首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intermediate species with one disulphide bond in the renaturation of reduced pancreatic trypsin inhibitor have been trapped, isolated, and the Cys residues involved in the disulphide bonds determined. Approximately half the intermediate species had the disulphide bond between Cys-30 and 51, a disulphide bond also present in the native inhibitor. The next most predominant species, representing one-quarter of the total, had a disulphide bond between Cys-5 and 30, and two more minor species involving Cys-30 and 55 and Cys-5 and 51 were detected; these disulphide bonds are not present in the native inhibitor.The nature of the disulphide bonds present are concluded to reflect primarily the conformational forces acting at this stage of folding, which may be primarily interactions between segments with propensities for secondary structure, either helices or β-sheet. The general importance of such interactions in protein folding is discussed.  相似文献   

2.
On the disulphide bonds of rhodopsins.   总被引:3,自引:0,他引:3       下载免费PDF全文
Carboxymethylation using 14C- or 3H-labelled iodoacetic acid has been used to identify the cysteine residues in bovine rhodopsin involved in the formation of the two intramolecular disulphide bridges. Iodo[2-14C]acetic acid was used to modify 5.8-5.9 residues of cysteine under non-reducing conditions. After dialysis and reduction of disulphide bridges by 2-mercaptoethanol, iodo[2-3H]acetic acid was employed to covalently modify 3.3-3.6 residues of cysteine. Peptide purification and sequencing has unambiguously shown that cysteine residues 322 and 323 are only carboxymethylated after reduction of disulphide bridges. Indirect evidence presented, now coupled with the earlier finding [Findlay & Pappin (1986) Biochem. J. 238, 625-642] suggests that the other disulphide bridge is formed between cysteine residues 110 and 187. A comparison is made of all the sequences of mammalian rhodopsins and colour pigments and attention is drawn to the fact that whereas Cys-322 and Cys-323 are conserved only in three rhodopsins (bovine, ovine and human), the residues corresponding to Cys-110 and Cys-187 are found in all the visual proteins (from rods as well as human cones).  相似文献   

3.
The locations of the six disulphide bonds and the single free cysteine residue in a variant surface glycoprotein, VSG 117, from the African trypanosome Trypanosoma brucei have been determined to be Cys-14--Cys-140, Cys-121--Cys-182, Cys-389--Cys-404, Cys-398--417, Cys-447--Cys-461 and Cys-455--Cys-468. Cys-244 bears the single thiol group, which is unreactive towards 2-nitro-5-thiocyanobenzoate in the native molecule and is probably buried. Biosynthetically incorporated [35S]cysteine aided the location of the disulphide bonds. Two proteinase-resistant glycosylated domains, each containing two disulphide bonds, were identified in the C-terminal region of the glycoprotein. Details of purification of [35S]cysteine-containing peptides, and Tables of amino acid analyses, are presented in Supplementary Publication SUP 50119 (32 pages), which has been deposited with the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1981) 193,5.  相似文献   

4.
The single interchain disulphide bond in platelet glycoprotein IIb (GPIIb) is accessible to extracellular reductants, and selective cleavage does not liberate GPIIb alpha from platelet plasma membrane, confirming that non-covalent interactions contribute to maintaining attachment of this subunit to the membrane. Eosin-maleimide labelling of isolated GPIIb after selective cleavage of this interchain disulphide bond, followed by full reduction and alkylation, CNBr cleavage, and analysis of the cleavage products allowed us to establish that this interchain disulphide bridge is formed between GPIIb beta (GPIIb beta-subunit) Cys-9 and GPIIb alpha Cys-826, and this conclusion was confirmed by independent routes. The other two cysteines of GPIIb beta (Cys-14 and Cys-19) form the single intrachain disulphide bond in this subunit. Last, the intrachain disulphides in GPIIb alpha (GPIIb alpha-subunit) are distributed in four main peptide domains which are not disulphide-bonded among themselves. The linear epitope for monoclonal antibody M1 is localized between Pro-4 and Met-24 (or Met-31) of GPIIb beta. The linear epitope for M3 is situated between Cys-826 and the C-terminus of GPIIb alpha. The M4 epitope is also linear and localized somewhere between residues 115 and 285 of GPIIb alpha. Finally, the epitopes for M5 and M6 are somewhere between Cys-608 and Met-704, within a 35 kDa membrane-bound chymotryptic product of digestion of GPIIb in whole platelets. The N-terminal amino acid sequences determined for eight different cleavage products of GPIIb alpha and GPIIb beta agree with the corresponding amino acid sequences predicted by cDNA sequence for human-erythroleukaemic-cell GPIIb [Poncz, Eisman, Heindenreich, Silver, Vilaire, Surrey, Schwartz & Bennett (1987) J. Biol. Chem. 262, 8476-8482].  相似文献   

