首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The pattern of ribonucleotide reductase, thymidine kinase, and thymidylate kinase activities during development of Paracentrotus lividus eggs and the effect of actinomycin on these enzymatic activities have been studied. Ribonucleotide reductase activity is detectable, though at a low level, in the unfertilized egg; the activity increases sharply soon after fertilization and reaches a peak at the morula stage. Thereafter it decreases and remains at a lower level than that of the unfertilized egg. Actinomycin, at a concentration sufficient to inhibit messenger RNA (mRNA) synthesis does not affect the level of enzymatic activity, indicating that preexisting maternal mRNA is used for the synthesis of this enzyme. Thymidine kinase is present at a low level in the egg; it increases sharply after the hatching blastula until the pluteus stage. Actinomycin does not affect the enzyme activity from fertilization until blastula but prevents the increase in enzyme activity that is observed between blastula and pluteus. Thymidylate kinase activity shows an increase after fertilization, followed by fluctuations throughout development with a considerable decrease at the blastula stage and at the end of gastrulation. Actinomycin has no effect on the activity of thymidylate kinase regardless of when the drug is added to the embryo suspension. Possible regulatory mechanisms of DNA synthesis in sea urchin embryos are discussed: The presence in the unfertilized egg of the most important enzymes controlling the cellular flow of DNA precursors and the availability of dTTP suggest that the block in DNA synthesis observed in the unfertilized egg is due to some particular mechanism that is switched on at fertilization.  相似文献   

2.
In chick embryo retina during development, DNA synthesis and the activities of DNA polymerase, thymidine kinase, thymidylate synthetase, and ornithine decarboxylase (ODC) declined in parallel from day 7 to 12. The administration in ovo of hydrocortisone reduced significantly, particularly at 8-10 days of incubation, both DNA synthesis and the four enzyme activities tested. The effect was dose dependent, reaching the maximum with 50-100 nmol of hydrocortisone, 8-16 h after treatment. The highest inhibition was found for ODC activity (70%), followed by thymidine kinase activity (62%) and DNA synthesis (45%), whereas activities of DNA polymerase and thymidylate synthetase were reduced only by 30%. The inhibitory effect was exerted by all the glucocorticoids tested, with dexamethasone and hydrocortisone being the most efficacious. The results support the view that glucocorticoids reduce the proliferative events in chick embryo retina, particularly at 8-10 days of embryonic life.  相似文献   

3.
To determine the respective role of thymidine kinase and thymidylate synthase activities in the hyperoxia-induced decrease in DNA synthesis and their relationship with cell replication, we measured these two enzyme activities in primary cultures of porcine aortic endothelial cells under different O2 concentrations for various durations. In confluent cells, exposure to 95% O2 for 5 days reduced thymidine kinase activity to 15% of control values; thymidylate synthase activity was unaffected. In preconfluent cells exposed to 95% O2 for 2 days, similar results were obtained, together with evidence for arrest in cell proliferation. Thymidylate synthase activity could therefore not be related to decreased cell proliferation under hyperoxia. [3H]thymidine incorporation into DNA, thymidine kinase activity, and cell proliferation were all similarly affected under exposure to graded O2 concentration for 2 days. Thymidine kinase appears to be a key enzyme in the modulation of DNA synthesis from thymidine and in its replication in endothelial cells.  相似文献   

4.
In sea urchin, unfertilized eggs have a very high level of dCMP-aminohydrolase (dCMPase) activity, which decreases gradually and at the pluteus stage it is only about a quarter of that found in the unfertilized egg. But in abnormal embryos and in disaggregated cells from embryos, no decrease in the dCMPase activity takes place. To understand the control mechanism involved in this enzyme activity during development, we have analyzed the effect of various drugs which interfere with information transfer, such as actinomycin C, puromycin, 5-azacytidine, 2-thio-uracil and p-fluoro-DL-phenylalanine on dCMPase activity in embryos of Paracentrotus lividus and Sphaerechinus granularis. Among these drugs only actinomycin induces a remarkable increase of the dCMPase activity in embryos with respect to unfertilized eggs. Puromycin has a differential and dose-dependent effect. Other drugs, although they affect normal development and macromolecular synthesis, do not significantly alter the dCMPase activity. On the basis of these results we suggest the presence of a repressor mechanism in the control of dCMP-aminohydrolase level during early embryogenesis of sea urchin.  相似文献   

