首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhou Y  Ray D  Zhao Y  Dong H  Ren S  Li Z  Guo Y  Bernard KA  Shi PY  Li H 《Journal of virology》2007,81(8):3891-3903
The plus-strand RNA genome of flavivirus contains a 5' terminal cap 1 structure (m7GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA-->m7GpppA-->m7GpppAm. The 2'-O methylation can be uncoupled from the N-7 methylation, since m7GpppA-RNA can be readily methylated to m7GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 A resolution showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2'-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2'-O cap methylations require distinct buffer conditions and different side chains within the K61-D146-K182-E218 motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.  相似文献   

2.
The flavivirus methyltransferase (MTase) sequentially methylates the N7 and 2′-O positions of the viral RNA cap (GpppA-RNA → m7GpppA-RNA → m7GpppAm-RNA), using S-adenosyl-l-methionine (AdoMet) as a methyl donor. We report here that sinefungin (SIN), an AdoMet analog, inhibits several flaviviruses through suppression of viral MTase. The crystal structure of West Nile virus MTase in complex with SIN inhibitor at 2.0-Å resolution revealed a flavivirus-conserved hydrophobic pocket located next to the AdoMet-binding site. The pocket is functionally critical in the viral replication and cap methylations. In addition, the N7 methylation efficiency was found to correlate with the viral replication ability. Thus, SIN analogs with modifications that interact with the hydrophobic pocket are potential specific inhibitors of flavivirus MTase.  相似文献   

3.
Liu L  Dong H  Chen H  Zhang J  Ling H  Li Z  Shi PY  Li H 《生物学前沿》2010,5(4):286-303
Many flaviviruses are significant human pathogens. The plus-strand RNA genome of a flavivirus contains a 5′ terminal cap 1 structure (m7GpppAmG). The flavivirus encodes one methyltransferase (MTase), located at the N-terminal portion of the NS5 RNA-dependent RNA polymerase (RdRp). Here we review recent advances in our understanding of flaviviral capping machinery and the implications for drug development. The NS5 MTase catalyzes both guanine N7 and ribose 2′-OH methylations during viral cap formation. Representative flavivirus MTases, from dengue, yellow fever, and West Nile virus (WNV), sequentially generate GpppA → m7GpppA → m7GpppAm. Despite the existence of two distinct methylation activities, the crystal structures of flavivirus MTases showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. This finding indicates that the substrate GpppA-RNA must be repositioned to accept the N7 and 2′-O methyl groups from SAM during the sequential reactions. Further studies demonstrated that distinct RNA elements are required for the methylations of guanine N7 on the cap and of ribose 2′-OH on the first transcribed nucleotide. Mutant enzymes with different methylation defects can trans complement one another in vitro, demonstrating that separate molecules of the enzyme can independently catalyze the two cap methylations in vitro. In the context of the infectious virus, defects in both methylations, or a defect in the N7 methylation alone, are lethal to WNV. However, viruses defective solely in 2′-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel and promising target for flavivirus therapy.  相似文献   

4.
Zhang B  Dong H  Zhou Y  Shi PY 《Journal of virology》2008,82(14):7047-7058
Flavivirus methyltransferase catalyzes both guanine N7 and ribose 2'-OH methylations of the viral RNA cap (GpppA-RNA-->m(7)GpppAm-RNA). The methyltransferase is physically linked to an RNA-dependent RNA polymerase (RdRp) in the flaviviral NS5 protein. Here, we report genetic interactions of West Nile virus (WNV) methyltransferase with the RdRp and the 5'-terminal stem-loop of viral genomic RNA. Genome-length RNAs, containing amino acid substitutions of D146 (a residue essential for both cap methylations) in the methyltransferase, were transfected into BHK-21 cells. Among the four mutant RNAs (D146L, D146P, D146R, and D146S), only D146S RNA generated viruses in transfected cells. Sequencing of the recovered viruses revealed that, besides the D146S change in the methyltransferase, two classes of compensatory mutations had reproducibly emerged. Class 1 mutations were located in the 5'-terminal stem-loop of the genomic RNA (a G35U substitution or U38 insertion). Class 2 mutations resided in NS5 (K61Q in methyltransferase and W751R in RdRp). Mutagenesis analysis, using a genome-length RNA and a replicon of WNV, demonstrated that the D146S substitution alone was lethal for viral replication; however, the compensatory mutations rescued replication, with the highest rescuing efficiency occurring when both classes of mutations were present. Biochemical analysis showed that a low level of N7 methylation of the D146S methyltransferase is essential for the recovery of adaptive viruses. The methyltransferase K61Q mutation facilitates viral replication through improved N7 methylation activity. The RdRp W751R mutation improves viral replication through an enhanced polymerase activity. Our results have clearly established genetic interactions among flaviviral methyltransferase, RdRp, and the 5' stem-loop of the genomic RNA.  相似文献   

