共查询到20条相似文献,搜索用时 0 毫秒
1.
The Lhcb gene family in green plants encodes several light-harvesting Chl a/b-binding (LHC) proteins that collect and transfer light energy to the reaction centers of PSII. We comprehensively characterized the Lhcb gene family in the unicellular green alga, Chlamydomonas reinhardtii, using the expressed sequence tag (EST) databases. A total of 699 among over 15,000 ESTs related to the Lhcb genes were assigned to eight, including four new, genes that we isolated and sequenced here. A sequence comparison revealed that six of the Lhcb genes from C. reinhardtii correspond to the major LHC (LHCII) proteins from higher plants, and that the other two genes (Lhcb4 and Lhcb5) correspond to the minor LHC proteins (CP29 and CP26). No ESTs corresponding to another minor LHC protein (CP24) were found. The six LHCII proteins in C. reinhardtii cannot be assigned to any of the three types proposed for higher plants (Lhcb1-Lhcb3), but were classified as follows: Type I is encoded by LhcII-1.1, LhcII-1.2 and LhcII-1.3, and Types II, III and IV are encoded by LhcII-2, LhcII-3 and LhcII-4, respectively. These findings suggest that the ancestral LHC protein diverged into LHCII, CP29 and CP26 before, and that LHCII diverged into multiple types after the phylogenetic separation of green algae and higher plants. 相似文献
2.
We have adapted the procedure for the isolation of PSII membranes from higher plants (D.A. Berthold et al., 1981, FEBS Lett. 134, 231–234) to the green algae Chlamydomonas reinhardtii. The chlorophyll (Chl)-binding proteins from this PSII preparation have been further separated into single Chl-binding polypeptides and characterized spectroscopically. Seven single polypeptides were shown to bind Chl a and Chl b. In particular, we demonstrate that polypeptides p9, p10 and p22, which had not been previously shown to bind Chl a and b, have characteristics similar to those of CP29, CP26 and CP24 from higher plants. We note, however, that p9 and p10 are phosphorylatable in C. reinhardtii, at variance with CP29 and CP26 from higher plants. Our data support the notion that the PSII antenna systems in C. reinhardtii and in higher plants are very similar. Therefore, studies on the organization and regulation of light-harvesting processes in C. reinhardtii may provide information of general relevance for both green algae and higher plants.Abbreviations Chl
chlorophyll
- IEF
isoelectrofocusing
- LHC
light harvesting complex
- MW
molecular weight
- PAGE
polyacrylamide gel electrophoresis
- PS
photosystem
- RC
reaction centre
- SDS
sodium dodecylsulfate
We thank Dr. J. Olive (Institut Jacques Monod, Paris, France) for the electron-microscopy analysis, C. de Vitry (Institut de Biologie Physico-Chimique, Paris, France) for the kind gift of a PSII RC preparation and P. Dainese and M.L. Di Paolo (Universitá di Padova, Padova, Italy) for helpfull discussions. Professor Strasser and Elizbeth Scwartz (Université de Genova, Genova, Switzerland) are thanked for assistance in taking low-temperature fluorescence emission spectra. Roberto Bassi was recipient of a short-term fellowship from the European Molecular Biology Organization fellowship, during the early phases of the work. 相似文献
3.
We identified four Lhc-like genes (Lhl) encoding proteins that are distant relatives of light-harvesting chlorophyll a/b-binding (LHC) proteins in the green alga Chlamydomonas reinhardtii. Their mRNA levels after transfer from low-intensity light to high-intensity light (HL) were examined and compared with those of Lhc genes encoding LHC proteins of PSII. The transfer caused a decrease in the mRNA level of Lhl3, a homolog of Arabidopsis thaliana Lil3, within 2 h, followed by gradual restoration depending on the intensity of HL. The response was similar to that of Lhc genes. In contrast, the mRNA levels of Lhl1, Lhl2 and Lhl4 significantly increased, reached a maximum within 1 h after the transfer and then rapidly returned to a low level. The intensity of HL little influenced the response of these genes. While the Lhl1 and Lhl2 proteins were homologs of early light-inducible protein (ELIP) and high-light-inducible protein (HLIP), respectively, Lhl4 encoded a novel protein. The HL-induced expression of Lhl4 was most prominent among the genes tested. Studies using various inhibitors indicate that the HL response is not mediated by the redox state of plastoquinone pool or reactive oxygen species, but required de novo protein synthesis in the cytosol. 相似文献
4.
