首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endoglucanase (Egl)-producing bacteria from soil samples were screened using insoluble cellulosic substrates as sole carbon sources at alkaline pH (pH 9-10). Four Egls with Avicelase activity at alkaline pH were found in the culture broth of each isolate. The Egl genes of the isolates (all Paenibacillus spp.) were shotgun cloned and sequenced-all had a 1752bp open reading frame (584 amino acids) with a putative signal sequence (33 amino acids), and encoded mature enzymes of 551 amino acids (58,360-58,672Da). The mature enzymes showed a high degree of similarity to each other (>93% identity), with the next closest similarity to Egl3a of a patented strain of Paenibacillus lautus NCIMB 40250 (81.5-87.3% identity). These enzymes showed low similarity to other known Egls with less than 50% identity. A representative recombinant enzyme degraded lichenan, carboxymethylcellulose (CMC), glucomannan, acid or alkaline swollen celluloses, and microcrystalline cellulose (Avicel). The optimal pH and temperature of the recombinant enzyme for degrading CMC and Avicel were pH 6.0-8.5 and 45-55 degrees C, respectively. Egls belong to glycoside hydrolase family 5 and form a distinct clan based on the phylogenetic analysis of their amino acid sequences.  相似文献   

2.
Alkaliphilic Bacillus sp. strain KSM-S237 (a relative of Bacillus pseudofirmus) produces a thermostable, alkaline endo-1,4-beta-glucanase (Egl). The entire gene for the enzyme harbored a 2,472-bp open reading frame (ORF) encoding 824 amino acids, including a 30-aminoacid signal peptide. The deduced amino acid sequence of the mature enzyme (794 amino acids, 88,284 Da) showed very high similarity to those of family 5 mesophilic, alkaline Egls from some alkaliphilic bacilli. The enzyme had a region similar to a novel cellulose binding domain proposed for an Egl (EngF) from Clostridium cellulovorans. Expression of the Bacillus Egl gene in Bacillus subtilis resulted in high carboxymethy cellulase activity (2.0 g/l) in the culture broth, concomitant with the appearance of a protein band on an SDS gel at 86 kDa. Site-directed mutagenesis delineated the importance of Arg111, His151, Glu190, His262, Tyr264, and Glu305 in catalysis and/or substrate binding of the enzyme.  相似文献   

3.
Soil metagenomes represent an unlimited resource for the discovery of novel biocatalysts from soil microorganisms. Three large-inserts metagenomic DNA libraries were constructed from different grassland soil samples and screened for genes conferring cellulase or xylanase activity. Function-driven screening identified a novel cellulase-encoding gene (cel01) and two xylanase-encoding genes (xyn01 and xyn02). From sequence and protein domain analyses, Cel01 (831 amino acids) belongs to glycoside hydrolase family 9 whereas Xyn01 (170 amino acids) and Xyn02 (255 amino acids) are members of glycoside hydrolase family 11. Cel01 harbors a family 9 carbohydrate-binding module, previously found only in xylanases. Both Xyn01 and Xyn02 were most active at 60°C with high activities from 4 to 10 and optimal at pH 7 (Xyn01) and pH 6 (Xyn02). The cellulase gene, cel01, was expressed in E. coli BL21 and the recombinant enzyme (91.9 kDa) was purified. Cel01 exhibited high activity with soluble cellulose substrates containing β-1,4-linkages. Activity with microcrystalline cellulose was not detected. These data, together with the analysis of the degradation profiles of carboxymethyl cellulose and barley glucan indicated that Cel01 is an endo 1,4-β-glucanase. Cel01 showed optimal activity at 50°C and pH 7 being highly active from pH range 5 to 9 and possesses remarkable halotolerance.  相似文献   

4.
The celX gene encoding an extracellular cold-active cellulase was isolated from a psychrotrophic bacterium, which was isolated from deep-sea sediment and identified as a Pseudoalteromonas species. It encoded a protein consisting of 492 amino acids with a calculated molecular mass of 52.7 kDa. The CelX consisted of an N-terminal catalytic domain belonging to glycoside hydrolase family 5 and a C-terminal cellulose-binding domain belonging to carbohydrate-binding module family 5. The long linker sequence connecting both domains was composed of 105 residues. The optimal temperature for cellulase activity of CelX was 40°C. The enzyme was most active at pH 6–7 and showed better resistance to alkaline condition. The zymogram activity analysis indicated that the CelX consisted of single enzyme component. The cellobiose was main hydrolysate of CelX.  相似文献   

