共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The uptake of Ca2+ by a K+ -depolarized rat brain cerebral cortical crude synaptosomal preparation (P2 fraction) was investigated. The characteristics of the Ca2+ uptake system are similar to those observed by other investigators. The preparation is also a suitable model with which to study the effects of adenosine on Ca2+ uptake and neurotransmitter release, as it is generally accepted that K+ -evoked Ca2+ uptake is intimately related to depolarization-induced release of neurotransmitters. We have demonstrated that an extracellular receptor is involved in mediating the adenosine-evoked inhibition of K+ -evoked Ca2+ uptake. The pharmacological properties of the receptor suggest that it may be similar in some respects to the A2 -receptor associated with adenylate cyclase. The adenosine uptake inhibitor, dipyridamole, potentiated the action of adenosine, suggesting that re-uptake is important in controlling the extracellular adenosine concentration and thus in the regulation of the adenosine receptor. The adenosine receptor antagonist theophylline inhibited the effects of adenosine. Calmodulin inhibited K+ - evoked uptake of Ca2+ by the synaptosomal fraction. 相似文献
2.
A. P. Simoes P. C. Oliveira A. M. Sebastião J. A. Ribeiro 《Journal of neurochemistry》1988,50(3):899-903
The effect of the stable adenosine analogue, N6-cyclohexyladenosine, on 22Na uptake by rat brain synaptosomes stimulated by veratridine was investigated. In the presence of N6-cyclohexyladenosine, both the initial rate and the maximum sodium uptake were decreased. The inhibitory effect of N6-cyclohexyladenosine on sodium uptake by synaptosomes after 5 s of incubation with 22Na was concentration-dependent, antagonized by 1,3-dipropyl-8-p-sulfophenylxanthine, and attenuated by increasing the concentration of veratridine. The possibility that the adenosine analogue, by activating a xanthine-sensitive adenosine receptor, can operate inhibition of the voltage-dependent sodium channels is discussed. 相似文献
3.
The effect of nitric oxide donors and L-arginine on the uptake of GABA was studied in synaptosomes purified from rat brain. The neurotransmitter uptake was significantly reduced by S-nitrosoacetylpenicillamine and by sodium nitroprusside, although in this case to a lesser extent. A slight inhibitory effect was found preincubating rat brain synaptosomes with 1 mM L-arginine as well. The S-nitrosoacetylpenicillamine effect gradually disappeared with decomposition of the substance by exposure to light. The nitric oxide effect appears to be mainly due to a decrease in the V for synaptosomal GABA uptake and seems to be related to a partial collapse of nerve endings ionic gradients. Functionally, it could result over time in a reduced availability of GABA at the synapses involved. 相似文献
4.
The kinetics of the high affinity uptake system for L-tryptophan (L-Try)have been measured over 24 hr in cortical synaptosome preparations of rat brain. Both the Km and Vmax, of the uptake process showed a statistically significant 24 hr variation. The highest Km value, 6.71 ± 10-5 M, was measured at the beginning of the light phase and the lowest value, 4.23 ± 10-5 M, 6 hr into the dark phase. Vmax was highest at the end of the dark phase (10.43 nmol/mg/5 min) and lowest (4.80 nmol/mg/5 min) 3 hr into the dark phase. In contrast, there was no variation over 24 hr in the Vmax/Km ratio. These results suggest that the high affinity uptake process serves to ensure a constant rate of L-tryptophan entry into the neuron in the face of circadian or ultradian variations in extracellular concentration of tryptophan. 相似文献
5.
