首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gamma-butyrolactone derivative molecules in Streptomyces play a crucial role in cell density control, secondary metabolism, and cell differentiation. As their synthesis level in the cell is very low compared to those of similar N-acyl homoserine lactone molecules from gram-negative bacteria, it is very hard to analyze them even with several hundredfold concentration of the culture broth. We have developed a very quick and easy detection method using an affinity capture technique with His-tagged receptor proteins and electrospray tandem mass spectrometry. Using Streptomyces coelicolor as a model system, SCB1 was detected from only 100 ml of the culture broth after solvent extraction. This method can be further applied to detection and quantitative analysis of butanolides and inhibitor screening of the receptor molecules.  相似文献   

2.
3.
An important role of the clinical microbiology laboratory is to provide rapid identification of bacteria causing bloodstream infection. Traditional identification requires the sub-culture of signaled blood culture broth with identification available only after colonies on solid agar have matured. MALDI-TOF MS is a reliable, rapid method for identification of the majority of clinically relevant bacteria when applied to colonies on solid media. The application of MALDI-TOF MS directly to blood culture broth is an attractive approach as it has potential to accelerate species identification of bacteria and improve clinical management. However, an important problem to overcome is the pre-analysis removal of interfering resins, proteins and hemoglobin contained in blood culture specimens which, if not removed, interfere with the MS spectra and can result in insufficient or low discrimination identification scores. In addition it is necessary to concentrate bacteria to develop spectra of sufficient quality. The presented method describes the concentration, purification, and extraction of Gram negative bacteria allowing for the early identification of bacteria from a signaled blood culture broth.  相似文献   

4.
  1. Download : Download high-res image (178KB)
  2. Download : Download full-size image
  相似文献   

5.

Motivation

Mass spectrometry is a high throughput, fast, and accurate method of protein analysis. Using the peaks detected in spectra, we can compare a normal group with a disease group. However, the spectrum is complicated by scale shifting and is also full of noise. Such shifting makes the spectra non-stationary and need to align before comparison. Consequently, the preprocessing of the mass data plays an important role during the analysis process. Noises in mass spectrometry data come in lots of different aspects and frequencies. A powerful data preprocessing method is needed for removing large amount of noises in mass spectrometry data.

Results

Hilbert-Huang Transformation is a non-stationary transformation used in signal processing. We provide a novel algorithm for preprocessing that can deal with MALDI and SELDI spectra. We use the Hilbert-Huang Transformation to decompose the spectrum and filter-out the very high frequencies and very low frequencies signal. We think the noise in mass spectrometry comes from many sources and some of the noises can be removed by analysis of signal frequence domain. Since the protein in the spectrum is expected to be a unique peak, its frequence domain should be in the middle part of frequence domain and will not be removed. The results show that HHT, when used for preprocessing, is generally better than other preprocessing methods. The approach not only is able to detect peaks successfully, but HHT has the advantage of denoising spectra efficiently, especially when the data is complex. The drawback of HHT is that this approach takes much longer for the processing than the wavlet and traditional methods. However, the processing time is still manageable and is worth the wait to obtain high quality data.  相似文献   

6.
An important role of protein ADP-ribosylation in bacterial morphogenesis has been proposed (J. Bacteriol. 178, 3785-3790; 178, 4935-4941). To clarify the detail of ADP-ribosylation, we identified a new kind of target protein for ADP-ribosylation in Streptomyces coelicolor A3(2) grown to the late growth phase. All four proteins (MalE, BldKB, a periplasmic protein for binding branched-chain amino-acids, and a periplasmic solute binding protein) were functionally similar and participated in the regulation of transport of metabolites or nutrients through the membrane. ADP-ribosylation was likely to occur on a cysteine residue, because the modification group was removed by mercuric chloride treatment. The modification site may be the site of lipoprotein modification necessary for protein export. This report is the first suggesting that certain proteins involved in membrane transport can be ADP-ribosylated.  相似文献   

