首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 520 毫秒
1.

Background

Ro ribonucleoprotein particles (Ro RNPs) consist of a non-coding Y RNA bound by Ro60, La and possibly other proteins. The physiological function of Ro RNPs is controversial as divergent functions have been reported for its different constituents. We have recently shown that Y RNAs are essential for the initiation of mammalian chromosomal DNA replication, whereas Ro RNPs are implicated in RNA stability and RNA quality control. Therefore, we investigate here the functional consequences of RNP formation between Ro60, La and nucleolin proteins with hY RNAs for human chromosomal DNA replication.

Methodology/Principal Findings

We first immunoprecipitated Ro60, La and nucleolin together with associated hY RNAs from HeLa cytosolic cell extract, and analysed the protein and RNA compositions of these precipitated RNPs by Western blotting and quantitative RT-PCR. We found that Y RNAs exist in several RNP complexes. One RNP comprises Ro60, La and hY RNA, and a different RNP comprises nucleolin and hY RNA. In addition about 50% of the Y RNAs in the extract are present outside of these two RNPs. Next, we immunodepleted these RNP complexes from the cytosolic extract and tested the ability of the depleted extracts to reconstitute DNA replication in a human cell-free system. We found that depletion of these RNP complexes from the cytosolic extract does not inhibit DNA replication in vitro. Finally, we tested if an excess of recombinant pure Ro or La protein inhibits Y RNA-dependent DNA replication in this cell-free system. We found that Ro60 and La proteins do not inhibit DNA replication in vitro.

Conclusions/Significance

We conclude that RNPs containing hY RNAs and Ro60, La or nucleolin are not required for the function of hY RNAs in chromosomal DNA replication in a human cell-free system, which can be mediated by Y RNAs outside of these RNPs. These data suggest that Y RNAs can support different cellular functions depending on associated proteins.  相似文献   

2.
Ro RNPs are evolutionarily conserved ribonucleoprotein particles that consist of a small RNA, known as Y RNA, associated with several proteins, such as La, Ro60, and Ro52. The Y RNAs (Y1-Y5), which are transcribed by RNA polymerase III, have been shown to reside almost exclusively in the cytoplasm as Ro RNPs. To obtain more insight into the nuclear export pathway of Y RNAs, hY1 RNA export was studied in Xenopus laevis oocytes. Injection of various hY1 RNA mutants showed that an intact Ro60 binding site is a prerequisite for nuclear export, whereas the presence of an intact La binding site resulted in strong nuclear retention of hY1 RNA. Competition studies with various classes of RNAs indicated that, in addition to Ro60, another titratable factor was necessary for nuclear export of hY1 RNA. This factor appears also to be involved in nuclear export of tRNA. Because export of hY1 RNA could not be blocked by a synthetic peptide containing the recently identified nuclear export signal of the HIV-1 Rev protein, nuclear export of hY1 RNA does not seem to be dependent on a Rev-like nuclear export signal.  相似文献   

3.
The human Y RNAs, small RNAs with an unknown function, are complexed with at least three proteins: the 60,000 M(r) Ro protein (Ro60), the 52,000 M(r) Ro protein (Ro52) and the La protein (La). In this study we examined the intermolecular interactions between the components of these so-called Ro ribonucleoprotein (Ro RNP) complexes. Incubation of 32P-labelled hY1 RNA in HeLa S100 extract allows the reconstitution of Ro RNP complexes, which were analysed by immunoprecipitation with monospecific antisera. By immunodepletion of HeLa S100 extracts for either Ro60, Ro52 or La, followed by supplementation with recombinant Ro60 or La, it was demonstrated that both Ro60 and La bind to hY1 RNA directly without being influenced by one of the other proteins. However, binding of Ro52 to hY1 RNA required the presence of Ro60, which strongly suggests that the association of Ro52 with Ro RNPs is mediated by protein-protein interactions between Ro60 and Ro52.  相似文献   