《Chronobiology international》2013,30(4):331-336
The kinetics of the high affinity uptake system for L-tryptophan (L-Try)have been measured over 24 hr in cortical synaptosome preparations of rat brain. Both the Km and Vmax, of the uptake process showed a statistically significant 24 hr variation. The highest Km value, 6.71 ± 10-5 M, was measured at the beginning of the light phase and the lowest value, 4.23 ± 10-5 M, 6 hr into the dark phase. Vmax was highest at the end of the dark phase (10.43 nmol/mg/5 min) and lowest (4.80 nmol/mg/5 min) 3 hr into the dark phase. In contrast, there was no variation over 24 hr in the Vmax/Km ratio. These results suggest that the high affinity uptake process serves to ensure a constant rate of L-tryptophan entry into the neuron in the face of circadian or ultradian variations in extracellular concentration of tryptophan. 相似文献
6.
Procedures are described for the solubilization of adenosine uptake sites in guinea pig and rat brain tissue. Using [3H]nitrobenzylthioinosine [( 3H]NBI) the solubilized site is characterized both kinetically and pharmacologically. The binding is dependent on protein concentration and is saturable, reversible, specific, and high affinity in nature. The KD and Bmax of guinea pig extracts are 0.13 +/- 0.02 nM and 133 +/- 18 fmol/mg protein, respectively, with linear Scatchard plots obtained routinely. Similar kinetic parameters are observed in rat brain. Adenosine uptake inhibitors are the most potent inhibitors of [3H]NBI binding with the following order of potency, dilazep greater than hexobendine greater than dipyridamole. Adenosine receptor ligands are much less potent inhibitors of binding, and caffeine is without effect. The solubilized adenosine uptake site is, therefore, shown to have virtually identical properties to the native membrane site. The binding of the adenosine A1 receptor agonist [3H]cyclohexyladenosine [( 3H]CHA) to the solubilized brain extract was also studied and compared with that of [3H]NBI. In contrast to the [3H]NBI binding site [3H]CHA binds to two apparent populations of adenosine receptor, a high-affinity site with a KD of 0.32 +/- 0.06 nM and a Bmax of 105 +/- 30 fmol/mg protein and a lower-affinity site with a KD of 5.50 +/- 0.52 nM and Bmax of 300 +/- 55 fmol/mg protein. The pharmacology of the [3H]CHA binding site is consistent with that of the adenosine receptor and quite distinct from that of the uptake [( 3H]NBI binding) site. Therefore, we show that the adenosine uptake site can be solubilized and that it retains both its binding and pharmacologic properties in the solubilized state. 相似文献
7.
Hyponatremia leads to hyperexcitability of neurons, seizures, and coma. It is well established that uptake of neurotransmitters is a sodium-dependent process. Therefore, we suggest that inhibition of neurotransmitter uptake can lead to the clinical manifestations of hyponatremia. Decreasing of sodium concentration down to 92 mM in incubation medium, which corresponds to lowering the osmolarity down to 230 mOsm/l, leads to a 45% decrease in glutamate uptake and a 46% decrease in gamma-aminobutyric acid (GABA) uptake. However, this effect was mediated by the nonspecific lowering of osmolarity rather than by decreasing sodium concentration. Hypotonic shock was able to reduce glutamate uptake in the presence of protein kinase inhibitors staurosporine and genistein, the phosphatase inhibitor okadaic acid, the phosphatidylinositol 3-kinase inhibitor wortmannin, and cytoskeleton modulators colchicine and cytochalasin B. Therefore, we suggest that intracellular signaling is not mediating the effect of osmolarity reduction on neurotransmitter uptake. 相似文献
8.
Some Biochemical Properties of the Rapid Adenosine Uptake System in Rat Brain Synaptosomes 总被引:2,自引:2,他引:0
Abstract: The rapid uptake of adenosine into rat brain cortical synaptosomes is mediated by a facilitated diffusion process. The carrier mediated uptake is sensitive to pH and temperature. The average Q10 value for the system is approximately 1.77 and the necessary activation energy ( E a ) is estimated to be 8870 cal/mol. These values are essentially in agreement with values reported for adenosine uptake carriers of other tissues. Substrate specificity of the uptake system in the CNS demonstrates that nucleotides do not interact with the carrier until they have been hydrolyzed to nucleosides. Structural modification of the purine moiety at the "2" position did not have a profound effect on the ability of the molecule to serve as a substrate for the uptake system. Competitive inhibition by sulfhydryl reagents, p -chloromercuribenzoate, and N- ethylmaleimide on adenosine uptake suggests a direct involvement of sulfhydryl group(s) in the uptake mechanism. Other purines and pyrimidines also inhibited adenosine uptake, suggesting that a variety of nucleosides can interact with a common carrier system. 相似文献
9.