7.
8.
Nitroxyl (HNO) exhibits many important pharmacological effects, including inhibition of platelet aggregation, and the HNO donor Angeli''s salt has been proposed as a potential therapeutic agent in the treatment of many diseases including heart failure and alcoholism. Despite this, little is known about the mechanism of action of HNO, and its effects are rarely linked to specific protein targets of HNO or to the actual chemical changes that proteins undergo when in contact with HNO. Here we study the presumed major molecular target of HNO within the body: protein thiols. Cysteine-containing tryptic peptides were reacted with HNO, generating the sulfinamide modification and, to a lesser extent, disulfide linkages with no other long lived intermediates or side products. The sulfinamide modification was subjected to a comprehensive tandem mass spectrometric analysis including MS/MS by CID and electron capture dissociation as well as an MS3 analysis. These studies revealed a characteristic neutral loss of HS(O)NH2 (65 Da) that is liberated from the modified cysteine upon CID and can be monitored by mass spectrometry. Upon storage, partial conversion of the sulfinamide to sulfinic acid was observed, leading to coinciding neutral losses of 65 and 66 Da (HS(O)OH). Validation of the method was conducted using a targeted study of nitroxylated glyceraldehyde-3-phosphate dehydrogenase extracted from Angeli''s salt-treated human platelets. In these ex vivo experiments, the sample preparation process resulted in complete conversion of sulfinamide to sulfinic acid, making this the sole subject of further ex vivo studies. A global proteomics analysis to discover platelet proteins that carry nitroxyl-induced modifications and a mass spectrometric HNO dose-response analysis of the modified proteins were conducted to gain insight into the specificity and selectivity of this modification. These methods identified 10 proteins that are modified dose dependently in response to HNO, whose functions range from metabolism and cytoskeletal rearrangement to signal transduction, providing for the first time a possible mechanistic link between HNO-induced modification and the physiological effects of HNO donors in platelets.Nitric oxide (NO)1 has emerged as an important physiological signaling molecule, particularly in the vascular, neuronal, and immune systems. NO regulates many processes including platelet function, vascular tone, and leukocyte recruitment mainly through the cGMP second messenger system (1). More recent studies have shown that nitric oxide can react directly with a number of different biological species including metal centers of proteins, nucleophilic amino acid residues (nitrosation/S-nitrosylation), and aromatic amino acid residues (nitration) (2, 3), and the products of these reactions have been analyzed by mass spectrometry (48). The biological relevance of these reactions is slowly coming to light, and NO-mediated S-nitrosylation has now been linked to a number of diseases including diabetes, multiple sclerosis, cystic fibrosis, and asthma (9).Nitroxyl (HNO/NO), an alternative redox form of NO, has only recently begun to draw attention in the biomedical research community. The interest associated with HNO is due to its novel and important biological activity (1015). There has been particular interest in the effect of HNO on failing hearts as it has been shown to increase left ventricular contractility and, at the same time, to lower cardiac preload and diastolic pressure without increasing arterial resistance (10, 11), effects that indicate the potential for HNO to be developed as a treatment for heart failure (16). As well, treatment of platelets with micromolar concentrations of the HNO donor Angeli''s salt (AS) leads to an inhibition of platelet aggregation that was found to be both time- and dose-dependent (12). Other pharmacological studies have shown that HNO can be protective against excitotoxicity of the N-methyl-d-aspartate receptor (13, 17); it can inhibit aldehyde dehydrogenase, which could be used as an antialcoholic treatment (14, 18, 19); and pretreatment of ischemic (oxygen-depleted) tissues with HNO has been shown to protect against ischemia-reperfusion toxicity (20). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme in the carbohydrate metabolism pathway, has also been shown to be potently inhibited by HNO both in vitro (19) and in vivo (21), an effect thought to occur through the direct modification of its active site cysteine. At high concentrations (2–5 mm), HNO has been shown to be cytotoxic by eliciting DNA strand breaks and glutathione depletion, causing cellular toxicity due to oxidative protein damage (22). However, this toxicological effect is only relevant if physiological HNO levels are high, and it has thus far not been demonstrated to have any in vivo relevance (23).These HNO-mediated pharmacological effects are dramatically different from those of NO (11) most likely because HNO tends to be much more thiophilic with cysteines being the major site of biochemical reactivity (2426). Therefore, it is no surprise that NO and HNO tend to have different targets. For example, in the vascular system, HNO can act through a cAMP signal transduction pathway, whereas the vascular activity of NO is primarily due to an elevation in cGMP (27).Although a number of pharmacological and toxicological effects have been shown for HNO, the underlying mechanisms of action are largely unknown. HNO and cysteine are known to react to produce non-cross-linked sulfinamides and cause disulfide formation, and HNO can react with metals/metalloproteins and oxygen and participate in reduction/oxidation reactions (23, 25, 26). However, the molecular targets of HNO have yet to be linked to its pharmacological and toxicological effects.Here we describe a mass spectrometry-based method for the analysis of the major type of biologically relevant HNO reaction, the reaction with the thiol on cysteines to produce non-cross-linked sulfinamides as well as disulfide linkages (23, 25, 26). Although disulfides are produced through many different pathways, non-cross-linked sulfinamides are exclusively produced by HNO and can thus be used to analyze for the presence of HNO and its effects on cysteine-containing proteins. As well, the sulfinamide modification imparts a specific mass change to cysteines making sulfinamide analysis, and indirectly HNO analysis, very amenable to investigation by mass spectrometry. The sulfinamide modification has been observed in MS spectra (28), and in a recent mass spectrometric analysis, Shen and English (29) attributed a mass shift of 65 Da on prominent y-ions upon low energy CID to the elimination of the sulfinamide moiety from the molecule in their mass spectrometric comparison of nitroxyl products formed with free and protein-based cysteines. Here we investigate this mass shift and the formation of a previously unstudied neutral loss to determine an efficient method for the identification of the sulfinamide modification and demonstrate its utility on a sample generated by treatment of live platelets immediately post-isolation, that is ex vivo, with HNO.  相似文献   