4.
Human Ro ribonucleoproteins (RNPs) are composed of one of the four small Y RNAs and at least two proteins, Ro60 and La; association of additional proteins including the Ro52 protein and calreticulin has been suggested, but clear-cut evidence is still lacking. Partial purification of Ro RNPs from HeLa S100 extracts allowed characterization of several subpopulations of Ro RNPs with estimated molecular masses of between 150 and 550 kDa. The majority of these complexes contained Ro60 and La, whereas only a small proportion of Ro52 appeared to be associated with Ro RNPs. To identify novel Y RNA-associated proteins in vitro, binding of cytoplasmic proteins to biotinylated Y RNAs was investigated. In these reconstitution experiments, several proteins with estimated molecular masses of 80, 68, 65, 62, 60 and 53 kDa, the latter two being immunologically distinct from Ro60 and Ro52, respectively, appeared to bind specifically to Y RNAs. Furthermore, autoantibodies to these proteins were found in sera from patients with systemic lupus erythematosus. The proteins bound preferentially to Y1 and Y3 RNA but, with the exception of the 53-kDa protein, only weakly to Y4 RNA and not at all to Y5 RNA. Coprecipitation of the 80, 68, 65, and 53-kDa proteins by antibodies to Ro60 and La was observed, suggesting that at least a proportion of the novel proteins may reside on the same particles as La and/or Ro60. Finally, the binding sites for these proteins on Y1 RNA were clearly distinct from the Ro60-binding site involving a portion of the large central loop 2, which was found to be indispensable for binding of the 80, 68, 65 and 53-kDa proteins, as well as the stem 3-loop 3 and stem 2-loop 1 regions. Interestingly, truncation of the La-binding site resulted in decreased binding of the novel proteins (but not of Ro60), indicating La to be required for efficient association. Taken together, these results suggest the existence of further subpopulations of Ro RNPs or Y RNPs, consistent with the heterogeneous characteristics observed for these particles in the biochemical fractionation experiments.  相似文献   

5.
Xenopus laevis oocytes have been used to determine the intracellular localization of components of Ro ribonucleoprotein particles (Ro RNPs) and to study the assembly of these RNA-protein complexes. Microinjection of the protein components of human Ro RNPs, i.e., La, Ro60, and Ro52, in X. laevis oocytes showed that all three proteins are able to enter the nucleus, albeit with different efficiencies. In contrast, the RNA components of human Ro RNPs (the Y RNAs) accumulate in the X. laevis cytoplasm upon injection. Localization studies performed at low temperatures indicated that both nuclear import of Ro RNP proteins and nuclear export of Y RNAs are mediated by active transport mechanisms. Immunoprecipitation experiments using monospecific anti-La and anti-Ro60 antibodies showed that the X. laevis La and Ro60 homologues were cross-reactive with the respective antibodies and that both X. laevis proteins were able to interact with human Y1 RNA. Further analyses indicated that: (a) association of X. laevis La and Ro60 with Y RNAs most likely takes place in the nucleus; (b) once formed, Ro RNPs are rapidly exported out of the nucleus; and (c) the association with La is lost during or shortly after nuclear export.  相似文献   

6.
The hY RNAs are a group of four small cytoplasmic RNAs of unknown function that are stably associated with at least two proteins, Ro60 and La, to form Ro ribonucleoprotein complexes. Here we show that the heterogeneous nuclear ribonucleoproteins (hnRNP) I and K are able to associate with a subset of hY RNAs in vitro and demonstrate these interactions to occur also in vivo in a yeast three-hybrid system. Experiments performed in vitro and in vivo with deletion mutants of hY1 RNA revealed its pyrimidine-rich central loop to be involved in interactions with both hnRNP I and K and clearly showed their binding sites to be different from the Ro60 binding site. Both hY1 and hY3 RNAs coprecipitated with hnRNP I in immunoprecipitation experiments performed with HeLa S100 extracts and cell extracts from COS-1 cells transiently transfected with VSV-G-tagged hnRNP-I, respectively. Furthermore, both anti-Ro60 and anti-La antibodies coprecipitated hnRNP I, whereas coprecipitation of hnRNP K was not observed. Taken together, these data strongly suggest that hnRNP I is a stable component of a subpopulation of Ro RNPs, whereas hnRNP K may be transiently bound or interact only with (rare) Y RNAs that are devoid of Ro60 and La. Given that functions related to translation regulation have been assigned to both proteins and also to La, our findings may provide novel clues toward understanding the role of Y RNAs and their respective RNP complexes.  相似文献   