5.
The methanol-insoluble heat-stable enterotoxin of Escherichia coli (STB) was purified and characterized by automated Edman degradation and tryptic peptide analysis. The amino-terminal residue, Ser-24, confirmed that the first 23 amino acids inferred from the gene sequence were removed during translocation through the E. coli inner membrane. Tryptic peptide analysis coupled with automated Edman degradation revealed that disulphide bonds are formed between residues Cys-33 and Cys-71 and between Cys-44 and Cys-59. Oligonucleotide-directed mutagenesis performed on the STB gene demonstrated that disulphide bond formation does not precede translocation of the polypeptide through the inner membrane and that disulphide bridge formation is a periplasmic event; apparently, elimination of either of two disulphides of STB renders the molecule susceptible to periplasmic proteolysis. In addition, a loop defined by the Cys-44-Cys-59 bond contains at least two amino acids (Arg-52 and Asp-53) required for STB toxic activity.  相似文献   

6.
Disulphide bonds in human recombinant tissue inhibitor of metalloproteinases (TIMP) were assigned by resolving proteolytic digests of TIMP on reverse-phase h.p.l.c. and sequencing those peaks judged to contain disulphide bonds by virtue of a change in retention time on reduction. This procedure allowed the direct assignment of Cys-145-Cys-166 and the isolation of two other peptides containing two disulphide bonds each. Further peptide cleavage in conjunction with fast-atom-bombardment m.s. analysis permitted the assignments Cys-1-Cys-70, Cys-3-Cys-99, Cys-13-Cys-124 and Cys-127-Cys-174 from these peptides. The sixth bond Cys-132-Cys-137 was assigned by inference, as the native protein has no detectable free thiol groups.  相似文献   

7.
Secretion to the cell exterior of cellulase EGZ and of at least six pectinases enables the Gram-negative Erwinia chrysanthemi to cause severe plant disease. The C-terminal cellulose-binding domain (CBD) of EGZ was found to contain a disulphide bond which forms, in the periplasm, between residues Cys-325 and Cys-382. Dithiothreitol (DTT)-treatment of native EGZ showed that the disulphide bond was dispensable, both for catalysis and cellulose binding. Adding DTT to E. chrysanthemi cultures led to immediate arrest of secretion of EGZ which accumulated in the periplasm where the CBD was eventually proteolysed. Site-directed mutagenesis that affected Cys residues involved in disulphide bond formation resulted in molecules that were catalytically active and able to bind to cellulose but were no longer secreted, Instead they accumulated in the periplasm. Interestingly, the region around EGZ Cys-325 is conserved in two pectinases secreted by the same pathway as EGZ. We conclude that the conserved Cys, and possibly adjacent residues, bear essential information for EGZ to be secreted and that periplasmic disulphide bond formation is an obligatory step which provides a pre-folded functional form of EGZ with secretion competence.  相似文献   

8.
The primary structure of the human plasmin B-chain has been determined. It consists of 230 residues divided in three cyanogen bromide fragments: The amino-terminal 24 residues, the carboxy-terminal three residues and the middle 203 residues. Sequence detemination was performed on the tryptic and the chymotryptic peptides obtained from the main cyanogen bromide fragment of this chain. Owing to similarities between some of the overlapping chymotryptic peptides, two different sequences were possible from these results. However, since the homologies with the pancreatic serine proteases and also the B-chains of thrombin and factor XA are pronounced, the arrangement still could be settled. By peptic digestion of partially reduced and S-carboxymethylated B-chain it was shown that there are two interchain disulphide bridges, which connect the A and B-chains of plasmin, involving Cys-5 and Cys-105 from the B-chain. The intrachain disulphides in the B-chain seem to be situated exactly as in chymotrypsin as partly judged from homologies.  相似文献   

