 weeks. Skin antioxidant levels were measured by non-invasive resonance Raman spectroscopy. The correlation between skin carotenoid (SC) score with demographic data (age, height, weight) and juice supplementation and changes in SC scores among groups were analyzed. Variations in skin antioxidant levels increased with juice supplementation (p < 0.05). Fruit juice intake was significantly correlated with SC score, indicating increased skin antioxidant levels. Grape and tomato increased skin antioxidant levels and showed higher antioxidant activity than other fruits. Fruit juices containing high levels of carotenoids and antioxidants may provide modest benefits to human health.  相似文献   

9.
10.
The accumulation of carotenoids in higher plants is regulated by the environment, tissue type and developmental stage. In Brassica napus leaves, beta-carotene and lutein were the main carotenoids present while petals primarily accumulated lutein and violaxanthin. Carotenoid accumulation in seeds was developmentally regulated with the highest levels detected at 35-40 days post anthesis. The carotenoid biosynthesis pathway branches after the formation of lycopene. One branch forms carotenoids with two beta rings such as beta-carotene, zeaxanthin and violaxanthin, while the other introduces both beta- and epsilon-rings in lycopene to form alpha-carotene and lutein. By reducing the expression of lycopene epsilon-cyclase (epsilon-CYC) using RNAi, we investigated altering carotenoid accumulation in seeds of B. napus. Transgenic seeds expressing this construct had increased levels of beta-carotene, zeaxanthin, violaxanthin and, unexpectedly, lutein. The higher total carotenoid content resulting from reduction of epsilon-CYC expression in seeds suggests that this gene is a rate-limiting step in the carotenoid biosynthesis pathway. epsilon-CYC activity and carotenoid production may also be related to fatty acid biosynthesis in seeds as transgenic seeds showed an overall decrease in total fatty acid content and minor changes in the proportions of various fatty acids.  相似文献   

11.
Maternal allocation of antioxidants to egg yolk has been shown to affect early embryonic development and nestling survival. In environments with high levels of anthropogenic pollution, antioxidants (such as carotenoids) are important to protect the body from elevated oxidative stress. Thus, female allocation of antioxidants to yolk may be traded off against self-maintenance. Here we investigate maternal reproductive investment with respect to yolk carotenoid content and composition in relation to subsequent female condition and carotenoid status in urban and rural great tits Parus major. We found no differences between the urban and rural populations in total yolk carotenoids, egg mass, clutch size, hatching success, or female carotenoid status. Interestingly, however, rural eggs contained more zeaxanthin, a more potent antioxidant than lutein, which suggests that rural embryos have better antioxidant protection than urban embryos. Whether rural females actively transfer more zeaxanthin to the yolk or whether it passively reflects differences in dietary access or uptake needs to be further investigated. This highlights the importance of carotenoid identity and composition in future studies of carotenoid physiology, ecology, and signaling.  相似文献   

12.
Carotenoids are biologically active pigments, which are important for animals due to their dual role in health maintenance and ornamental signalling. In adult birds, immunostimulatory properties of carotenoids have been repeatedly demonstrated while much less is known about the importance of carotenoids as antioxidants. We studied the relationships between plasma carotenoid levels, as well as total antioxidant protection, and various hemato-serological health state indices in female great tits (Parus major L.), incubating their second clutches in two contrasting (coniferous and deciduous) habitats in southwest Estonia. To manipulate reproductive effort, four eggs were removed from half of the clutches during laying to stimulate females to lay additional eggs. However, egg removal had no effect on the final number of eggs laid. Plasma carotenoid levels increased seasonally in parallel with caterpillar food availability. However, no between-habitat differences in carotenoid levels, total antioxidant capacity, or indices of health state could be found despite the apparently better feeding conditions in the coniferous habitat. No correlation was detected between plasma carotenoid levels and measures of total antioxidant capacity, which suggests that at least for the adult birds feeding on naturally carotenoid-rich diet, antioxidant function of carotenoids is not of primary importance. A strong non-linear association between the measures of antioxidant protection and leukocytic markers of inflammation was found, which suggests that measures of total antioxidant capacity deserve further attention in ecophysiological studies as potential indicators of immunopathology.  相似文献   