5.
Ray D  Shah A  Tilgner M  Guo Y  Zhao Y  Dong H  Deas TS  Zhou Y  Li H  Shi PY 《Journal of virology》2006,80(17):8362-8370
Many flaviviruses are globally important human pathogens. Their plus-strand RNA genome contains a 5'-cap structure that is methylated at the guanine N-7 and the ribose 2'-OH positions of the first transcribed nucleotide, adenine (m(7)GpppAm). Using West Nile virus (WNV), we demonstrate, for the first time, that the nonstructural protein 5 (NS5) mediates both guanine N-7 and ribose 2'-O methylations and therefore is essential for flavivirus 5'-cap formation. We show that a recombinant full-length and a truncated NS5 protein containing the methyltransferase (MTase) domain methylates GpppA-capped and m(7)GpppA-capped RNAs to m(7)GpppAm-RNA, using S-adenosylmethionine as a methyl donor. Furthermore, methylation of GpppA-capped RNA sequentially yielded m(7)GpppA- and m(7)GpppAm-RNA products, indicating that guanine N-7 precedes ribose 2'-O methylation. Mutagenesis of a K(61)-D(146)-K(182)-E(218) tetrad conserved in other cellular and viral MTases suggests that NS5 requires distinct amino acids for its N-7 and 2'-O MTase activities. The entire K(61)-D(146)-K(182)-E(218) motif is essential for 2'-O MTase activity, whereas N-7 MTase activity requires only D(146). The other three amino acids facilitate, but are not essential for, guanine N-7 methylation. Amino acid substitutions within the K(61)-D(146)-K(182)-E(218) motif in a WNV luciferase-reporting replicon significantly reduced or abolished viral replication in cells. Additionally, the mutant MTase-mediated replication defect could not be trans complemented by a wild-type replicase complex. These findings demonstrate a critical role for the flavivirus MTase in viral reproduction and underscore this domain as a potential target for antiviral therapy.  相似文献   

6.
The 5' end of the flavivirus plus-sense RNA genome contains a type 1 cap (m(7)GpppAmG), followed by a conserved stem-loop structure. We report that nonstructural protein 5 (NS5) from four serocomplexes of flaviviruses specifically methylates the cap through recognition of the 5' terminus of viral RNA. Distinct RNA elements are required for the methylations at guanine N-7 on the cap and ribose 2'-OH on the first transcribed nucleotide. In a West Nile virus (WNV) model, N-7 cap methylation requires specific nucleotides at the second and third positions and a 5' stem-loop structure; in contrast, 2'-OH ribose methylation requires specific nucleotides at the first and second positions, with a minimum 5' viral RNA of 20 nucleotides. The cap analogues GpppA and m(7)GpppA are not active substrates for WNV methytransferase. Footprinting experiments using Gppp- and m(7)Gppp-terminated RNAs suggest that the 5' termini of RNA substrates interact with NS5 during the sequential methylation reactions. Cap methylations could be inhibited by an antisense oligomer targeting the first 20 nucleotides of WNV genome. The viral RNA-specific cap methylation suggests methyltransferase as a novel target for flavivirus drug discovery.  相似文献   