5.
A novel alkaline mannanase Man26A has been found in the culture of an alkaliphilic Bacillus sp. strain JAMB-750 and the optimal pH for the mannanase activity of the enzyme was around pH 10 (J Biol Macromol 4: 67–74, 2004). This optimal pH is the highest among those of the mannanases reported to date. The gene man26A coding the enzyme was cloned from the genomic DNA of strain JAMB-750 and sequenced. It encodes a protein of 997 amino acids including a signal peptide. The N-terminal half (Glu27–Val486) of the enzyme exhibited moderate similarities to other mannanases belonging to glycoside hydrolase family 26, such as the enzymes from Cellvibrio japonicus (37% identity), Cellulomonas fimi (33% identity), and Bacillus sp. strain AM-001 (28% identity). The C-terminal half was found to contain four domains. The first, second, third, and fourth domains exhibited similarities to the carbohydrate-binding module, the mannan-binding module, the Homo sapiens collagen type IX alpha I chain, and the membrane anchor region of Gram-positive surface proteins, respectively. Its recombinant mannanase was produced extracellularly using Bacillus subtilis as the host. The optimal pH for the mannanase activity of the recombinant enzyme was around pH 10. The enzyme was very resistant to surfactants, for example, SDS up to 2.0% (w/v).  相似文献   

6.
Arthrobacter globiformis T6 is unique in that it produces an enzyme yielding only isomaltose from dextran. In the present study, the organism was re-identified and its classification as a new species of the genus Arthrobacter, A. dextranlyticum, was proposed. The high G+C gene (66.8 mol%) for the isomalto-dextranase was sequenced. The deduced amino acid sequence, with a calculated molecular mass of 65,993 Da (603 amino acids), was confirmed by nanoscale capillary liquid chromatography coupled to tandem mass spectrometry, which covered 71.1% of the amino acid residues of the entire sequence. The enzyme was grouped into glycoside hydrolase family 27, and the C-terminal domain has homology to carbohydrate-binding module family 6. Hyper-exoproduction of the recombinant enzyme was achieved at a level corresponding to approximately 4.6 g l–1 of culture broth when proteases-deficient Bacillus subtilis cells were used as the host. The purified enzyme (65.5 kDa) had an optimal pH and temperature for activity of 3.5 and 60°C, respectively. It was crystallized using the sitting-drop vapor-diffusion method at 293 K.  相似文献   

7.
An endo β-1,4-xylanase (XynE15) from a culture broth of a deep subseafloor microorganism, Microcella alkaliphila JAM-AC0309, was purified to homogeneity. The molecular mass of XynE15 was approximately 150 kDa as judged by SDS-PAGE. The optimal pH and temperature for hydrolysis of xylan were pH 8 and 65 °C. The enzyme was stable to incubation for 30 min at up to 75 °C, and the half-life at 50 °C was 48 h. XynE15 hydrolyzed arabinoxylan, oat spelt xylan, and birchwood xylan well, but not avicel, carboxymethylcellulose, or arabinan. Xylooligosaccharides were hydrolyzed to mainly xylobiose from higher than xylotetraose. The genome sequencing analysis of strain JAM-AC03039 revealed that XynE15 was composed of 1,319 amino acids with one catalytic domain and three carbohydrate-binding domains belonging to glycoside hydrolase (GH) family 10 and carbohydrate-binding module (CBM) family 4, respectively.  相似文献   

8.
A gene, agaA, for a novel beta-agarase from the marine bacterium JAMB-A94 was cloned and sequenced. The 16S rDNA of the isolate had the closest match, of only 94.8% homology, with that from Microbulbifer salipaludis JCM11542(T). The agaA gene encoded a protein with a calculated molecular mass of 48,203 Da. The deduced amino acid sequence showed 37-66% identity to those of known agarases in glycoside hydrolase family 16. A carbohydrate-binding module-like amino acid sequence was found in the C-terminal region. The recombinant enzyme was hyper-produced extracellularly when Bacillus subtilis was used as a host. The purified enzyme was an endo-type beta-agarase, yielding neoagarotetraose as the main final product. It was very thermostable up to 60 degrees C. The optimal pH and temperature for activity were around 7.0 and 55 degrees C respectively. The activity was not inhibited by EDTA (up to 100 mM) and sodium dodecyl sulfate (up to 30 mM).  相似文献   