13.
The fungus Fusarium fujikuroi (Gibberella fujikuroi MP-C) produces metabolites of biotechnological interest, such as gibberellins, bikaverins, and carotenoids. Gibberellin and bikaverin productions are induced upon nitrogen exhaustion, while carotenoid accumulation is stimulated by light. We evaluated the effect of nitrogen availability on carotenogenesis in comparison with bikaverin and gibberellin production in the wild type and in carotenoid-overproducing mutants (carS). Nitrogen starvation increased carotenoid accumulation in all strains tested. In carS strains, gibberellin and bikaverin biosynthesis patterns differed from those of the wild type and paralleled the expression of key genes for both pathways, coding for geranylgeranyl pyrophosphate (GGPP) and kaurene synthases for the former and a polyketide synthase for the latter. These results suggest regulatory connections between carotenoid biosynthesis and nitrogen-controlled biosynthetic pathways in this fungus. Expression of gene ggs1, which encodes a second GGPP synthase, was also derepressed in the carS mutants, suggesting the participation of Ggs1 in carotenoid biosynthesis. The carS mutations did not affect genes for earlier steps of the terpenoid pathway, such as fppS or hmgR. Light induced carotenoid biosynthesis in the wild type and carRA and carB levels in the wild-type and carS strains irrespective of nitrogen availability.  相似文献   

14.
15.
Carotenoids, some of which are provitamin A, have a range of diverse biological functions and actions, especially in relation to human health. For example, carotenoids are known to be crucial for normal vision and have been associated with reducing the risk of several degenerative diseases including cancer. The putative advantage of modifying and engineering the carotenoid biosynthetic pathways is obvious: to provide sources for the isolation of desired carotenoids or to generate food plants with increased carotenoid content. This article reviews the studies of carotenoid production in heterologous microorganisms and the engineering of crop plants using manipulated carotenoid biosynthesis.  相似文献   

16.
龚文芳  路立京  刘鑫  陈喜文  陈德富 《遗传》2013,35(2):233-240
雨生红球藻是一种淡水浮游单细胞绿藻, 逆境条件下可积累大量的类胡萝卜素。番茄红素是类胡萝卜素中的一种, 是类胡萝卜素合成代谢中的一个重要中间产物。番茄红素β-环化酶(LycB)是催化番茄红素形成β-胡萝卜素的关键酶。文章以杜氏盐藻lycB基因为干扰序列, 构建了含卡那霉素与阿特拉津双抗性的RNAi载体p1301-BS-RNAi。将其电转化进雨生红球藻细胞, 经抗性筛选、基因组PCR及RT-PCR筛选, 获得了16个独立的干扰株系。选取生长良好的7个进行高光诱导, 发现其番茄红素含量增加了99.4%, β-胡萝卜素含量减少了48.4%, 即通过异源的lycB-RNAi基因沉默可抑制番茄红素向β-胡萝卜素的转化。对比分析发现, 番茄红素增加量仅是β-胡萝卜素减少量的5%, 表明因lycB-RNAi抑制而产生的番茄红素的95%又被其他通路转换成了其他代谢产物, 因此要实现雨生红球藻番茄红素含量的大幅增长, 需协同调控其他代谢通路。  相似文献   

17.
This study was executed to determine phytochemical content i.e. total carotenoids, phenolics and flavonoids, and antioxidant ability expressed in the form of FRAP, CUPRAC and ABTS activity among different coloured tropical carrots (orange, red, yellow, rainbow and black carrot) developed at ICAR-IIVR, Varanasi, Uttar Pradesh, India. Overall, within different colour group, the extent of variation for various phytochemical content and antioxidant potentiality is narrow i.e. ranged from 1.04- to 3.21-fold; but at the same time, the genotypic variability across genotypes is too wide which varied 20.90- to 57.92-fold for phytochemical and antioxidants is an indication of broad genetic base of carrot germplasm. Among all the carrots, black carrot had an exceptionally high content of total phenolics and flavonoids, and thereby led to the highest antioxidant ability in the terms of FRAP, CUPRAC and ABTS activity expressing about 76–83% relative potentiality followed by rainbow carrot, and least in orange, red and yellow carrot (black carrot?>?rainbow carrot?>?red carrot?≈?orange carrot?≈?yellow carrot). The content of phenolics and flavonoids were highly correlated with antioxidant activity (0.955** to 0.992**). However, the most cultivated and consumed carrots, orange and red one, possessed higher amount of carotenoids. The content of carotenoids negatively correlated with total phenolics, flavonoids and antioxidants activity (??0.612** to ??0.627**). Broad genetic base and selection based on total phenolics content could be pivotal in the future breeding to harness the genetic wealth of carrot efficiently.  相似文献   