7.
Chen Y  Su C  Ke M  Jin X  Xu L  Zhang Z  Wu A  Sun Y  Yang Z  Tien P  Ahola T  Liang Y  Liu X  Guo D 《PLoS pathogens》2011,7(10):e1002294
The 5'-cap structure is a distinct feature of eukaryotic mRNAs, and eukaryotic viruses generally modify the 5'-end of viral RNAs to mimic cellular mRNA structure, which is important for RNA stability, protein translation and viral immune escape. SARS coronavirus (SARS-CoV) encodes two S-adenosyl-L-methionine (SAM)-dependent methyltransferases (MTase) which sequentially methylate the RNA cap at guanosine-N7 and ribose 2'-O positions, catalyzed by nsp14 N7-MTase and nsp16 2'-O-MTase, respectively. A unique feature for SARS-CoV is that nsp16 requires non-structural protein nsp10 as a stimulatory factor to execute its MTase activity. Here we report the biochemical characterization of SARS-CoV 2'-O-MTase and the crystal structure of nsp16/nsp10 complex bound with methyl donor SAM. We found that SARS-CoV nsp16 MTase methylated m7GpppA-RNA but not m7GpppG-RNA, which is in contrast with nsp14 MTase that functions in a sequence-independent manner. We demonstrated that nsp10 is required for nsp16 to bind both m7GpppA-RNA substrate and SAM cofactor. Structural analysis revealed that nsp16 possesses the canonical scaffold of MTase and associates with nsp10 at 1∶1 ratio. The structure of the nsp16/nsp10 interaction interface shows that nsp10 may stabilize the SAM-binding pocket and extend the substrate RNA-binding groove of nsp16, consistent with the findings in biochemical assays. These results suggest that nsp16/nsp10 interface may represent a better drug target than the viral MTase active site for developing highly specific anti-coronavirus drugs.  相似文献   

8.
The flavivirus methyltransferase (MTase) is an essential enzyme that sequentially methylates the N7 and 2’-O positions of the viral RNA cap, using S-adenosyl-L-methionine (SAM) as a methyl donor. We report here that small molecule compounds, which putatively bind to the SAM-binding site of flavivirus MTase and inhibit its function, were identified by using virtual screening. In vitro methylation experiments demonstrated significant MTase inhibition by 13 of these compounds, with the most potent compound displaying sub-micromolar inhibitory activity. The most active compounds showed broad spectrum activity against the MTase proteins of multiple flaviviruses. Two of these compounds also exhibited low cytotoxicity and effectively inhibited viral replication in cell-based assays, providing further structural insight into flavivirus MTase inhibition.  相似文献   

9.
Methylation of flavivirus RNA is vital for its stability and translation in the infected host cell. This methylation is mediated by the flavivirus methyltransferase (MTase), which methylates the N7 and 2′‐O positions of the viral RNA cap by using S‐adenosyl‐l ‐methionine (SAM) as a methyl donor. In this report, we demonstrate that SAM, in contrast to the reaction by‐product S‐adenosyl‐l ‐homocysteine, which was assumed previously, is copurified with the Dengue (DNV) and West Nile virus MTases produced in Escherichia coli (E. coli). This endogenous SAM can be removed by denaturation and refolding of the MTase protein. The refolded MTase of DNV serotype 3 (DNV3) displays methylation activity comparable to native enzyme, and its crystal structure at 2.1 Å is almost identical to that of native MTase. We characterized the binding of Sinefungin (SIN), a previously described SAM‐analog inhibitor of MTase function, to the native and refolded DNV3 MTase by isothermal titration calorimetry, and found that SIN binds to refolded MTase with more than 16 times the affinity of SIN binding to the MTase purified natively. Moreover, we show that SAM is also copurified with other flavivirus MTases, indicating that purification by refolding may be a generally applicable tool for studying flavivirus MTase inhibition.  相似文献   

