首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We analyzed a cDNA clone encoding cytosolic glutamine synthetase,EuNOD-GS1, isolated from a root nodule cDNA library ofElaeagnus umbellata. This clone has an insert size of 1359 bp and encodes a protein for 355 amino-acid residues, with a molecular weight of 39.2 kDa. Its expression is slightly higher in the root nodules than in the leaves or uninfected roots. Analysis of the deduced amino acid sequences and phytogeny revealed thatEuNOD-GS1 is clustered with cytosolic GS-α isoenzymes. Therefore, based on this and previous results, we propose that the main physiological role ofEuNOD-GS1 is the assimilation of ammonia from secondary and, in part, primary sources.  相似文献   

3.
We have characterized two sets of cDNA clones representing the glutamine synthetase (GS) mRNA in soybean nodules. Using the 3-untranslated regions of a representative member of each set, as gene member(s) specific probes, we have shown that one set of the GS genes are expressed in a nodule-specific manner, while the other set is expressed in other tissues, besides the nodules. The nodule-specific GS genes are expressed in a developmentally regulated manner in the nodules, independent of the onset of nitrogen fixation. The other class of GS genes is expressed constitutively in all tissues tested, but its expression level is dramatically enhanced in nodules following onset of N2 fixation. The latter set of genes is also expressed in cotyledons of germinating seedlings in a developmentally regulated manner. Analysis of hybrid select translation products and genomic Southern blots suggests that multiple gene members in each class are expressed in the nodules.  相似文献   

4.
Glutamine synthetase, purified from Lupinus angustifolius legume nodules, was carboxymethylated and succinylated prior to chemical or enzymatic cleavage. Peptides were purified and sequenced. An oligonucleotide probe was constructed for the sequence MPGQW. This probe was used to identify a glutamine synthetase cDNA clone, pGS5, from a lupin nodule cDNA library constructed in pBR322. pGS5 was sequenced (1043 bp) and computer-assisted homology searching revealed a high degree of conservation between this lupin partial cDNA clone and other plant glutamine synthetases at both the amino acid (>90%) and nucleotide (>80%) level. Northern and Southern analyses using pGS5 supported the conclusion that a multigene glutamine synthetase family exists in lupin which is differentially expressed in both an organ-specific and temporal manner. Western and Northern blot analyses indicated the accumulation of a glutamine synthetase specific mRNA species during nodule development corresponded to the appearance of a novel glutamine synthetase polypeptide between 8 and 10 days after rhizobial inoculation.  相似文献   

5.
6.
7.
Work using a full-length cDNA clone has revealed that the plastid-located glutamine synthetase (GS) of Phaseolus vulgaris is encoded by a single nuclear gene. Nucleotide sequencing has shown that this cDNA is more closely related to a cDNA encoding the plastidic GS of Pisum sativum than to cDNAs encoding three different cytosolic GS subunits of P. vulgaris. The plastid GS subunits are initially synthesized as higher M r (47000) precursors containing an N-terminal presequence of about 50 amino acids which is structurally similar to the presequences of other nuclear-encoded chloroplast proteins. The precursor has been synthesized in vitro and is imported by isolated pea chloroplasts and processed to two polypeptides of the same size as native P. vulgaris chloroplast GS subunits (M r 42000). Experiments with fusion proteins show that the N-terminal 68 amino acids of this precursor allow the cytosolic GS subunit also to be imported and processed by isolated chloroplasts. Polyadenylated mRNA specifically related to the plastidic GS gene is most highly abundant in chloroplast-containing organs (leaves and stems) but is also detectable in roots and nodules.  相似文献   

8.
9.
10.
11.
12.
13.
We have characterized a new tomato cDNA, TAS14, inducible by salt stress and abscisic acid (ABA). Its nucleotide sequence predicts an open reading frame coding for a highly hydrophilic and glycine-rich (23.8%) protein of 130 amino acids. Southern blot analysis of tomato DNA suggests that there is one TAS14 structural gene per haploid genome. TAS14 mRNA accumulates in tomato seedlings upon treatment with NaCl, ABA or mannitol. It is also induced in roots, stems and leaves of hydroponically grown tomato plants treated with NaCl or ABA. TAS14 mRNA is not induced by other stress conditions such as cold and wounding. The sequence of the predicted TAS14 protein shows four structural domains similar to the rice RAB21, cotton LEA D11 and barley and maize dehydrin genes.  相似文献   