With the recent development of techniques for analyzing transmembrane thylakoid proteins by two-dimensional gel electrophoresis, systematic approaches for proteomic analyses of membrane proteins became feasible. In this study, we established detailed two-dimensional protein maps of Chlamydomonas reinhardtii light-harvesting proteins (Lhca and Lhcb) by extensive tandem mass spectrometric analysis. We predicted eight distinct Lhcb proteins. Although the major Lhcb proteins were highly similar, we identified peptides which were unique for specific lhcbm gene products. Interestingly, lhcbm6 gene products were resolved as multiple spots with different masses and isoelectric points. Gene tagging experiments confirmed the presence of differentially N-terminally processed Lhcbm6 proteins. The mass spectrometric data also revealed differentially N-terminally processed forms of Lhcbm3 and phosphorylation of a threonine residue in the N terminus. The N-terminal processing of Lhcbm3 leads to the removal of the phosphorylation site, indicating a potential novel regulatory mechanism. At least nine different lhca-related gene products were predicted by comparison of the mass spectrometric data against Chlamydomonas expressed sequence tag and genomic databases, demonstrating the extensive variability of the C. reinhardtii Lhca antenna system. Out of these nine, three were identified for the first time at the protein level. This proteomic study demonstrates the complexity of the light-harvesting proteins at the protein level in C. reinhardtii and will be an important basis of future functional studies addressing this diversity. 相似文献
5.
Structure of the Chlamydomonas reinhardtii cabII-1 gene encoding a chlorophyll-a/b-binding protein 总被引:4,自引:0,他引:4
Gene cabII-1 is a light regulated gene that encodes the precursor of a major chlorophyll-a/b-binding protein in Chlamydomonas reinhardtii. It is a member of a small gene family composed of about 3-7 members. Nucleotide sequencing data and S1 mapping reveal that the cabII-1 gene is interrupted by three introns. Except for the transit peptide and the N-terminus, the cabII-1 gene product is similar to cabII proteins in higher plants. The cabII-1 gene in C. reinhardtii appears to be an intermediate between type-I and type-II cabII genes described in higher plants. 相似文献
6.
We isolated and sequenced a cDNA clone encoding a minor chlorophyll a/b-binding protein, CP26, which is associated with the light-harvesting complex II of Chlamydomonas reinhardtii. Protein sequences of internal peptide fragments from purified CP26 were determined and used to identify a cDNA clone. The 1.1 kb lhcb5 gene codes for a polypeptide of 289 amino acids with a predicted molecular weight of 30713. The lhcb5 gene product could reconstitute with chlorophylls and xanthophylls to form a green band on a gel. Although the expression of many lhcb genes are strictly regulated by light, the lhcb5 gene was only loosely regulated. We propose that a plant acclimatizes itself to the light environment by quantitatively and qualitatively modulating the light-harvesting complex. Characterization of the primary structure and the implications of its unique expression are discussed. 相似文献
7.
R Bassi S Y Soen G Frank H Zuber J D Rochaix 《The Journal of biological chemistry》1992,267(36):25714-25721
In this study we have isolated the chlorophyll a/b-binding proteins from a photosystem I preparation of the green alga Chlamydomonas reinhardtii and characterized them by N-terminal sequencing, fluorescence, and absorption spectroscopy and by immunochemical means. The results indicate that in this organism, the light-harvesting complex of photosystem I (LHCI) is composed of at least seven distinct polypeptides of which a minimum number of three are shown to bind chlorophyll a and b. Both sequence homology and immunological cross-reactivity with other chlorophyll-binding proteins suggest that all of the LHCI polypeptides bind pigments. Fractionation of LHCI by mildly denaturing methods showed that, in contrast to higher plants, the long wavelength fluorescence emission typical of LHCI (705 nm in C. reinhardtii) cannot be correlated with the presence of specific polypeptides, but rather with changes in the aggregation state of the LHCI components. Reconstitution of both high aggregation state and long wavelength fluorescence emission from components that do not show these characteristics confirm this hypothesis. 相似文献
8.
Turnover of thylakoid photosystem II proteins during photoinhibition of Chlamydomonas reinhardtii 总被引:13,自引:0,他引:13
The turnover of photosystem-II proteins during photoinhibition was analyzed in the green alga Chlamydomonas reinhardtii. Changes in the amount of photosystem II core complex polypeptides D1, D2, 44 kDa and 51 kDa, the antennae-CP-29 and light-harvesting-complex-II polypeptides and the water-oxidizing complex polypeptides of 30 kDa, 23 kDa and 16 kDa were monitored by a variety of techniques. Only the D1 and D2 polypeptides were found to turnover during photoinhibition when cells were exposed to ten fold photosynthesis-saturating light (2500 W/m2 for 90 min) at 25 degrees C. While 80% of photosystem-II activity was lost, a reduction of only 20% was observed in the total amount of D1 and D2 proteins. However, inhibition of chloroplast translation by chloramphenicol during photoinhibition resulted in the loss of about 60% of the D1 and 40% of the D2 proteins, as demonstrated by Western blotting and dot blotting of isolated thylakoids, quantitative analysis of immunogold-labeled whole-cell thin sections, and chase of radioactively prelabelled proteins during photoinhibition. We propose that the light-dependent turnover of the D1 protein is a protective mechanism against photoinhibition as far as the removal and replacement of D1 is compatible with the photoinactivation incurred by photosystem II. At light intensities at which the rate of D1 removal becomes limiting, loss of photosystem-II activity exceeds the turnover of D1 and the stability of the D2 protein is impaired as well. 相似文献
9.