《Molecular membrane biology》2013,30(2):71-104
The sodium channel was studied in osmotically-sensitive membrane preparations from rat brain and in innervated and chronically denervated rat soleus and extensor digitorum longus muscles. These experiments were undertaken in order to define a set of parameters for sodium channel function at the subcellular level to be used as a measure of retention of channel integrity upon subsequent isolation of the channel. Various neurotoxins and drugs were employed to control the permeability of the brain membranes to 22Na and the sodium-conductance properties of the muscles. Batrachotoxin (ED50 = 0.2 μM), veratridine (ED50 = 1 μM), or grayanotoxin I (ED50 = 30 μM) stimulated 22Na uptake in brain membranes is inhibited in an apparently uncompetitive manner by the sodium channel blocking agents tetrodotoxin and saxitoxin in a simple competitive manner by Ca2+ and in a partial or allosteric competitive manner by lidocaine and procaine. This 22Na uptake assay, which can be equated to a measure of equilibrium toxin binding, shows dependence on the concentration of the membranes and is sensitive to pH, temperature, ionic strength, and the ionic composition of the media. Parallel biophysical studies on sodium channels in rat muscle show that the properties of the sodium channel are similarly affected by these agents. 相似文献
10.
Uptake of Adenosine by Isolated Rat Brain Capillaries 总被引:1,自引:4,他引:1
Abstract: Adenosine uptake by isolated rat brain capillaries is a carrier-mediated, temperature- and pH-sensitive process. The K m value for adenosine uptake is 4.74 μ m and the V max is 21.7 picomol/mg protein/10 min. This is a high-affinity uptake system that can be cross-inhibited by several nucleosides and by the adenosine analogs tubercidin and 5'-deoxyadenosine. The uptake is very sensitive to inhibition by papaverine, hexobendine, and dipyridamole. These results confirm the existence of a nucleoside transport system associated with the blood-brain barrier observed during in vivo studies. 相似文献
11.
Pretreatment with 100 M GABA of synaptosomes purified from rat brain results in an increased uptake of the labelled neurotransmitter in subsequent incubations. The effect is blocked by a GABAB receptor antagonist, 2-hydroxy-saclofen. The effect is mimicked by baclofen and the baclofen effect is blocked by saclofen too. Lower GABA concentrations (up to 50 M) do not result in an increase of subsequent GABA uptake. Treatment of synaptosomes with 8-Br-cAMP results in a decreased GABA uptake. Since the uptake incubations were run with saturating concentrations of labelled GABA, the data indicates that GABAB receptor activation in brain synaptosomes up-regulates their GABA uptake capacity by an increase in Vmax. This mechanism appears of physiological relevance under conditions of sustained GABA release and substantial increase of its extracellular concentration. 相似文献
12.