9.
对海洋细菌QD80所产低温碱性蛋白酶进行了基因克隆和序列分析,对此酶的性质进行了初步研究.此酶基因开放阅读框架为1377bp,分子量为49.9kD.此序列上游-8bp处为该基因的SD序列,-10区和-35区分别有5′TAGAAT3′和5′TTGACC3′的保守序列.该酶最适pH为9.5,最适反应温度为30℃,在10℃酶活力仍能保持30%以上.该酶对氧化剂H2O2的抗氧化作用明显,浓度达到4gL时酶活仍保留85%.该蛋白酶的低温适应性和抗氧化特性将对其在低温洗涤领域的应用提供广泛的潜在应用价值.  相似文献   

10.
The gene for a highly alkaline pectate lyase, Pel-4A, from alkaliphilic Bacillus sp. strain P-4-N was cloned, sequenced, and overexpressed in Bacillus subtilis cells. The deduced amino acid sequence of the mature enzyme (318 amino acids, 34 805 Da) showed moderate homology to those of known pectate lyases in the polysaccharide lyase family 1. The purified recombinant enzyme had an isoelectric point of pH 9.7 and a molecular mass of 34 kDa, and exhibited a very high specific activity compared with known pectate lyases reported so far. The enzyme activity was stimulated 1.6 fold by addition of NaCl at an optimum of 100 mM. When Pel-4A was stored at 50°C for 60 h, striking stabilization by 100 mM NaCl was observed in a pH range from 5 to 11.5, whereas it was stable only around pH 11 in the absence of NaCl. Received: June 10, 2000 / Accepted: October 3, 2000  相似文献   

11.
褐藻寡糖有着丰富的生物学功能,酶法制备功能性褐藻寡糖具有重要实践应用价值.为发掘高活性及稳定性的褐藻寡糖制备酶,对浅海热液嗜热菌Yeosuana marina sp.JLT21中的海藻酸裂解酶YMA-1的基因在大肠杆菌中进行表达、纯化及酶活鉴定.结果发现YMA-1由306个氨基酸残基构成,是多糖裂解酶家族7(PL7)新...  相似文献   

12.
A xylanase gene, xyn-b39, coding for a multidomain glycoside hydrolase (GH) family 10 protein was cloned from the genomic DNA of the alkaline wastewater sludge of a paper mill. Its deduced amino acid sequence of 1,481 residues included two carbohydrate-binding modules (CBM) of family CBM_4_9, one catalytic domain of GH 10, one family 9 CBM and three S-layer homology (SLH) domains. xyn-b39 was expressed heterologously in Escherichia coli, and the recombinant enzyme was purified and characterized. Xyn-b39 exhibited maximum activity at pH 7.0 and 60 °C, and remained highly active under alkaline conditions (more than 80 % activity at pH 9.0 and 40 % activity at pH 10.0). The enzyme was thermostable at 55 °C, retaining more than 90 % of the initial activity after 2 h pre-incubation. Xyn-b39 had wide substrate specificity and hydrolyzed soluble substrates (birchwood xylan, beechwood xylan, oat spelt xylan, wheat arabinoxylan) and insoluble substrates (oat spelt xylan and wheat arabinoxylan). Hydrolysis product analysis indicated that Xyn-b39 was an endo-type xylanase. The K m and V max values of Xyn-b39 for birchwood xylan were 1.01 mg/mL and 73.53 U/min/mg, respectively. At the charge of 10 U/g reed pulp for 1 h, Xyn-b39 significantly reduced the Kappa number (P < 0.05) with low consumption of chlorine dioxide alone.  相似文献   