9.
The role of the internal Cys-207 of sorghum NADP-malate dehydrogenase (NADP-MDH) in the activation of the enzyme has been investigated through the examination of the ability of this residue to form mixed disulphides with thioredoxin mutated at either of its two active-site cysteines. The h-type Chlamydomonas thioredoxin was used, because it has no additional cysteines in the primary sequence besides the active-site cysteines. Both thioredoxin mutants proved equally efficient in forming mixed disulphides with an NADP-MDH devoid of its N-terminal bridge either by truncation, or by mutation of its N-terminal cysteines. They were poorly efficient with the more compact WT oxidised NADP-MDH. Upon mutation of Cys-207, no mixed disulphide could be formed, showing that this cysteine is the only one, among the four internal cysteines, which can form mixed disulphides with thioredoxin. These experiments confirm that the opening of the N-terminal disulphide loosens the interaction between subunits, making Cys-207, located at the dimer contact area, more accessible.  相似文献   

10.
The BALB/c IgA (immunoglobulin A) myeloma protein M167 contained on average 5.7 free SH groups per IgA dimer. These groups were preponderantly on the heavy chains and comprised two distinct populations: 3.3 exposed SH groups per dimer in the Fc region, and 2.4 buried SH groups per dimer in the Fd region, detectable o only after denaturation. To locate the cysteine residues involved, labelled peptides were purified from thermolysin digests of radioalkylated IgA by high-performance liquid chromatography. From the amino acid compositions of the peptides, the exposed thiol groups were assigned to Cys-307 in the C alpha 2 domain, which thus existed in the reduced form to an extent exceeding 80%. This residue may allow attachment of secretory component to dimer IgA in the mouse to proceed via thiol-disulphide exchange. The buried thiol groups were assigned to Cys-150 and Cys-208, in the C alpha 1 domain, each being in the reduced form to the extent of approx. 30%. This pair of residues would normally give rise to the characteristic intradomain disulphide bridge. It appears that disulphide formation is not a crucial event during folding of the C alpha 1 domain in IgA biosynthesis. The sequence in the region 140-151 was re-investigated, and residue 142 was shown to be serine, not cysteine, helping explain the lack of heavy-chain-light chain bonding in BALB/c mouse IgA. A disulphide-bond model for mouse IgA is proposed on the basis of these assignments and other features of the mouse alpha-chain sequence.  相似文献   

11.
An analogue of the BPT1 folding intermediate that contains only the disulphide bond between Cys-5 and Cys-55 has been prepared by mutation of the other four Cys residues to Ser. On the basis of its circular dichroism and 1H-nuclear magnetic resonance spectra and its electrophoretic mobility, this intermediate is shown to be at least partially folded at low temperatures. This probably accounts for several of the unique properties of this intermediate observed during folding.  相似文献   

12.
To define domains involved in IGF binding 60 N-terminal amino acid residues of IGFBP-1 were deleted. This deletion resulted in loss of IGF binding suggesting that the N-terminus may enclose an IGF binding domain. However, most point mutations introduced in this region did not affect IGF binding. In contrast to Cys-34, only substitution of Cys-38 for a tyrosine residue abolished IGF binding. With the determination that all 18 cysteine residues are involved in disulphide bond formation our data suggest that, although not all cysteines contribute to the same extent, the ligand binding site may be spatially organized.  相似文献   

13.
Directed mutagenesis of the gor gene from Escherichia coli encoding the flavoprotein glutathione reductase was used to convert the two cysteine residues that comprise its redox-active disulphide bridge to alanine (C42A) and serine (C47S) residues. A double mutant (C42AH439A) was also created in which His-439, the proton donor/acceptor in the glutathione-binding site, was additionally converted into an alanine residue. The C42A and C47S mutants were both unable to catalyse the reduction of glutathione by NADPH. The C42A mutant retained the transhydrogenase activity of the wild-type enzyme, whereas the C47S mutant was also inhibited in this reaction. These results support the view that in the catalytic mechanism of E. coli glutathione reductase, the thiolate form of Cys-42 acts as a nucleophile to initiate disulphide exchange with enzyme-bound glutathione and that the thiolate form of Cys-47 generates an essential charge-transfer complex with enzyme-bound FAD. Titration of the C42A and C42AH439A mutants indicated that the imidazole side-chain of His-439 lowered the pKa of the charge-transfer thiol (Cys-47) from 7.7 to 5.7, enhancing its ability to act as an anion at neutral pH. Several important differences between these mutants of E. coli glutathione reductase and similar mutants (or chemically modified forms) of other members of the flavoprotein disulphide oxidoreductase family were noted, but these could be explained in terms of the different redox chemistries of the enzymes concerned.  相似文献   