9.
Imaging of low abundance proteins in time and space by fluorescence microscopy is typically hampered by host-cell autofluorescence. Streptomycetes are an important model system for the study of bacterial development, and undergo multiple synchronous cell division during the sporulation stage. To analyse this phenomenon in detail, fluorescence microscopy, and in particular also the recently published novel live imaging techniques, require optimal signal to noise ratios. Here we describe the development of a novel derivative of Streptomyces coelicolor A3(2) with strongly reduced autofluorescence, allowing the imaging of fluorescently labelled proteins at significantly higher resolution. The enhanced image detail provided novel localization information for the cell division protein FtsZ, demonstrating a new developmental stage where multiple FtsZ foci accumulate at the septal plane. This suggests that multiple foci are sequentially produced, ultimately connecting to form the complete Z ring. The enhanced imaging properties are an important step forward for the confocal and live imaging of less abundant proteins and for the use of lower intensity fluorophores in streptomycetes.  相似文献   

10.
Bacterial prodigiosins are red-colored secondary metabolites with multiple activities,such as anticancer,antimalarial and immunosuppressive,which hold great potential for medical applications.In this study,dramatically enhanced prodigiosins(RED) production in Streptomyces coelicolor was achieved by combinatorial metabolic engineering,including inactivation of the repressor gene ohkA,deletion of the actinorhodin(ACT) and calcium-dependent antibiotic(CDA) biosynthetic gene clusters(BGCs) and multi-copy chromosomal integration of the RED BGC.The results showed that ohkA deletion led to a 1-fold increase of RED production over the wild-type strain M145.Then,the ACT and CDA BGCs were deleted successively based on the AohkA mutant(SBJ101).To achieve multi-copy RED BGC integration,artificial ΦC31 attB site(s) were inserted simultaneously at the position where the ACT and CDA BGCs were deleted.The resulting strains SBJ102(with a single deletion of the ACT BGC and insertion of one artificial attB site) and SBJ103(with the deletion of both BGCs and insertion of two artificial attB sites) produced 1.9-and 6-fold higher RED titers than M145,respectively.Finally,the entire RED BGC was introduced into mutants from SBJ101 to SBJ103,generating three mutants(from SBJ104 to SBJ106) with chromosomal integration of one to three copies of the RED BGC.The highest RED yield was from SBJ106,which produced a maximum level of 96.8 mg g~(-1) cell dry weight,showing a 12-fold increase relative to M145.Collectively,the metabolic engineering strategies employed in this study are very efficient for the construction of high prodigiosin-producing strains.  相似文献   