13.
We cloned two genes for alkaline pectate lyase, pel-4A and pel-4B, from alkaline pectinase-producing alkaliphilic Bacillus sp. strain P-4-N. The pel-4B gene product Pel-4B was purified to homogeneity and characterized. The purified enzyme had an isoelectric point of pH 9.6 and a molecular mass of 35 kDa, values close to those of the pel-4A gene product Pel-4A. The pH and temperature optima for activity were as high as 11.5 and 70 degrees C, respectively, which are the highest among the pectate lyases reported to date. The mature Pel-4B (304 amino acids; 33,868 Da) was structurally related to the enzymes in the polysaccharide lyase family 1 and showed 35.6% identity with Pel-4A on the amino acid level. It showed significant homology to other pectate lyases in the same family, such as the enzymes from alkaliphilic Bacillus sp. strains KSM-P7 and KSM-P103 and the fungi Aspergillus nidulans and Colletotrichum gloeosporioides f. sp. malvae.  相似文献   

14.
A low-molecular-weight, high-alkaline pectate lyase (pectate transeliminase, EC 4.2.2.2) was found in an alkaline culture of Bacillus sp. strain KSM-P15, purified to homogeneity, and crystallized. The enzyme had a relative molecular weight of approximately 20,300 as measured by sedimentation equilibrium, with a sedimentation coefficient (s20,w0) of 1.73 S. It was a basic protein with an isoelectric point of pH 10.3, and the alpha-helical content was only 6.6%. In the presence of Ca2+ ions, the enzyme degraded polygalacturonic acid in a random manner to yield 4,5-unsaturated oligo-galacturonides and had its optimal activity around pH 10.5 and 50-55 degrees C. It also had a protopectinase-like activity on cotton fibers. The N-terminal amino acid sequences of the intact protein (28 amino acids) and its two lysyl endopeptidase-cleaved peptide fragments (8 and 12 amino acids) had very low sequence similarity with pectate lyases reported to date. These results strongly suggest that the pectate lyase of Bacillus sp. strain KSM-P15 may be a novel enzyme and belongs in a new family.  相似文献   

15.
Wang N  Zhang Y  Wang Q  Liu J  Wang H  Xue Y  Ma Y 《Biotechnology journal》2006,1(11):1258-1265
A gene encoding an extracellular alpha-amylase (AmyA) was cloned from the alkaliphilic bacterium Alkalimonas amylolytica by enzymatic activity screening in Escherichia coli DH5alpha. The gene amyA consists of 1764 base pairs and was predicted to encode a 587-amino acid protein encompassing a 31-amino acid signal peptide. In addition, a 459-amino acid catalytic domain and a 97-amino acid starch-binding domain (SBD) were found. The SBD showed little similarity to other known SBDs; instead, it contains conserved amino acids typically belonging to the carbohydrate-binding module (CBM) family 20. AmyA could act on both granular and gelatinized starch. The catalytic domain of the enzyme showed little similarity to other known alpha-amylases. Rather, AmyA contains four characteristic conserved regions of glycoside hydrolase family 13. The recombinant enzyme was a liquefying enzyme with the highest activity at 50 degrees C and pH 9.5. The enzyme displayed a unique endo-product profile and action pattern on soluble starch to yield a series of malto-oligosaccharides ranging from maltose to maltoheptaose. The activity of the enzyme was enhanced by Co(2+), but not affected by 5 mM EDTA. Taken together, AmyA from A. amylolytica has potential to be used in paper, textile, detergent and other industries where starch needs to be degraded in an alkaline environment.  相似文献   

16.
Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme.  相似文献   

17.
An agar-degrading bacterium, strain JAMB-A7, was isolated from the sediment in Sagami Bay, Japan, at a depth of 1,174 m and identified as a novel species of the genus Microbulbifer. The gene for a novel -agarase from the isolate was cloned and sequenced. It encodes a protein of 441 amino acids with a calculated molecular mass of 48,989 Da. The deduced amino acid sequence showed similarity to those of known -agarases in glycoside hydrolase family 16, with only 34–55% identity. A sequence similar to a carbohydrate-binding module was found in the C-terminal region of the enzyme. The recombinant agarase was hyper-produced extracellularly using Bacillus subtilis as the host, and the enzyme purified to homogeneity had a specific activity of 398 U (mg protein)–1 at pH 7.0 and 50°C. It was thermostable, with a half-life of 502 min at 50°C. The optimal pH and temperature for activity were around 7 and 50°C, respectively. The pattern of agarose hydrolysis showed that the enzyme was an endo-type -agarase, and the final main product was neoagarotetraose. The activity was not inhibited by NaCl, EDTA, and various surfactants at high concentrations. In particular, sodium dodecyl sulfate had no inhibitory effect up to 2%.  相似文献   