7.
RNA chaperone activity of protein components of human Ro RNPs   总被引:2,自引:0,他引:2       下载免费PDF全文
Ro ribonucleoprotein (RNP) complexes are composed of one molecule of a small noncoding cytoplasmic RNA, termed Y RNA, and the two proteins Ro60 and La. Additional proteins such as hnRNP I, hnRNP K, or nucleolin have recently been shown to be associated with subpopulations of Y RNAs. Ro RNPs appear to be localized in the cytoplasm of all higher eukaryotic cells but their functions have remained elusive. To shed light on possible functions of Ro RNPs, we tested protein components of these complexes for RNA chaperone properties employing two in vitro chaperone assays and additionally an in vivo chaperone assay. In these assays the splicing activity of a group I intron is measured. La showed pronounced RNA chaperone activity in the cis-splicing assay in vitro and also in vivo, whereas no activity was seen in the trans-splicing assay in vitro. Both hnRNP I and hnRNP K exhibited strong chaperone activity in the two in vitro assays, however, proved to be cytotoxic in the in vivo assay. No chaperone activity was observed for Ro60 in vitro and a moderate activity was detected in vivo. In vitro chaperone activities of La and hnRNP I were completely inhibited upon binding of Y RNA. Taken together, these data suggest that the Ro RNP components La, hnRNP K, and hnRNP I possess RNA chaperone activity, while Ro60-Y RNA complexes might function as transporters, bringing other Y RNA binding proteins to their specific targets.  相似文献   

8.
Ro60, also known as SS-A or TROVE2, is an evolutionarily conserved RNA-binding protein that is found in most animal cells, approximately 5% of sequenced prokaryotic genomes and some archaea. Ro60 is present in cells as both a free protein and as a component of a ribonucleoprotein complex, where its best-known partners are members of a class of noncoding RNAs called Y RNAs. Structural and biochemical analyses have revealed that Ro60 is a ring-shaped protein that binds Y RNAs on its outer surface. In addition to Y RNAs, Ro60 binds misfolded and aberrant noncoding RNAs in some animal cell nuclei. Although the fate of these defective Ro60-bound noncoding RNAs in animal cells is not well-defined, a bacterial Ro60 ortholog functions with 3′ to 5′ exoribonucleases to assist structured RNA degradation. Studies of Y RNAs have revealed that these RNAs regulate the subcellular localization of Ro60, tether Ro60 to effector proteins and regulate the access of other RNAs to its central cavity. As both mammalian cells and bacteria lacking Ro60 are sensitized to ultraviolet irradiation, Ro60 function may be important during exposure to some environmental stressors. Here we summarize the current knowledge regarding the functions of Ro60 and Y RNAs in animal cells and bacteria. Because the Ro60 RNP is a clinically important target of autoantibodies in patients with rheumatic diseases such as Sjogren’s syndrome, systemic lupus erythematosus, and neonatal lupus, we also discuss potential roles for Ro60 RNPs in the initiation and pathogenesis of systemic autoimmune rheumatic disease.  相似文献   