5.
Thymidine kinase derived from LMTK+ does not exhibit thymidylate kinase activity. However, protein isolated by affinity column chromatography from thymidine kinase-deficient mouse cells (LMTK-) infected by herpes simplex virus type 1 shows thymidylate kinase activity in addition to thymidine kinase and deoxycytidine kinase activities. The virus-induced multifunctional enzyme has a molecular weight of 85,000, whereas the molecular weight of thymidylate kinase from uninfected LMTK- mouse cells is 71,000. The virus-induced enzyme has a Km for thymidine of 0.8 micromolar, and for thymidylate of 25 micromolar, and for thymidylate of 25 micromolar; the ratio of Vmax for thymidylate kinase to thymidine kinase is 1.7. When subjected to isoelectric focusing, thymidylate kinase activity is not separated from thymidine kinase activity, and even though four peaks of activity are observed they have a constant ratio of thymidylate kinase to thymidine kinase activity. The isoelectric points (pI) of these four peaks are 4.8, 5.8, 6.2, and 6.6, respectively. Thymidylate kinase, derived from uninfected cells when subjected to isoelectric focusing, separates into a major component with an isoelectric point at pH 8.2 and a minor component at pH 7.7. Although thymidine and thymidylate kinase activities derived from the virus-infected cells cannot be separated either by affinity column chromatography, glycerol density gradient centrifugation, or isoelectric focusing, there is a differential rate of inactivation when the enzyme is subjected to incubation at 37 degrees, with thymidylate kinase activity being more labile than thymidine kinase activity.  相似文献   

6.
7.
The changes in activities of thymidine phosphorylase (EC 2.4.2.4), thymidine kinase (EC 2.7.1.75) and thymidylate synthetase (methylenetetrahydrofolate:dUrd-5′-P C-methyltransferase, EC 2.1.1.-) in the cerebral hemispheres of developing chick embryos were determined and compared with the course of DNA synthesis and of natural cell death in this organ. Thymidine phosphorylase activity reaches a broad maximum at the 12th to 14th day of incubation, followed by a rapid decrease. Thymidine kinase and thymidylate synthetase activities are highest at the earliest time studied (day 10) and decrease until day 14, followed by an increase from day 14 to 16 and a further decrease from day 16 through 1 day post-hatching. The rate of DNA synthesis essentially follows these activities, but the increase at day 16 is not discernible. Our previous study revealed high DNA synthesis at day 10, with natural cell death concurring on days 12-14, followed by another peak after day 16 (glial proliferation) and a decrease after day 16. It appears that thymidine phosphorylase activity reaches a maximum (days 12-14) at the time of maximum cell death, which may be correlated with the degradative function of this enzyme. This was also the time for minimum activities of thymidine kinase and thymidylate synthetase; on the other hand, these activities reach a first (day 10) and second (day 16) maximum at the time of maximum DNA synthesis; this may be correlated with the synthetic functions of these enzymes.  相似文献   

8.
The activities throughout the cell cycle of thymidine kinase (EC 2.7.1.21), dihydrothymine dehydrogenase (EC 1.3.1.2), thymidine phosphorylase (EC 2.4.2.4) and dTMP phosphatase (EC 3.1.3.35) were measured in the Epstein-Barr virally transformed human B lymphocyte line LAZ-007. Cells were synchronised at different stages of the cell cycle using the technique of centrifugal elutriation. The degree of synchrony in each cycle-stage cell population was determined by flow microfluorimetric analysis of DNA content and by measurement of thymidine incorporation into DNA. The activity of the anabolic enzyme thymidine kinase was low in the G1 phase cells, but increased many-fold during the S and G2 phases, reaching a maximum after the peak of DNA synthesis, then decreasing in late G2 + M phase. By contrast, the specific activities of the enzymes involved in thymidine and thymidylate catabolism, dihydrothymine dehydrogenase, thymidine phosphorylase and dTMP phosphatase remained essentially constant throughout the cell cycle, indicating that the fate of thymidine at different stages of the cell cycle is governed primarily by regulation of the level of the anabolic enzyme thymidine kinase and not by regulation of the levels of thymidine catabolising enzymes.  相似文献   