18.
A gene (tap) encoding a thermostable alkaline phosphatase from the thermophilic bacterium Thermus thermophilus XM was cloned and sequenced. It is 1506 bp long and encodes a protein of 501 amino acid residues with a calculated molecular mass of 54.7 kDa. Comparison of the deduced amino acid sequence with other alkaline phosphatases showed that the regions in the vicinity of the phosphorylation site and metal binding sites are highly conserved. The recombinant thermostable alkaline phosphatase was expressed as a His6-tagged fusion protein in Escherichia coli and its enzymatic properties were characterized after purification. The pH and temperature optima for the recombinant thermostable alkaline phosphatases activity were pH 12 and 75 ℃. As expected, the enzyme displayed high thermostability, retaining more than 50% activity after incubating for 6 h at 80 ℃. Its catalytic function was accelerated in the presence of 0.1 mM Co^2+, Fe^2+, Mg^2+, or Mn^2+ but was strongly inhibited by 2.0 mM Fe^2+. Under optimal conditions, the Michaelis constant (Kin) for cleavage of p-nitrophenyl-phosphate was 0.034 mM. Although it has much in common with other alkaline phosphatases, the recombinant thermostable alkaline phosphatase possesses some unique features, such as high optimal pH and good thermostability.  相似文献   

19.
The alkaliphilic bacterium, Bacillus halodurans S7, produces an alkaline active xylanase (EC 3.2.1.8), which differs from many other xylanases in being operationally stable under alkaline conditions as well as at elevated temperature. Compared to non-alkaline active xylanases, this enzyme has a high percent composition of acidic amino acids which results in high ratio of negatively to positively charged residues. A positive correlation was observed between the charge ratio and the pH optima of xylanases. The recombinant xylanase was crystallized using a hanging drop diffusion method. The crystals belong to the space group P212121 and the structure was determined at a resolution of 2.1 Å. The enzyme has the common eight-fold TIM-barrel structure of family 10 xylanases; however, unlike non-alkaline active xylanases, it has a highly negatively charged surface and a deeper active site cleft. Mutational analysis of non-conserved amino acids which are close to the acid/base residue has shown that Val169, Ile170 and Asp171 are important to hydrolyze xylan at high pH. Unlike the wild type xylanase which has optimum pH at 9–9.5, the triple mutant xylanase (V169A, I170F and D171N), which was constructed using sequence information of alkaline sensitive xylanses was optimally active around pH 7. Compared to non-alkaline active xylanases, the alkaline active xylanases have highly acidic surfaces and fewer solvent exposed alkali labile residues. Based on these results obtained from sequence, structural and mutational analysis, the possible mechanisms of high pH stability and catalysis are discussed. This will provide useful information to understand the mechanism of high pH adaptation and engineering of enzymes that can be operationally stable at high pH.  相似文献   

20.
A thermophilic Thermoactinomyces sp. E79 producing a highly thermostable alkaline protease was isolated from soil. The protease, produced extracellularly by Thermoactinomyces sp. E79, was purified by DEAE-Sepharose CL-6B and Butyl-Toyopearl 650M column chromatography. The relative molecular mass was estimated to be 31,000 by SDS–polyacrylamide gel electrophoresis. Enzyme activity was inhibited by phenylmethylsulfonyl fluoride, suggesting the enzyme to be a serine protease. The optimum temperature for the enzyme activity was 85°C, and about 50% of the original activity remained after incubation at 90°C for 10 min in the presence of Ca2 + . The optimum pH for the enzyme activity was 11.0 and the enzyme was fairly stable from pH 5.0 to 12.0. The gene for this thermostable alkaline protease was cloned in Escherichia coli and the expressed intracellular enzyme was activated by heat treatment. Sequence analysis showed an open reading frame of 1,152 base pairs, coding for a poiypeptide of 384 amino acids. The polypeptide was composed of a signal sequence (25 amino acids), a prosequence (81 amino acids), and a mature protein of 278 amino acids. The deduced amino acid sequence of the mature protease had high similarity with thermitase, a serine protease from Thermoactinomyces vulgaris, and the extent of sequence identity was 76%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号