9.
The interactions between Ro and La proteins and hY RNAs have been analysed. The binding site for the 60 kDa Ro protein on hY RNAs is shown to be the terminal part of the base paired stem structure, which contains the most highly conserved sequence among hY RNAs. The bulged C-residue within this region plays an important role in the recognition by this protein. The same regions of hY RNAs are essential for the association of the 52 kDa Ro protein with the RNAs, strongly suggesting that the 60 kDa Ro protein is required for the 52 kDa Ro protein to bind, presumably via protein-protein interactions, to Ro RNPs. The binding site for the La protein on hY RNAs is shown to be the oligouridylate stretch near the 3'-end of the RNAs, which is also recognized when additional nucleotides flank this motif at the 3'-side. Additional sequence elements in hY3 and hY5, but not in hY1, are bound by the La protein as well. Deletion mutagenesis showed that the RNP motif, previously identified in many ribonucleoprotein (RNP) proteins and in some cases shown to be almost sufficient for the interaction with RNA, of both the 60 kDa Ro and the La protein are not sufficient for the interaction with hY RNAs. Substantial parts of these proteins flanking the RNP motif are needed as well. It is likely that they stabilize the correct conformation of the RNP motif for RNA binding.  相似文献   

10.
BackgroundSurveillance of integrity of the basic elements of the cell including DNA, RNA, and proteins is a critical element of cellular physiology. Mechanisms of surveillance of DNA and protein integrity are well understood. Surveillance of structural RNAs making up the vast majority of RNA in a cell is less well understood. Here, we sought to explore integrity of processing of structural RNAs in relapsing remitting multiple sclerosis (RRMS) and other inflammatory diseases.ResultsWe employed mononuclear cells obtained from subjects with RRMS and cell lines. We used quantitative-PCR and whole genome RNA sequencing to define defects in structural RNA surveillance and siRNAs to deplete target proteins. We report profound defects in surveillance of structural RNAs in RRMS exemplified by elevated levels of poly(A) + Y1-RNA, poly(A) + 18S rRNA and 28S rRNAs, elevated levels of misprocessed 18S and 28S rRNAs and levels of the U-class of small nuclear RNAs. Multiple sclerosis is also associated with genome-wide defects in mRNA splicing. Ro60 and La proteins, which exist in ribonucleoprotein particles and play different roles in quality control of structural RNAs, are also deficient in RRMS. In cell lines, silencing of the genes encoding Ro60 and La proteins gives rise to these same defects in surveillance of structural RNAs.ConclusionsOur results establish that profound defects in structural RNA surveillance exist in RRMS and establish a causal link between Ro60 and La proteins and integrity of structural RNAs.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0629-x) contains supplementary material, which is available to authorized users.  相似文献   

11.
In both vertebrate and invertebrate cells, the 60-kDa Ro autoantigen is bound to small cytoplasmic RNAs known as Y RNAs. In Xenopus oocytes, the 60-kDa Ro protein is also complexed with a class of 5S rRNA precursors that contain internal mutations. Because these 5S rRNA precursors are processed inefficiently and degraded eventually, the Ro protein may function in a quality control pathway for 5S rRNA biosynthesis. We have investigated the sequence and secondary structure determinants in the mutant 5S rRNAs that confer binding by the 60-kDa Ro protein. The mutant 5S rRNAs fold to form an alternative helix that is required for recognition by the 60-kDa Ro protein. Mutations that disrupt the alternative helix eliminate Ro protein binding, whereas compensatory changes that restore the helix are bound efficiently by the Ro protein. When the structure of the mutant RNA was probed using dimethylsulfate and oligonucleotide-directed RNase H cleavage, the results were consistent with the formation of the alternative structure. The La protein, which is also complexed with the mutant 5S rRNA precursors, protects similar sequences from nuclease digestion as does the 60-kDa Ro protein. Thus, the binding sites for these two proteins are either nearby on the RNA, or the two proteins may be complexed through protein-protein interactions. When the human Ro protein is expressed in the yeast Saccharomyces cerevisiae, the protein binds wild-type 5S rRNA precursors, suggesting that a population of wild-type precursors also folds into the alternative structure.  相似文献   