9.
《Autophagy》2013,9(9):1028-1034
It is well known that sea urchin embryos are able to activate different defense strategies against stress. We previously demonstrated that cadmium treatment triggers the accumulation of metal in embryonic cells and the activation of defense systems depending on concentration and exposure time, through the synthesis of heat shock proteins and/or the initiation of apoptosis. Here we show that Paracentrotus lividus embryos exposed to Cd adopt autophagy as an additional stratagem to safeguard the developmental program. At present, there are no data focusing on the role of this process in embryo development of marine organisms.  相似文献   

10.
The incorporation of [3H]thymidine into the deoxyribonucleic acid (DNA) of Chlamydia psittaci (strain 6BC) growing in thymidine kinase (adenosine 5'-triphosphate-thymidine 5'-phosphotransferase, EC 1.7.1.21)-containing L cells, L(TK+), and thymidine kinase-deficient L cells, LM(TK-), was examined by autoradiography. Label was detected over C. psittaci inclusions in L(TK+) but not LM(TK-) cells. No evidence for a chlamydia-specific thymidine kinase activity in either L(TK+) or LM(TK-) cells was obtained. Entry of [3H]thymidine into the DNA of C. psittaci growing in L(TK+) cells was quantitated by measuring label in purified C. psittaci. It was 265 times less efficient than entry into infected host cell DNA. It is concluded that low levels of exogenous thymidine are incorporated into the DNA of C. psittaci and that this incorporation is dependent on a fully competent host thymidine kinase activity. Evidence also is presented that L cells possess at least two thymidine kinase activities, both of which are capable of supplying thymidylate precursors for nuclear DNA synthesis.  相似文献   

11.
Hydroxyurea, when injected intraperitoneally at a dose of 1 mg/g body weight, inhibited thymidine kinase activity in developing rat cerebrum (16-day-embryonic) and cerebellum (7-day-postnatal) within a few hours of administration. The inhibition was time-dependent and both cytosolic and mitochondrial thymidine kinases were affected. Under the same conditions, the activities of certain other enzymes concerned with DNA metabolism,viz., DNA polymerase, and acid and alkaline DNases were not inhibited. Further, the addition of hydroxyureain vitro had no effect on the activity of any of the enzymes studied. However, similar treatment given to 2-year-old rat failed to exert any inhibition on either the mitochondrial or soluble thymidine kinase activities in grey and white matter regions of cerebrum and cerebellum. It is inferred that hydroxyurea, apart from its already known effect on ribonucleotide reductase of replicating cells, also affects thymidine kinase.  相似文献   

12.
Deoxyribonucleotide metabolism in Herpes simplex virus infected HeLa cells.   总被引:1,自引:0,他引:1  
The effect of Rolly No. 11 strain herpes simplex virus infection of HeLa cells in culture on deoxynucleotide metabolism and the level of various enzymes concerned with the biosynthesis of DNA has been investigated. Of 18 enzyme activities studied, thymidine kinase, DNA polymerase and deoxyribonuclease were markedly augmented, a finding in agreement with previous reports. Deoxycytidine kinase, ribonucleotide reductase, thymidylate kinase and deoxycytidylate deaminase activities, in contrast with previous reports, did not increase; the activities of the other enzymes studied, also did not increase. Whereas most of the radioactivity derived from [14-C] thymidine in the acid-soluble fraction of the uninfected cells was present as deoxythymidine triphosphate, that present in the infected cells was primarily in the form of deoxythymidine monophosphate. Thus, in the infected cell deoxythymidylate kinase is a rate-limiting enzyme in the biosynthesis of deoxythymidine triphosphate. A marked increase in the pools of the four naturally occurring deoxynucleoside triphosphates (dTTP, dCTP, dATP, dGTP) was found. The rate of formation of the virus-induced enzymes was determined, as were the various nucleoside triphosphate pools and the other phosphorylated derivatives of thymidine; a maximum was reached for all these csmponents between 6 to 8 h post infection. Although an apparent greater synthesis of DNA occurred in the uninefected cells, when the specific activity of the radioactive deoxythymidine triphosphate was taken into account, there was actually a greater rate of DNA synthesis in the infected cells, with the peak at 8 h post infection.  相似文献   