Germano M Yakushevska AE Keegstra W van Gorkom HJ Dekker JP Boekema EJ 《FEBS letters》2002,525(1-3):121-125
We report a structural characterization by electron microscopy and image analysis of a supramolecular complex consisting of photosystem I and light-harvesting complex I from the unicellular green alga Chlamydomonas reinhardtii. The complex is a monomer, has longest dimensions of 21.3 and 18.2 nm in projection, and is significantly larger than the corresponding complex in spinach. Comparison with photosystem I complexes from other organisms suggests that the complex contains about 14 light-harvesting proteins, two or three of which bind at the side of the PSI-H subunit. We suggest that special light-harvesting I proteins play a role in the binding of phosphorylated light-harvesting complex II in state 2. 相似文献
10.
11.
Xue Liang Dairong Qiao Min Huang Xiuli Yi Linhan Bai Hui Xu Liang Wei Jing Zeng Yi Cao 《DNA sequence》2008,19(2):137-145
There are four LhcII genes of Dunaliella salina have been submitted to the database of GenBank. However, little is known about Lhca genes of this green alga, although this knowledge might be available to study the composition and phylogenesis of Lhc gene family. Recently, one Lhca gene was been cloned from the green alga D. salina by PCR amplification using degenerate primers. This cDNA, designated as DsLhca1, contains an open reading frame encoded a protein of 222 amino acids with a calculated molecular mass of 27.8 kDa. DsLhca1 is predicted to contain three transmembrane domains and a N-terminal chloroplast transit peptide (cTP) with length of 33 amino acids. The genomic sequence of DsLhca1 is composed of five introns. The deduced polypeptide sequence of this gene showed a lower degree of identity (less than 30%) with LHCII proteins from D. salina. But its homology to Lhca proteins of other algae (Volvox carteri Lhca_AF110786) was higher with pairwise identities of up to 67.1%. Phylogenetic analysis indicated that DsLhcal protein cannot be assigned to any types of Lhca proteins in higher plants or in Chlamydomonas reinhardtii. 相似文献
12.
13.
Light-harvesting chlorophyll a/b-binding proteins (LHCI) associated with photosystem I (PSI) and the genes encoding these proteins have been characterized in the unicellular green alga Chlamydomonas reinhardtii, extending previous studies of the PSII-LHCII [Teramoto et al. (2001) Plant Cell Physiol. 42: 849]. In order to assign LHCI proteins in the thylakoid membranes, the PSI-LHCI supercomplex that retains all of the major LHCI proteins was purified. Seven distinct LHCI proteins were resolved from the purified supercomplex by a high-resolution SDS polyacrylamide gel electrophoresis, and their N-terminal amino acid sequences were determined. One LHCI protein (band e) was newly found, although the other six LHCI proteins corresponded to those previously reported. Genomic clones encoding these seven LHCI proteins were newly isolated and the nucleotide sequences were determined. A comprehensive characterization of all members of Lhc gene family in this alga revealed that LHCI proteins are more highly diverged than LHCII, suggesting functional differentiation of the protein components in LHCI. Neighbor joining trees were constructed for LHC proteins from C. reinhardtii and those of Arabidopsis thaliana or Galdieria sulphuraria to assess evolutionary relationships. Phylogenetic analysis revealed that (1). green algal LHCI and LHCII proteins are more closely related to one another than to LHCI proteins in red algae, (2). green algae and higher plants possess seven common lineages of LHC proteins, and (3). Type I and III LHCI proteins are conserved between green algae and higher plants, while Type II and IV are not. These findings are discussed in the context of evolution of multiple diverse antenna complexes. 相似文献
14.
15.
In photosynthesis of higher plants, photosystem II drives electron transfer from the water-oxidizing manganese centre at the lumenal side to bound plastoquinone at the stromal side of the thylakoid membrane. Proton release into the lumen and proton uptake from the stroma, i.e. net proton pumping, follows as consequence of vectoral electron transport. The proton pumping activity can be short circuited by covalent modification with N,N'-dicyclohexylcarbodiimide (cHxN)2C of certain proteins in the 20-28-kDa range. After modification, protons from water oxidation are no longer released into the thylakoid lumen, but instead transferred through the photosystem complex to protonate the photoreduced bound quinone at the other side of the membrane [Jahns, P., Polle, A. & Junge, W. (1988) EMBO J. 7, 589-594]. Here we identify the pertinent (cHxN)2C-binding proteins by amino acid sequence analysis and localize (cHxN)2C-binding sites within their primary structure. The proteins that are associated with the proton short circuit are light-harvesting chlorophyll-a/b-binding proteins. Our results imply that in addition to acting as antennae they may serve another function: the funneling into the thylakoid lumen of protons, which are liberated in the water-oxidizing Mn centre. 相似文献
16.