14.
15.
16.
The PTP-2 cDNA encoding an intracellular protein tyrosine phosphatase (PTPase-2) was isolated and sequenced from mouse testis and T-cell cDNA libraries. This PTP-2 cDNA was found to be homologous to human PTP-TC and rat PTP-S, and contained 1,551 nucleotides, including 1,146 nucleotides encoding 382 amino acids as well as 5 (61 nucleotides) and 3 (344 nucleotides) non-coding regions. Northern blot analysis indicated that PTP-2 mRNA of 1.9 Kb was most abundant in testis and kidney, although it was also present in spleen, muscle, liver, heart and brain.Abbreviations PTPase Protein Tyrosine Phosphatase (EC3.1.3.48) - PTKase Protein Tyrosine Kinase (EC2.7.1.112)  相似文献   

17.
In the amphidiploid genome of oilseed rape (Brassica napus) the diploid ancestral genomes of B. campestris and B. oleracea have been merged. As a result of this crossing event, all gene loci, gene families, or multigene families of the A and C genome types encoding a certain protein are now combined in one plant genome.In the case of the multigene family for glutamine synthetase, the key enzyme of nitrogen assimilation, six different cDNA sequences were isolated from leaf and root specific libraries. One sequence pair (BnGSL1/BnGSL2) was characterized by the presence of amino- terminal transit peptides, a typical feature of all nuclear encoded chloroplast proteins. Two other cDNA pairs (BnGSR1-1/BnGSR1-2 and BnGSR2-1/BnGSR2-2) with very high homology between each other were found in a root specific cDNA library and represent protein subunits for cytosolic glutamine synthetase isoforms.Comparative PCR amplifications of genomic DNA isolated from B. napus, B. campestris and B. oleracea followed by sequence–specific restriction analyses of the PCR products permitted the assignment of the cDNA sequences to either the A genome type (BnGSL1/BnGSR1- 1/BnGSR2-1) or the C genome type (BnGSL2/BnGSR1-2/BnGSR2-2). Consequently, the ancestral GS genes of B. campestris and B. oleracea are expressed simultaneously in oilseed rape. This result was also confirmed by RFLP (restriction fragment length polymorphism) analysis of RT-PCR products.In addition, the different GS genes showed tissue specific expression patterns which are correlated with the state of development of the plant material. Especially for the GS genes encoding the cytosolic GS isoform BnGSR2, a marked increase of expression could be observed after the onset of leaf senescence.  相似文献   

18.
A full-length cDNA clone (pGSP114) encoding glutamine synthetase was isolated from a gt11 library of the gymnosperm Pinus sylvestris. Nucleotide sequence analysis showed that pGSP114 contains an open reading frame encoding a protein of 357 amino acid residues with a calculated molecular mass of 39.5 kDa. The derived amino acid sequence was more homologous to cytosolic (GS1) (78–82%) than to chloroplastic (GS2) (71–75%) glutamine synthetase in angiosperms. The lack of N-terminal presequence and C-terminal extension which define the primary structure of GS2, also supports that the isolated cDNA encodes cytosolic GS. Southern blot analysis of genomic DNA from P. sylvestris and P. pinaster suggests that GS may be encoded by a small gene family in pine. GS mRNA was more abundant in cotyledons and stems than in roots of both Scots and maritime pines. Western blot analysis in P. sylvestris seedlings showed that only one GS polypeptide, similar in size to GS1 in P. pinaster, could be detected in several different tissues. Our results suggest that cytosolic GS is mainly responsible for glutamine biosynthesis in pine seedlings.This paper is dedicated to the memory of Dr. Jesús S. Olavarría.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号