13.
The increases in the activity of hepatic thymidylate synthetase and thymidine kinase, which catalyzes the formation of thymidylate via the de novo and salvage pathways, respectively, were significantly suppressed 24 h after 70% partial hepatectomy in female rats administered either alpha- or beta-adrenoreceptor antagonists. The injection of beta-antagonist to male or ovariectomized female rats had no effect on the activities of these enzymes. Only alpha-adrenoceptor antagonist depressed these enzymatic activities of 24-h-regenerating liver in male and ovariectomized female rats. The decrease of the activities of thymidylate synthetase and thymidine kinase was accompanied by a concomitant reduction of DNA content in 24-h-regenerating liver. It is concluded that catecholamine regulates the female rat liver regeneration through both alpha- and beta-adrenergic pathways by the inductions of thymidylate synthase and thymidine kinase, while in adult male and ovariectomized female rats, only the alpha-mediated pathway is involved.  相似文献   

14.
(Deoxy)thymidylate (dTMP) kinase is an enzyme which phosphorylates dTMP to dTDP in the presence of ATP and magnesium. This enzyme is important in cellular DNA synthesis because the synthesis of dTTP, either via the de novo pathway or through the exogenous supply of thymidine, requires the activity of this enzyme. It has been suggested that the activities of the enzymes involved in DNA precursor biosynthesis, such as thymidine kinase, thymidylate synthase, thymidylate kinase, and dihydrofolate reductase, are subjected to cell cycle regulation. Here we describe the cloning of a human dTMP kinase cDNA by functional complementation of a yeast dTMP kinase temperature-sensitive mutant at the non-permissive temperature. The nucleotide sequence of the cloned human cDNA is predicted to encode a 24 KD protein that shows considerable homology with the yeast and vaccinia virus dTMP kinase enzymes. The human enzyme activity has been investigated by expressing it in yeast. In this work, we demonstrate that the cloned human cDNA, when expressed in yeast, produces dTMP kinase activity.  相似文献   

15.
Summary The effect of arabinosyl cytosine (ara-C) was studied on the uptake, phosphorylation and incorporation of 3H-thymidine in human tonsillar lymphocyte cultures is described along with its effect on the level of DNA polymerase and thymidine kinase activities induced by phytohaemagglutinin (PHA). Freshly isolated tonsillar lymphocytes are stimulated cells with a remarkably high activity of DNA polymerase a and thymidine kinase. During in vitro culture, these stimulated cells are transformed to the resting state with low DNA polymerase and thymidine kinase activity. However, a new DNA synthesising cycle can be induced by PHA with maximum at 48 h.10–6 M ara-C inhibited the incorporation of 3H-thymidine by 90–95%. This inhibition may be reversed by rinsing the cells. The inhibition of the transport of 3H-thymidine seems to be only a consequence of the inhibitory effect of ara-C on the DNA polymerisation reaction, because at 10 °C, where DNA synthesis was arrested, ara-C does not influence the uptake and the phosphorylation of 3H-thymidine.Ara-C (10–6 M) abolished also the PHA induced elevation of DNA polymerase a and thymidine kinase activities without influencing protein synthesis of the cell. This supports a coordinated regulation mechanism between DNA synthesis and the synthesis of enzymes involved in DNA replication.  相似文献   

16.
Proliferative and mature intestinal cells of the jejunum and colon of rat, colon of man, and the surface cells of neoplastic colon lesions of man were assayed for thymidylate synthetase and thymidine kinase activities. Cells from the proliferative region of rat jejunal mucosa were found to have higher enzyme activities than cells from the non-proliferative region. Thymidylate synthetase activity was observed to decrease as cells migrated from base to upper crypt, whereas thymidine kinase activity increased during crypt migration and then declined as cells migrated onto villi. Thymidine kinase activity also remained elevated longer than thymidylate synthetase during cell migration in colonic mucosa of rat and man. High thymidine kinase: thymidylate synthetase ratios similar to those observed in flat mucosa before cells become fully mature were found in cells removed from expanding neoplastic lesions of man.  相似文献   

17.
An ultrastructural study of the nucleolus of embryos of Paracentrotus lividus was carried out after treatment with Actinomycin D. It was shown that the fibrillar component of the nucleolus persists in the embryos treated with Actinomycin D in the mesenchyme blastula stage and fixed 24 and 48 hr after fertilization. The results are discussed in relation to the synthesis of RNA.  相似文献   