10.
Mutagenesis of the dengue virus type 2 NS5 methyltransferase domain   总被引:1,自引:0,他引:1  
The Flavivirus NS5 protein possesses both (guanine-N7)-methyltransferase and nucleoside-2'-O methyltransferase activities required for sequential methylation of the cap structure present at the 5' end of the Flavivirus RNA genome. Seventeen mutations were introduced into the dengue virus type 2 NS5 methyltransferase domain, targeting amino acids either predicted to be directly involved in S-adenosyl-l-methionine binding or important for NS5 conformation and/or charged interactions. The effects of the mutations on (i) (guanine-N7)-methyltransferase and nucleoside-2'-O methyltransferase activities using biochemical assays based on a bacterially expressed NS5 methyltransferase domain and (ii) viral replication using a dengue virus type 2 infectious cDNA clone were examined. Clustered mutations targeting the S-adenosyl-l-methionine binding pocket or an active site residue abolished both methyltransferase activities and viral replication, demonstrating that both methyltransferase activities utilize a single S-adenosyl-l-methionine binding pocket. Substitutions to single amino acids binding S-adenosyl-l-methionine decreased both methyltransferase activities by varying amounts. However, viruses that replicated at wild type levels could be recovered with mutations that reduced both activities by >75%, suggesting that only a threshold level of methyltransferase activity was required for virus replication in vivo. Mutation of residues outside of regions directly involved in S-adenosyl-l-methionine binding or catalysis also affected methyltransferase activity and virus replication. The recovery of viruses containing compensatory second site mutations in the NS5 and NS3 proteins identified regions of the methyltransferase domain important for overall stability of the protein or likely to play a role in virus replication distinct from that of cap methylation.  相似文献   

11.
K Dimock  C M Stolzfus 《Biochemistry》1978,17(17):3627-3632
Cycloleucine, a competitive inhibitor of ATP: L-methionine S-adenosyltransferase in vitro, has been used to reduce intracellular concentrations of S-adenosylmethionine and by this means to inhibit virion RNA methylation in chicken embryo cells that are infected with B77 avian sarcoma virus. Under conditions of cycloleucine treatment, where virus production as measured by incorporation of radioactive precursors or by number of infectious particles is not significantly affected, the internal m6A methylations of the avian sarcoma virus genome RNA are inhibited greater than 90%. The predominant 5'-terminal structure in viral RNA produced by treated cells in m7G(5')pppG (cap zero) rather than m7G-(5')pppGm (cap 1). It appears from these results that internal m6A and penultimate ribose methylations are not required for avian sarcoma RNA synthesis and function. Furthermore, these methylations are apparently not required for transport of genome RNA to virus assembly sites. The insensitivity of the 5'-terminal m7G methylation to inhibition by cycloleucine suggests that the affinity of S-adenosylmethionine for 7-methylguanosine methyltransferase is significantly greater than for the 2'-0-methyltransferases or the N6-methyltransferases.  相似文献   

12.
RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of viral RNA in vivo and host ribosomal RNAs in vitro.  相似文献   

13.
mRNA cap 1 2'-O-ribose methylation is a widespread modification that is implicated in processing, trafficking, and translational control in eukaryotic systems. The eukaryotic enzyme has yet to be identified. In kinetoplastid flagellates trans-splicing of spliced leader (SL) to polycistronic precursors conveys a hypermethylated cap 4, including a cap 0 m7G and seven additional methylations on the first 4 nucleotides, to all nuclear mRNAs. We report the first eukaryotic cap 1 2'-O-ribose methyltransferase, TbMTr1, a member of a conserved family of viral and eukaryotic enzymes. Recombinant TbMTr1 methylates the ribose of the first nucleotide of an m7G-capped substrate. Knockdowns and null mutants of TbMTr1 in Trypanosoma brucei grow normally, with loss of 2'-O-ribose methylation at cap 1 on substrate SL RNA and U1 small nuclear RNA. TbMTr1-null cells have an accumulation of cap 0 substrate without further methylation, while spliced mRNA is modified efficiently at position 4 in the absence of 2'-O-ribose methylation at position 1; downstream cap 4 methylations are independent of cap 1. Based on TbMTr1-green fluorescent protein localization, 2'-O-ribose methylation at position 1 occurs in the nucleus. Accumulation of 3'-extended SL RNA substrate indicates a delay in processing and suggests a synergistic role for cap 1 in maturation.  相似文献   