14.
Assignment of the disulphide bonds in the sweet-tasting protein thaumatin I   总被引:1,自引:0,他引:1  
The disulphide linkages of the 16 half-cystine residues in the sweet-tasting protein thaumatin have been investigated by enzymatic hydrolysis of the intact molecule. The peptides obtained after proteolytic cleavage with trypsin and pepsin, and in one case with chymotrypsin have been purified by gel filtration, high-performance liquid chromatography and peptide mapping by paper high-voltage electrophoresis in one direction and paper chromatography in the second dimension. Disulphide bonds appeared to be formed by cysteine residues in positions 9-204, 56-66, 71-77, 121-193, 126-177, 134-149, 145-158 and 159-164. The labile disulphide bond responsible for the enzymatic properties of the sweet tasting protein thaumatin appeared to be between Cys-145 and Cys-158.  相似文献   

15.
1. The influence on the reactivities of the catalytic sites of papain (EC 3.4.22.2) and actinidin (3.4.22.14) of providing for interactions involving the S1-S2 intersubsite regions of the enzymes was evaluated by using as a series of thiol-specific two-hydronic-state reactivity probes: n-propyl 2-pyridyl disulphide (I) (a 'featureless' probe), 2-(acetamido)ethyl 2'-pyridyl disulphide (II) (containing a P1-P2 amide bond), 2-(acetoxy)ethyl 2'-pyridyl disulphide (III) [the ester analogue of probe (II)] and 2-carboxyethyl 2'-pyridyl disulphide N-methylamide (IV) [the retroamide analogue of probe (II)]. Syntheses of compounds (I), (III) and (IV) are reported. 2. The reactivities of the two enzymes towards the four reactivity probes (I)-(IV) and also that of papain towards 2-(N'-acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide (VII) (containing both a P1-P2 amide bond and an L-phenylalanyl side chain as an occupant for the S2 subsite), in up to four hydronic (previously called protonic) states, were evaluated by analysis of pH-dependent stopped-flow kinetic data (for the release of pyridine-2-thione) by using an eight-parameter rate equation [described in the Appendix: Brocklehurst & Brocklehurst (1988) Biochem. J. 256, 556-558] to provide pH-independent rate constants and macroscopic pKa values. The analysis reveals the various ways in which the two enzymes respond very differently to the binding of ligands in the S1-S2 intersubsite regions despite the virtually superimposable crystal structures in these regions of the molecules. 3. Particularly striking differences between the behaviour of papain and that of actinidin are that (a) only papain responds to the presence of a P1-P2 amide bond in the probe such that a rate maximum at pH 6-7 is produced in the pH-k profile in place of the rate minimum, (b) only in the papain reactions does the pKa value of the alkaline limb of the pH-k profile change from 9.5 to approx. 8.2 [the value characteristic of a pH-(kcat./Km) profile] when the probe contains a P1-P2 amide bond, (c) only papain reactivity is affected by two positively co-operative hydronic dissociations with pKI congruent to pKII congruent to 4 and (d) modulation of the reactivity of the common -S(-)-ImH+ catalytic-site ion-pair (Cys-25/His-159 in papain and Cys-25/His-162 in actinidin) by hydronic dissociation with pKa approx. 5 is more marked and occurs more generally in reactions of actinidin than is the case for papain reactions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The full sequence of the Thy-1 membrane glycoprotein of rat brain is reported. The sequence was determined from tryptic and V-8 proteinase peptides and consisted of 111 amino acids. The amino terminus was blocked and consisted of a pyroglutamic acid residue. The molecule contained two disulphide bonds, namely Cys-9--Cys-111 and Cys-19--Cys-85. Three N-linked amino sugars were located at Asn-23, Asn-74 and Asn-98. In each case the sequence on the C-terminal side of the attachment point was Asn-Xaa-Thr as would be expected for N-linkage. The C-terminal peptides were unusual, in that they were either obtained in a highly aggregated form, or could only be purified after binding to Brij 96 micelles. Thus they appeared to have hydrophobic properties, yet did not contain any extended sequence of hydrophobic amino acids. Other unusual features of the C-terminal peptides were the presence of unidentified ninhydrin-positive material and of glucosamine and galactosamine. The C-terminal residue has not been directly identified but Cys-111 is the last conventional amino acid. It is suggested that the hydrophobic properties of the C-terminal peptides may be due to the linkage of lipid. The sequence of the Thy-1 glycoprotein showed homologies with immunoglobulin domains. This relationship is examined in detail in the paper following [Cohen et al. (1981) Biochem. J. 193, 000--000].  相似文献   