12.
13.
14.
Many bacteria encode an ortholog of the Ro60 autoantigen, a ring-shaped protein that is bound in animal cells to noncoding RNAs (ncRNAs) called Y RNAs. Studies in Deinococcus radiodurans revealed that Y RNA tethers Ro60 to polynucleotide phosphorylase, specializing this exoribonuclease for structured RNA degradation. Although Ro60 orthologs are present in a wide range of bacteria, Y RNAs have been detected in only two species, making it unclear whether these ncRNAs are common Ro60 partners in bacteria. In this study, we report that likely Y RNAs are encoded near Ro60 in >250 bacterial and phage species. By comparing conserved features, we discovered that at least one Y RNA in each species contains a domain resembling tRNA. We show that these RNAs contain nucleotide modifications characteristic of tRNA and are substrates for several enzymes that recognize tRNAs. Our studies confirm the importance of Y RNAs in bacterial physiology and identify a new class of ncRNAs that mimic tRNA.  相似文献   

15.
Ro RNPs are small cytoplasmic RNA-protein complexes of unknown function that have been found in all metazoan cells studied so far. In human cells, Ro RNPs consist of one of four small RNA molecules, termed hY RNAs and at least two well-characterized proteins, Ro60 and La. In previous Xenopus laevis oocyte microinjection studies, we showed that an intact Ro60 binding site (Stem-loop 1) is a prerequisite for efficient nuclear export of hY1 RNA, whereas an intact La-binding site promotes nuclear retention (Simons et al. RNA, 1996, 2:264-273). Here we present evidence that the distal half (Stem 2) of the conserved base-paired stem structure found in all hY RNAs also plays a critical role in the export process. A minimal RNA molecule containing this region, L1S2 RNA, competes effectively for the export of full-length hY1 RNAs and is itself exported very rapidly in a Ro60-independent and RanGTP-dependent manner. Mutational analyses of this RNA shows that a 5'/3' terminal double-stranded stem structure (>10 bp) of no specific nucleotide sequence constitutes a novel nuclear export element (NEE). Cross-competition studies indicate that this type of NEE may also be involved in export of other classes of RNAs. Like full-length hY1 RNA, L1S2 RNA also competes for export of ET-202 RNA, an RNA that was selected for its efficient nuclear export in the presence of the nuclear transport inhibitor, VSV Matrix protein (Grimm et al. Proc Natl Acad Sci USA, 1997, 94:10122-10127). However, export of L1S2 RNA is strongly inhibited by VSV-M protein, showing that these RNAs use partially overlapping, but not identical export pathways. We propose that export of Y RNAs is mediated by two contiguous cis-acting elements in the 5'/3' double-stranded stem region that is conserved between different Y RNAs.  相似文献   

16.
The 60-kDa Ro autoantigen is normally complexed with small cytoplasmic RNAs known as Y RNAs. In Xenopus oocytes, the Ro protein is also complexed with a large class of variant 5S rRNA precursors that are folded incorrectly. Using purified baculovirus-expressed protein, we show that the 60-kDa Ro protein binds directly to both Y RNAs and misfolded 5S rRNA precursors. To understand how the protein recognizes these two distinct classes of RNAs, we investigated the features of Y RNA sequence and structure that are necessary for protein recognition. We identified a truncated Y RNA that is stably bound by the 60-kDa Ro protein. Within this 39-nt RNA is a conserved helix that is proposed to be the binding site for the Ro protein. Mutagenesis of this minimal Y RNA revealed that binding by the 60-kDa Ro protein requires specific base pairs within the conserved helix, a singly bulged nucleotide that disrupts the helix, and a three-nucleotide bulge on the opposing strand. Chemical probing experiments using diethyl pyrocarbonate demonstrated that, in the presence of the two bulges, the major groove of the conserved helix is accessible to protein side chains. These data are consistent with a model in which the Ro protein recognizes specific base pairs in the conserved helix by binding in the major groove of the RNA. Furthermore, experiments in which dimethyl sulfate was used to probe a naked and protein-bound Y RNA revealed that a structural alteration occurs in the RNA upon Ro protein binding.  相似文献   