14.
15.
The m7GpppN cap structure of eukaryotic mRNA is formed by the sequential action of RNA triphosphatase, guanylyltransferase, and (guanine N-7) methyltransferase. In trypanosomatid protozoa, the m7GpppN is further modified by seven methylation steps within the first four transcribed nucleosides to form the cap 4 structure. The RNA triphosphatase and guanylyltransferase components have been characterized in Trypanosoma brucei. Here we describe the identification and characterization of a T. brucei (guanine N-7) methyltransferase (TbCmt1). Sequence alignment of the 324-amino acid TbCmt1 with the corresponding enzymes from human (Hcm1), fungal (Abd1), and microsporidian (Ecm1) revealed the presence of conserved residues known to be essential for methyltransferase activity. Purified recombinant TbCmt1 catalyzes the transfer of a methyl group from S-adenosylmethionine to the N-7 position of the cap guanine in GpppN-terminated RNA to form the m7GpppN cap. TbCmt1 also methylates GpppG and GpppA but not GTP or dGTP. Mutational analysis of individual residues of TbCmt1 that were predicted-on the basis of the crystal structure of Ecm1--to be located at or near the active site identified six conserved residues in the putative AdoMet- or cap-binding pocket that caused significant reductions in TbCmt1 methyltransferase activity. We also report the identification of a second T. brucei RNA (guanine N-7) cap methyltransferase (named TbCgm1). The 1050-amino acid TbCgm1 consists of a C-terminal (guanine N-7) methyltransferase domain, which is homologous with TbCmt1, and an N-terminal guanylyltransferase domain, which contains signature motifs found in the nucleotidyl transferase superfamily.  相似文献   

16.
17.
18.
In kinetoplastids spliced leader (SL) RNA is trans-spliced onto the 5' ends of all nuclear mRNAs, providing a universal exon with a unique cap. Mature SL contains an m(7)G cap, ribose 2'-O methylations on the first four nucleotides, and base methylations on nucleotides 1 and 4 (AACU). This structure is referred to as cap 4. Mutagenized SL RNAs that exhibit reduced cap 4 are trans-spliced, but these mRNAs do not associate with polysomes, suggesting a direct role in translation for cap 4, the primary SL sequence, or both. To separate SL RNA sequence alterations from cap 4 maturation, we have examined two ribose 2'-O-methyltransferases in Trypanosoma brucei. Both enzymes fall into the Rossmann fold class of methyltransferases and model into a conserved structure based on vaccinia virus homolog VP39. Knockdown of the methyltransferases individually or in combination did not affect growth rates and suggests a temporal placement in the cap 4 formation cascade: TbMT417 modifies A(2) and is not required for subsequent steps; TbMT511 methylates C(3), without which U(4) methylations are reduced. Incomplete cap 4 maturation was reflected in substrate SL and mRNA populations. Recombinant methyltransferases bind to a methyl donor and show preference for m(7)G-capped RNAs in vitro. Both enzymes reside in the nucleoplasm. Based on the cap phenotype of substrate SL stranded in the cytosol, A(2), C(3), and U(4) methylations are added after nuclear reimport of Sm protein-complexed substrate SL RNA. As mature cap 4 is dispensable for translation, cap 1 modifications and/or SL sequences are implicated in ribosomal interaction.  相似文献   

19.
20.
During mRNA synthesis, the polymerase of vesicular stomatitis virus (VSV) copies the genomic RNA to produce five capped and polyadenylated mRNAs with the 5'-terminal structure 7mGpppA(m)pApCpApGpNpNpApUpCp. The 5' mRNA processing events are poorly understood but presumably require triphosphatase, guanylyltransferase, [guanine-N-7]- and [ribose-2'-O]-methyltransferase (MTase) activities. Consistent with a role in mRNA methylation, conserved domain VI of the 241-kDa large (L) polymerase protein shares sequence homology with a bacterial [ribose-2'-O]-MTase, FtsJ/RrmJ. In this report, we generated six L gene mutations to test this homology. Individual substitutions to the predicted MTase active-site residues K1651, D1762, K1795, and E1833 yielded viruses with pinpoint plaque morphologies and 10- to 1,000-fold replication defects in single-step growth assays. Consistent with these defects, viral RNA and protein synthesis was diminished. In contrast, alteration of residue G1674 predicted to bind the methyl donor S-adenosylmethionine did not significantly perturb viral growth and gene expression. Analysis of the mRNA cap structure revealed that alterations to the predicted active site residues decreased [guanine-N-7]- and [ribose-2'-O]-MTase activity below the limit of detection of our assay. In contrast, the alanine substitution at G1674 had no apparent consequence. These data show that the predicted MTase active-site residues K1651, D1762, K1795, and E1833 within domain VI of the VSV L protein are essential for mRNA cap methylation. A model of mRNA processing consistent with these data is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号