17.
The superantigen staphylococcal enterotoxin C2 (SEC2) tremendously activate T lymphocytes bearing certain T-cell receptor Vβ domains when binding to MHC II molecules, which launches a powerful response of tumour inhibition in vitro as well as in vivo. However, the toxicity of SEC2 performed in clinic limited its broad application for immunotherapy. The previous studies suggested that the disulphide loop may be important for the toxicity of some SEs, which prompted us to investigate the potential roles of the disulphide loop in biological activity of SEC2. Site-directed mutagenesis was used to disturb the formation of the disulphide bond by substituting Ala or Ser for Cys-93 and Cys-110. The expressed mutants in Escherichia coli were used to determine their superantigen activity and toxicity. Results showed that all of the mutated proteins exhibited reduced abilities to induce T-cell proliferation and cytotoxic effects on tumour cells L929 and Hepa1-6, suggesting that the disulphide loop plays functional role in maintaining the maximal superantigen activity of SEC2. Furthermore, the toxicity assays in vivo showed that all of the mutants induced a reduced emetic and pyrogenic responses compared with native SEC2, which might be important for further construction of lowly toxic superantigen agent.  相似文献   

18.
The sequence of the alpha-chain of the acetylcholine receptor of T. californica has been determined by recent cloning studies. The integrity of the disulphide bond between Cys-128 and cys-142 has been shown to be important for the maintenance of the binding activity of the receptor, thus implicating the regions around the disulphide bridge in binding with acetylcholine. In the present work, a synthetic peptide containing this loop region (residues 125-147) was synthesized. Solid-phase radiometric binding assays demonstrated a high binding of 125I-labelled alpha-bungarotoxin to the synthetic peptide. It was further shown that the free peptide bound well to [3H]acetylcholine. Additional experiments demonstrated that pretreatment of peptide 125-147 with 2-mercaptoethanol destroyed its binding activity, clearly showing that the integrity of the disulphide structure was essential for binding. Unlabelled acetylcholine also inhibited the binding of labelled acetylcholine to the synthetic peptide. The region 125-147, therefore, contains essential elements of the acetylcholine binding site of the Torpedo receptor.  相似文献   

19.
In the Escherichia coli protein disulphide bond formation pathway, membrane-bound DsbB oxidizes periplasmic DsbA, the disulphide bond-introducing enzyme. The Cys-41-Val-Leu-Cys-44 motif in the first periplasmic domain of DsbB is kept strongly oxidized by the respiratory function of the cell. We now show that the characteristic dithiothreitol resistance of the Cys-41-Cys-44 bond was retained even when the flanked Val-Leu combination was replaced by XX sequences from other oxidoreductases. Results of insertion mutagenesis showed that only the insertions (1-31 amino acids) in the region C-terminally adjacent to the CXXC motif impaired the oxidized state of DsbB. Deletion of a single amino acid from this region also rendered DsbB reduced and inactive. However, single amino acid substitutions of the four residues flanked by CXXC and the transmembrane segment did not abolish the oxidation of DsbB. These results suggest that some physical property, such as distance of the CXXC motif from the membrane, is important for the respiration-coupled oxidation of DsbB.  相似文献   

20.
By site-directed mutagenesis, Thr-75 was converted to Cys-75 in the glutathione reductase (EC 1.6.4.2) of Escherichia coli. This led to the spontaneous formation of an intersubunit disulphide bridge across the 2-fold axis of the dimeric enzyme. The disulphide bridge had no deleterious effect on the catalytic activity, but nor did it increase the thermal stability of the enzyme, possibly because of local conformational flexibility on the dimer interface. The T75C mutant, like the wild-type enzyme, was inactivated by NADPH, proving that this inactivation cannot be due to simple dissociation of the dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号