18.
Carotenoids are natural pigments and antioxidants found in fruits and vegetables such as carrot, tomato, orange, mango, yellow corn, pumpkin, and mamey. In this study, we evaluated the antioxidant potential of mamey (Pouteria sapota) carotenoids and compared them to carrot (Daucus carota) carotenoids. The carotenoids were extracted from mamey and carrot, and their antioxidant capacity were determined via in vitro (ABTS method) and in vivo assays (resistance against oxidative stress in Caenorhabditis elegans). The carotenoid contents in mamey and carrot were 4.42 ± 0.12 and 5.47 ± 0.04 mg β-carotene/100 g, respectively. Despite the differences between the carotenoid contents in both products (p < 0.05), the in vitro antioxidant capacity results showed no significant differences between the extracts (p > 0.05). The mamey and carrot carotenoid extracts decreased the oxidative damage in C. elegans by 20–30% and 30–40%, respectively. Both extracts increased the resistance and enhanced the survival of the nematodes, and showed better effects than pure β-carotene, probably owing to the complex mixture in the carotenoid extracts. These results suggest that mamey is a good alternative source of carotenoids and that it protects against oxidative stress in C. elegans. The protective effect of mamey carotenoids was similar to the effect of carrot carotenoids.  相似文献   

19.
Brassica vegetables possess high levels of antioxidant metabolites associated with beneficial health effects including vitamins, carotenoids, anthocyanins, soluble sugars and phenolics. Until now, no reports have been documented on the genetic basis of the antioxidant activity (AA) in Brassicas and the content of metabolites with AA like phenolics, anthocyanins and carotenoids. For this reason, this study aimed to: (1) study the relationship among different electron transfer (ET) methods for measuring AA, (2) study the relationship between these methods and phenolic, carotenoid and anthocyanin content, and (3) find QTLs of AA measured with ET assays and for phenolic, carotenoid and anthocyanin contents in leaves and flower buds in a DH population of B. oleracea as an early step in order to identify genes related to these traits. Low correlation coefficients among different methods for measuring AA suggest that it is necessary to employ more than one method at the same time. A total of 19 QTLs were detected for all traits. For AA methods, seven QTLs were found in leaves and six QTLs were found in flower buds. Meanwhile, for the content of metabolites with AA, two QTLs were found in leaves and four QTLs were found in flower buds. AA of the mapping population is related to phenolic compounds but also to carotenoid content. Three genomic regions determined variation for more than one ET method measuring AA. After the syntenic analysis with A. thaliana, several candidate genes related to phenylpropanoid biosynthesis are proposed for the QTLs found.  相似文献   

20.
The characteristic pigmentation of ripe tomato fruit is due to the deposition of carotenoid pigments. In tomato, numerous colour mutants exist. The Cnr tomato mutant has a colourless, non-ripening phenotype. In this work, carotenoid formation in the Cnr mutant has been studied at the biochemical level. The carotenoid composition of Ailsa Craig (AC) and Cnr leaves was qualitatively and quantitatively similar. However, Cnr fruits had low levels of total carotenoids and lacked detectable levels of phytoene and lycopene. The presence of normal tocopherols and ubiquinone-9 levels in the ripe Cnr fruits suggested that other biosynthetically related isoprenoids were unaffected by the alterations to carotenoid biosynthesis. In vitro assays confirmed the virtual absence of phytoene synthesis in the ripe Cnr fruit. Extracts from ripe fruit of the Cnr mutant also revealed a reduced ability to synthesise the carotenoid precursor geranylgeranyl diphosphate (GGPP). These results suggest that besides affecting the first committed step in carotenoid biosynthesis (phytoene synthase) the Cnr mutation also affects the formation of the isoprenoid precursor (GGPP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号