Ontogenesis of Adenosine Deaminase Activity in Rat Brain 总被引:1,自引:1,他引:0
The activity of adenosine deaminase (ADA) was determined in whole brain of rats at the embryonic age of 15 days through to adulthood and in nine brain regions in rats 1 day old through to adulthood. In 1-day-old rats, the highest activity was seen in olfactory bulbs (550 +/- 15 nmol/mg protein/30 min) and this was 4.5-fold higher than that in the pons, which was the lowest. In adult animals, olfactory bulb still contained the greatest activity, which was about eightfold higher than hippocampus, which had the lowest. Except for hypothalamus, where ADA activity increased nearly twofold in rats between the ages of 1 and 50 days, significant decreases of as much as fivefold were found in whole brain, superior colliculus, cortex, hippocampus, cerebellum, olfactory bulbs, and olfactory nucleus. In contrast, ADA activity in pons and subcortex remained relatively constant throughout the developmental period. The Km values for ADA in whole brain at 18 days gestation (48 +/- 5 microM) were not significantly different from that observed in adult rats (38 +/- 7 microM), whereas the Vmax values decreased significantly from 339 +/- 9 to 108 +/- 8 nmol/mg protein/30 min. Taken together, the developmental patterns observed in the various brain regions appear not to correspond to any one particular process such as periods of rapid cell proliferation, cell death, synaptogenesis, or myelination. Nor do they correspond to known developmental profiles of transmitters, their receptors, or their metabolic enzymes.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
13.
Two forms of Ca2+-pump were identified in bovine brain synaptic membranes as aspartylphosphate intermediates and were characterized. The 140 kDa and 97 kDa phosphoproteins were digested by calpain, producing two phosphorylated fragments, of M.W. 124 and 80 kDa respectively, not inhibited by thapsigargin, and displayed a trypsin digestion pattern with the formation of one phosphorylatable fragment of about 80 kDa. These results suggest that both pumps belong to the Plasma Membrane-type of Ca2+ ATPases, differing from the Sarco- or Endoplasmic Reticulum kind. A plasma membrane Ca2+-ATPase proteinaceous inhibitor with molecular weight between 6,000 and 10,000 Da was resolved from synaptic terminal cytosol, where it is enriched by fourfold with respect to frontal cortex brain cytosol. Such enrichment is already evident in the correspondent crude fractions. The presence of calcium pump and its proteinaceous inhibitor inside the synaptic terminals from bovine brain is discussed in terms of free calcium level regulation in neuron synaptoplasm. 相似文献
14.
Abstract: Adenosine, a putative inhibitory transmitter or modulator in the brain, is rapidly transported by rat cerebral cortical synaptosomes. The uptake may represent a facilitated diffusion process, which is saturable and temperature-dependent. In this study, the uptake process was very rapid, reaching completion within 60 s of incubation at 37°C, and had an apparent Km value of 0.9μM and a Vmax value of 5.26 pmol/mg protein/ 30 s. Over 70% of the adenosine taken up remained unchanged, whereas 14% was metabolized to inosine. Twelve percent of the adenosine was converted to nucleotides. Rapid uptake of adenosine into rat cerebral cortical synaptosomes was partially inhibited by replacing Na+ with choline chloride in the medium. Ca2+ ion is important for the uptake process, as inhibition of adenosine uptake occurs in the presence of either Co2- or EGTA. Rapid uptake of adenosine is apparently mediated by a nucleoside carrier, a conclusion based on its inhibition by a variety of purine and pyrimidine nucleosides. Uptake was inhibited by dipyridamole, hexobendine, papaverine, flurazepam, and morphine. Over 60% of the adenosine taken up by the rapid uptake system (30 s) was released by depolarizing agents. In contrast, only 30% of the adenosine taken up during a 15-min incubation period was released under the same conditions. [3H]Adenosine was the predominant purine released in the presence or absence of depolarizing agents. The basal and KCl-evoked release mechanisms were found to be at least partially Ca2+-dependent, however, the release of adenosine by veratridine was increased in the presence of EGTA. This finding is in agreement with the reported Ca2+-independent release of ATP from brain synaptosomes. The present findings suggest that there are at least two functional pools of adenosine in synaptosomes. Adenosine taken up by different uptake systems may be destined for different uses (metabolism or release) in the neuron. 相似文献
15.