18.
A multienzyme complex containing at least DNA polymerase (EC 2.7.7.7), thymidine kinase (EC 2.7.1.21), dTMP kinase (EC 2.7.4.9) nucleoside diphosphokinase (EC 2.7.4.6) and thymidylate synthetase was separated from the corresponding free enzymes of DNA precursor synthesis by gel filtration of a gently lysed preparation of HPB-ALL cells (a human lymphoblastoid cell line). The isolated incorporated the distal DNA precursors [3H]thymidine or [3H]dTMP into an added DNA template at rates comparable to those observed using the immediate precursor [3H]dTTP. Measurement of the apparent overall concentrations of [3H]dTTP produced during incorporation of [3H]thymidine and of [3H]dTMP were so low as to suggest that these precursors were channelled into DNA by the operation of a kinetically linked complex of precursor-synthesizing enzymes and of DNA polymerase. The DNA polymerase inhibitor 1-beta-D-arabinofuranosylcytosine triphosphate reduced incorporation of distal precursors into DNA. However [3H]dTTP did not accumulate in the reaction mixture. This suggested that the DNA polymerase regulated the flow of substrates through the complex. The results in this paper constitute direct evidence for the existence of multienzyme complexes of DNA synthesis in mammalian cells.  相似文献   

19.
BHK21/C13 cells placed in medium containing low (1%) serum ceased DNA synthesis within 4 days. DNA synthesis recommenced 10 h after the readdition of serum (to 10%) to cells incubated for 6 days in serum-depleted medium. Two peaks of thymidine incorporation were observed at 12–13 h and 15–17 h, followed by a single peak of dividing cells at 25 h. The two peaks of incorporation represent variation in the extent of DNA replication during a single synchronous S phase.Uridine, deoxyadenosine and deoxyguanosine kinase activities did not decline in serum-depleted cells and, after the addition of serum, their activities showed cyclical variation about a mean involving two-fold changes in enzyme specific activity. All other enzyme activities examined were markedly decreased in resting cells.Ornithine decarboxylase activity increased 15-fold within 5 h of serum addition, but had returned to the resting level by 8 h. There was no apparent correlation between this alteration of enzyme activity and the rate of RNA synthesis.DNA polymerase, thymidine kinase and deoxycytidine kinase activities all decreased further within 4 h of the addition of serum, followed by several-fold increases in activity. The peak of DNA polymerase activity corresponded to, and encompassed, both peaks of DNA synthesis. However, thymidine and deoxycytidine kinase activities, although exhibiting two activity maxima corresponding to the peaks of DNA synthesis, were at their highest levels in G2.  相似文献   

20.
Abstract— Using the method of least squares, a logistic curve was fitted to the data points for DNA content in neonatal rat cerebellum versus postnatal age (day 0 is the day of birth). The resultant equation was differentiated to give an expression for the rate of cerebellar DNA accumulation in units of ng/h per mg wet cerebellum. The DNA accumulation rate in control rats increased from 77.0 at 2 days of age to a maximum of 108 at 7 days of age and declined thereafter to a minimum of 16.3 on day 15. Thyroxine treatment significantly (P < 0.05) increased the rate to 89.8 (117% of control) at 2 days of age, and a significant elevation was maintained to 6 days of age at which time a maximum rate of 115 (114% of control) was attained. The rate was significantly decreased below control at 9 and 12 days of age, and reached a minimum of 9.22 on day 15. The developmental pattern for the activity of cerebellar thymidylate synthetase (EC 2.1.1.6), in units of pmol/h per mg wet cerebellum, closely paralleled the pattern for DNA accumulation rate in both control and thyroxine-treated animals. In controls, thymidylate synthetase activity increased from 98.6 at 2 days of age to a maximum of 125 at 7 days of age and declined thereafter to a minimum of 30.0 at 15 days of age. In thyroxine-treated animals, the activity was significantly increased to 118 (122% of control) at 4 days of age and remained significantly elevated through 6 days of age at which time a maximum activity of 154 (115% of control) was attained; thereafter, the activity was significantly decreased below control and reached a minimum of 16.9 (56.3% of control) on day 15. The developmental pattern for the activity of cerebellar thymidine kinase (EC 2.7.1.21) did not parallel the DNA accumulation rate quite so closely, in neither treated nor control animals, as did the pattern for thymidylate synthetase activity. These data suggest that thymidylate synthetase activity in the developing rat cerebellum may be more important for maintenance of replicative DNA synthesis than is thymidine kinase activity. In addition, the thyroxine-induced acceleration of the increase and subsequent decline in rate of DNA accumulation and in the activities of thymidylate synthetase and thymidine kinase in developing rat cerebella is probably the result of alterations in the number of external granular cells undergoing replicative DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号