11.
12.
In the overtly differentiated colonies of Streptomyces coelicolor A3(2), discrete phases of glycogen synthesis are found at the vegetative/aerial mycelium boundary (phase I) and in the immature spore chains at aerial hyphal tips (phase II). We have characterized two S. coelicolor glgB genes encoding glycogen branching enzyme, which are well separated in the genome. Disruption of glgB I led to the formation of abnormal polyglucan deposits at phase I, with phase II remaining normal, whereas disruption of glgB II interfered specifically with phase II deposits, and not with those of phase I. Thus, each branching enzyme isoform is involved in a different phase of glycogen synthesis. This situation contrasts with that in simple bacteria, which typically have a single set of enzymes for glycogen metabolism, and more closely resembles that in plants.  相似文献   

13.
14.
A-factor is a potent pleiotropic effector produced by Streptomyces griseus and is essential for streptomycin production and spore formation in this organism. Its production is widely distributed among various actinomycetes including Streptomyces coelicolor A3(2). Genetic analysis of A-factor production was carried out with S. coelicolor A3(2), and two closely linked loci for A-factor mutations (afsA and B) were identified between cysD and leuB on the chromosomal linkage map. In contrast, genetic crosses of A-factor-negative mutants of S. griseus, using a protoplast fusion technique, failed to give a fixed locus for A-factor gene(s) and suggested involvement of an extrachromosomal or transposable genetic element in A-factor synthesis in this organism.  相似文献   

15.
Identification and cloning of a umu locus in Streptomyces coelicolor A3(2)   总被引:1,自引:0,他引:1  
The umuDC operon of Escherichia coli is required for efficient mutagenesis by UV and many other DNA-damaging agents. E. coli umu mutants are defective in mutagenesis and slightly more sensitive to DNA-damaging agents. The existence of a umuDC analogue in Streptomyces coelicolor was suggested by data of our previous works. We cloned from Streptomyces coelicolor a fragment of DNA homologous to the E. coli umuDC region that is able to complement the E coli umuC122::Tn5 mutation. Therefore our data suggest that S. coelicolor contains a functional umu-like operon.  相似文献   

16.
17.
Abstract Streptomyces coelicolor was found to be devoid of glutaminyl-tRNA synthetase. In this bacterium, tRNAGln is aminoacylated by glutamyl-tRNA synthetase to yield glutamyl-tRNAGln, followed by correction to glutaminyl-tRNAGln by a tRNA-dependent amidotransferase.  相似文献   

18.
19.
20.
Mycothiol is a low molecular weight thiol compound produced by a number of actinomycetes, and has been suggested to serve both anti-oxidative and detoxifying roles. To investigate the metabolism and the role of mycothiol in Streptomyces coelicolor, the biosynthetic genes (mshA, B, C, and D) were predicted based on sequence homology with the mycobacterial genes and confirmed experimentally. Disruption of the mshA, C, and D genes by PCR targeting mutagenesis resulted in no synthesis of mycothiol, whereas the mshB mutation reduced its level to about 10% of the wild type. The results indicate that the mshA, C, and D genes encode non-redundant biosynthetic enzymes, whereas the enzymatic activity of MshB (acetylase) is shared by at least one other gene product, most likely the mca gene product (amidase).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号