17.
A method is described for the isolation and purification of active oxygen-evolving photosystem II (PS II) membranes from the green alga Chlamydomonas reinhardtii. The isolation procedure is a modification of methods evolved for spinach (Berthold et al. 1981). The purity and integrity of the PS II preparations have been assesssed on the bases of the polypeptide pattern in SDS-PAGE, the rate of oxygen evolution, the EPR multiline signal of the S2 state, the room temperature chlorophyll a fluorescence yield, the 77 K emission spectra, and the P700 EPR signal at 300 K. These data show that the PS II characteristics are increased by a factor of two in PS II preparations as compared to thylakoid samples, and the PS I concentration is reduced by approximately a factor ten compared to that in thylakoids.Abbreviations BSA
bovine serum albumin
- Chl
chlorophyll
- DCBQ
2,6-dichloro-p-benzoquinone
- DCMU
(diuron) 3-(3,4-dichlorophenyl)-1,1-dimethylurea
- DMQ
2,5-dimethyl-p-benzoquinone
- EDTA
ethylenediamine tetraacetic acid
- EPR
electron paramagnetic resonance
- Hepes
N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid
- MES
2-[N-Morpholino]ethanesulfonic acid
- OEE
oxygen evolving enhancer
- PS II
photosystem II
- SDS-PAGE
sodium dedocyl sulfate polyacrylamide gel electrophoresis 相似文献
18.
State transitions, or the redistribution of light-harvesting complex II (LHCII) proteins between photosystem I (PSI) and photosystem II (PSII), balance the light-harvesting capacity of the two photosystems to optimize the efficiency of photosynthesis. Studies on the migration of LHCII proteins have focused primarily on their reassociation with PSI, but the molecular details on their dissociation from PSII have not been clear. Here, we compare the polypeptide composition, supramolecular organization, and phosphorylation of PSII complexes under PSI- and PSII-favoring conditions (State 1 and State 2, respectively). Three PSII fractions, a PSII core complex, a PSII supercomplex, and a multimer of PSII supercomplex or PSII megacomplex, were obtained from a transformant of the green alga Chlamydomonas reinhardtii carrying a His-tagged CP47. Gel filtration and single particles on electron micrographs showed that the megacomplex was predominant in State 1, whereas the core complex was predominant in State 2, indicating that LHCIIs are dissociated from PSII upon state transition. Moreover, in State 2, strongly phosphorylated LHCII type I was found in the supercomplex but not in the megacomplex. Phosphorylated minor LHCIIs (CP26 and CP29) were found only in the unbound form. The PSII subunits were most phosphorylated in the core complex. Based on these observations, we propose a model for PSII remodeling during state transitions, which involves division of the megacomplex into supercomplexes, triggered by phosphorylation of LHCII type I, followed by LHCII undocking from the supercomplex, triggered by phosphorylation of minor LHCIIs and PSII core subunits. 相似文献
19.
20.
Characterization of a Chlamydomonas reinhardtii gene encoding a protein of the DNA photolyase/blue light photoreceptor family 总被引:6,自引:0,他引:6
The organization and nucleotide sequence of a gene from Chlamydomonas reinhardtii encoding a member of the DNA photolyase/blue light photoreceptor protein family is reported. A region of over 7 kb encompassing the gene was sequenced. Northern analysis detected a single 4.2 kb mRNA. The gene consists of eight exons and seven introns, and encodes a predicted protein of 867 amino acids. The first 500 amino acids exhibit significant homology with previously sequenced DNA photolyases, showing the closest relationship to mustard (Sinapis alba) photolyase (43% identity). An even higher identity, 49%, is obtained when the Chlamydomonas gene product is compared to the putative blue-light photoreceptor (HY4) from Arabidopsis thaliana. Both the Chlamydomonas and the Arabidopsis proteins differ from the well characterized DNA photolyases in that they contain a carboxyl terminal extension of 367 and 181 amino acids, respectively. However, there is very little homology between the carboxyl terminal domains of the two proteins. A previously isolated Chlamydomonas mutant, phrl, which is deficient in DNA photolyase activity, especially in the nucleus, was shown by RFLP analysis not to be linked to the gene we have isolated. We propose this gene encodes a candidate Chlamydomonas blue light photoreceptor. 相似文献