17.
Y RNAs are small 'cytoplasmic' RNAs which are components of the Ro ribonucleoprotein (RNP) complex. The core of this complex, which is found in the cell nuclei of higher eukaryotes as well as the cytoplasm, is composed of a complex between the 60 kDa Ro protein and Y RNAs. Human cells contain four distinct Y RNAs (Y1, Y3, Y4 and Y5), while other eukaryotes contain a variable number of Y RNA homologues. When detected in a particular species, the Ro RNP has been present in every cell type within that particular organism. This characteristic, along with its high conservation among vertebrates, suggests an important function for Ro RNP in cellular metabolism; however, this function has not yet been definitively elucidated. In order to identify conserved features of Y RNA sequences and structures which may be directly involved in Ro RNP function, a phylogenetic comparative analysis of Y RNAs has been performed. Sequences of Y RNA homologues from five vertebrate species have been obtained and, together with previously published Y RNA sequences, used to predict Y RNA secondary structures. A novel RNA secondary structure comparison algorithm, the suboptimal RNA analysis program, has been developed and used in conjunction with available algorithms to find phylogenetically conserved secondary structure models for YI, Y3 and Y4 RNAs. Short, conserved sequences within the Y RNAs have been identified and are invariant among vertebrates, consistent with a direct role for Y RNAs in Ro function. A subset of these are located wholly or partially in looped regions in the Y3 and Y4 RNA predicted model structures, in accord with the possibility that these Y RNAs base pair with other cellular nucleic acids or are sites of interaction between the Ro RNP and other macromolecules.  相似文献   

18.
The Ro autoantigen is a ring-shaped RNA-binding protein that binds misfolded RNAs in nuclei and is proposed to function in quality control. In the cytoplasm, Ro binds noncoding RNAs, called Y RNAs, that inhibit access of Ro to other RNAs. Ro also assists survival of mammalian cells and at least one bacterium after UV irradiation. In mammals, Ro undergoes dramatic localization changes after UV irradiation, changing from mostly cytoplasmic to predominantly nuclear. Here, we report that a second role of Y RNAs is to regulate the subcellular distribution of Ro. A mutant Ro protein that does not bind Y RNAs accumulates in nuclei. Ro also localizes to nuclei when Y RNAs are depleted. By assaying chimeric proteins in which portions of mouse Ro were replaced with bacterial Ro sequences, we show that nuclear accumulation of Ro after irradiation requires sequences that overlap the Y RNA binding site. Ro also accumulates in nuclei after oxidative stress, and similar sequences are required. Together, these data reveal that Ro contains a signal for nuclear accumulation that is masked by a bound Y RNA and suggest that Y RNA binding may be modulated during cell stress.  相似文献   

19.
Here we discuss the hypothesis that the RNA components of the Ro ribonucleoproteins (RNPs), the Y RNAs, can be processed into microRNAs (miRNAs). Although Ro RNPs, whose main protein components Ro60 and La are targeted by the immune system in several autoimmune diseases, were discovered many years ago, their function is still poorly understood. Indeed, recent data show that miRNA-sized small RNAs can be generated from Y RNAs. This hypothesis leads also to a model in which Ro60 acts as a modulator in the Y RNA-derived miRNA biogenesis pathway. The implications of these Y RNA-derived miRNAs, which may be specifically produced under pathological circumstances such as in autoimmunity or during viral infections, for the enigmatic function of Ro RNPs are discussed.  相似文献   

20.
45 S RNP (ribonucleoprotein) particles from calf thymus or L5178y mouse lymphoma cells contain the poly(A)-modulated and oligo(U)-binding endoribonuclease VII [Bachmann, Zahn & Müller (1983) J. Biol. Chem. 258, 7033-7040]. From these particles a 4.5 S RNA was isolated that possesses an oligo(U) sequence. By using monospecific and non-cross-reacting antibodies directed against the La or Ro antigen, both proteins were identified in the endoribonuclease VII-RNP complex after phosphorylation in vitro. In a second approach, endoribonuclease VII activity was identified in immunoaffinity-purified Ro RNPs after preparative isoelectric focusing. Therefore we conclude that the 4.5 S RNA belongs to the Ro RNAs. The results indicate a possible function of endoribonuclease VII in activating stored mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号