Maureen Docherty H. F. Bradford C. D. Cash M. Ehret M. Maitre Tong H. Job† 《Journal of neurochemistry》1991,56(5):1569-1580
Monoaminergic synaptosomes have been isolated and purified from rat brain by immunomagnetophoresis. This novel technique uses magnetic beads to which Protein A is bound. Noradrenergic, dopaminergic, and serotonergic synaptosomes (previously cell-surface labelled with anti-dopamine-beta-hydroxylase, anti-tyrosine hydroxylase, and anti-tryptophan hydroxylase, respectively) may be isolated in a highly purified state. The synaptosomal subpopulations are recovered in a viable metabolic state and show glucose-stimulated respiration and Ca2(+)-dependent neurotransmitter release. A novel subtype of dopamine-beta-hydroxylase was found in dopaminergic terminals. No evidence for glutamate corelease from monoaminergic synaptosomes was obtained. 相似文献
16.
Glutamate-Evoked Release of Endogenous Adenosine from Rat Cortical Synaptosomes Is Mediated by Glutamate Uptake and Not by Receptors 总被引:1,自引:5,他引:1
L-Glutamate (10 microM-1 mM) released endogenous adenosine from rat cortical synaptosomes. Studies with excitatory amino acid antagonists, (+)-5-methyl-16,11,dihydro-5H- dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801), 6,7-dinitroquinoxaline-2,3-dione (DNQX), Mg2+, and agonists N-methyl-D-aspartate (NMDA), kainate, and quisqualate, indicated that this release was not receptor mediated. D,L-2-Amino-4-phosphonobutanoic acid (APB) also did not affect glutamate-evoked adenosine release. Inhibition of glutamate uptake by dihydrokainate or replacement of extracellular Na+ blocked glutamate-evoked adenosine release. D-aspartate, which is a substrate for the glutamate transporter but is not metabolized, also released adenosine, suggesting that release was due to amino acid transport and not to its subsequent metabolism. D-Glutamate, a relatively poor substrate for the transporter, was correspondingly less potent than L-glutamate at releasing adenosine. Glutamate-evoked adenosine release was not Ca2+ dependent or tetrodotoxin sensitive and did not appear to occur on the bidirectional nucleoside transporter. Inhibition of ecto-5'-nucleotidase virtually abolished glutamate-evoked adenosine release, indicating that adenosine was derived from extracellular metabolism of released nucleotide(s). However, L-glutamate did not release ATP and did not appear to release cyclic AMP. Therefore, transport of glutamate into presynaptic terminals releases some other nucleotide which is converted extracellularly to adenosine. This adenosine could act at P1-purinoceptors to modulate glutamatergic neurotransmission. 相似文献
17.
J. A. Smitharani M. L. Sowmyashree K. M. Vasantha M. Srivastava V. R. Sashidhar 《Physiology and Molecular Biology of Plants》2014,20(1):49-55
Distinct varieties differing in salt tolerance were initially identified from two separate green house experiments using two systems; solution as well as soil culture. The first screening involved a diverse group of 27 cultivars. Several physiological traits; Chlorophyll Stability Index (CSI), Salt Tolerance Index (STI) and ion content were determined to screen the cultivars for differences in salt tolerance using solution culture in the first experiment. A set of six varieties (three tolerant and three susceptible) were selected from this experiment and then subjected again to salt stress adopting a natural soil system in the second experiment which involved a screening approach essentially similar to that of the first experiment. In the third experiment using two distinct cultivars differing in salt tolerance selected from experiment II, 22Na influx rate was determined in the root and shoot at the end of a 24 h salt imposition in Hoagland’s nutrient system containing 180 KBq of 22Na. The results suggested that there were distinct differences in 22Na influx rate into root and concurrently in the shoot. The salt tolerant Spanish improved and one of the moderately tolerant Trombay variety TAG 24, showed good regulation of 22Na influx resulting in low 22Na concentration. The salt susceptible variety JSP39 had nearly 7–8 fold higher root 22Na content as compared to the tolerant and moderately tolerant cultivars. The results have highlighted the importance of Na exclusion as an important determinant of salt tolerance in groundnut. 相似文献
18.
Adenosine and Glutamate Modulate Each Other's Release from Rat Hippocampal Synaptosomes 总被引:4,自引:3,他引:1
Abstract: In rat hippocampal synaptosomes, adenosine decreased the K+ (15 mM) or the kainate (1 mM) evoked release of glutamate and aspartate. An even more pronounced effect was observed in the presence of the stable adenosine analogue, R-phenylisopropyladenosine. All these effects were reversed by the selective adenosine A1 receptor antagonist 8-cyclo-pentyltheophylline. In the same synaptosomal preparation, K+ (30 mM) strongly stimulated the release of the preloaded [3H]adenosine in a partially Ca2+-dependent and tetrodotoxin (TTX)-sensitive manner. Moreover, in the same experimental conditions, both l -glutamate and l -aspartate enhanced the release of [3H]adenosine derivatives ([3H]ADD). The gluta-mate-evoked release was dose dependent and appeared to be Ca2+ independent and tetrodotoxin insensitive. This effect was not due to metabolism because even the nonmetabolizable isomers d -glutamate and d -aspartate were able to stimulate [3H]ADD release. In contrast, the specific glutamate agonists N-methyl-d -aspartate, kainate, and quisqualate failed to stimulate [3H]ADD release, suggesting that glutamate and aspartate effects were not mediated by known excitatory amino acid receptors. Moreover, NMDA was also ineffective in the absence of Mg2+ and l -glutamate-evoked release was not inhibited by adding the specific antagonists 2-amino-5-phosphonovaleric acid or 6–7-dinitroquinoxaline-2, 3-dione. The stimulatory effect did not appear specific for only excitatory amino acids, as γ-anunobutyric acid stimulated [3H]ADD release in a dose-related manner. These results suggest that, at least in synaptosomal preparations from rat hippocampus, adenosine and glutamate modulate each other's release. The exact mechanism of such interplay, although still, unknown, could help in the understanding of excitatory amino acid neurotoxicity. 相似文献
19.
Abstract: The influence of putrescine, spermidine, spermine, and some aliphatic α,ω-diamines on the uptake of neurotransmitters by rat forebrain synaptosomes was investigated. Choline uptake was most effectively inhibited by spermine (IC50 = 0.22 m M ), less so by spermidine (IC50 = 4.0 m M ), but not by putrescine (IC50 > 100 m M ). At 10 m M, 1,3-diaminopropane, cadaverine, and 1,8-diaminooctane all inhibited choline uptake by 50% or more. Spermine and spermidine inhibited the uptake of dopamine with IC50 values of 2.7 and 2.2 m M , respectively. Putrescine was only slightly inhibitory (IC50 = 17.3 m M ) and the other diamines were inactive. The uptake of γ-aminobutyrate (GABA) was only slightly inhibited (15–40%) by the polyamines at 10 m M . With the exception of inhibition of glycine uptake by 1,8-diaminooctane (60%) and of glutamate uptake by cadaverine (35%) none of the polyamines, tested at 10 m M , affected the uptake of adenosine, glutamate, and glycine significantly. A possible modulatory role for polyamines in synaptic transmission through interaction by negatively charged groups of the synaptic membrane with the polycationic compounds is discussed. 相似文献
20.
Herbin Teresa Peña Clara de Lores Arnaiz Georgina Rodríguez 《Neurochemical research》1998,23(1):33-37
Previous work from this laboratory led to the isolation by gel filtration and anionic exchange HPLC of a rat brain fraction named II-E, which highly inhibits synaptosomal membrane Na+, K+-ATPase activity. In this study we evaluated the kinetics of such inhibition and found that inhibitory potency was independent of Na+(1.56–200 mM), K+(1.25–40 mM), or ATP (1–8 mM) concentration. Hanes-Woolf plots indicated that II-E decreases Vmax but does not alter KMvalue, and suggested uncompetitive inhibition for Na+, K+or ATP. However, II-E became a stimulator at 0.5 mM ATP concentration. It is postulated that this brain factor may modulate ionic transport at synapses, thus participating in central neurotransmission. 相似文献