首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Studies of virus neutralization by antibody are a prerequisite for development of a prophylactic vaccine strategy against human papillomaviruses (HPVs). Using HPV16 and -6 pseudovirions capable of inducing beta-galactosidase in infected monkey COS-1 cells, we examined the neutralizing activity of mouse monoclonal antibodies (MAbs) that recognize surface epitopes in HPV16 minor capsid protein L2. Two MAbs binding to a synthetic peptide with the HPV16 L2 sequence of amino acids (aa) 108 to 120 were found to inhibit pseudoinfections with HPV16 as well as HPV6. Antisera raised by immunizing BALB/c mice with the synthetic peptide had a cross-neutralizing activity similar to that of the MAb. The data indicate that HPV16 and -6 have a common cross-neutralization epitope (located within aa 108 to 120 of L2 in HPV16), suggesting that this epitope may be shared by other genital HPVs.  相似文献   

2.

Background

Human papillomavirus (HPV) capsids are composed of 72 pentamers of the major capsid protein L1, and an unknown number of L2 minor capsid proteins. An N-terminal “external loop” of L2 contains cross-neutralizing epitopes, and native HPV16 virions extracted from 20-day-old organotypic tissues are neutralized by anti-HPV16 L2 antibodies but virus from 10-day-old cultures are not, suggesting that L2 epitopes are more exposed in mature, 20-day virions. This current study was undertaken to determine whether cross-neutralization of other HPV types is similarly dependent on time of harvest and to screen for the most effective cross-neutralizing epitope in native virions.

Methodology and Principal Findings

Neutralization assays support that although HPV16 L2 epitopes were only exposed in 20-day virions, HPV31 or HPV18 epitopes behaved differently. Instead, HPV31 and HPV18 L2 epitopes were exposed in 10-day virions and remained so in 20-day virions. In contrast, presumably due to sequence divergence, HPV45 was not cross-neutralized by any of the anti-HPV16 L2 antibodies. We found that the most effective cross-neutralizing antibody was a polyclonal antibody named anti-P56/75 #1, which was raised against a peptide consisting of highly conserved HPV16 L2 amino acids 56 to 75.

Conclusions and Significance

This is the first study to determine the susceptibility of multiple, native high-risk HPV types to neutralization by L2 antibodies. Multiple anti-L2 antibodies were able to cross-neutralize HPV16, HPV31, and HPV18. Only neutralization of HPV16 depended on the time of tissue harvest. These data should inform attempts to produce a second-generation, L2-based vaccine.  相似文献   

3.
We have generated four mouse monoclonal antibodies (MAbs) to bovine papillomavirus virions that bound type-specific, adjacent, and conformationally dependent epitopes on the L1 major capsid protein. All four MAbs were neutralizing at ratios of 1 MAb molecule per 5 to 25 L1 molecules, but only three effectively blocked binding of the virus to the cell surface. Therefore, antibodies can prevent papillomavirus infection by at least two mechanisms: inhibition of cell surface receptor binding and a subsequent step in the infectious pathway. The neutralizing epitopes of the bovine papillomavirus L2 minor capsid protein were mapped to the N-terminal half of L2 by blocking the neutralizing activity of full-length L2 antiserum with bacterially expressed peptides of L2. In addition, rabbit antiserum raised against amino acids 45 to 173 of L2 had a neutralizing titer of 1,000, confirming that at least part of the N terminus of L2 is exposed on the virion surface.  相似文献   

4.

Background

Current human papillomavirus (HPV) vaccines that are based on virus-like particles (VLPs) of the major capsid protein L1 largely elicit HPV type-specific antibody responses. In contrast, immunization with the HPV minor capsid protein L2 elicits antibodies that are broadly cross-neutralizing, suggesting that a vaccine targeting L2 could provide more comprehensive protection against infection by diverse HPV types. However, L2-based immunogens typically elicit much lower neutralizing antibody titers than L1 VLPs. We previously showed that a conserved broadly neutralizing epitope near the N-terminus of L2 is highly immunogenic when displayed on the surface of VLPs derived from the bacteriophage PP7. Here, we report the development of a panel of PP7 VLP-based vaccines targeting L2 that protect mice from infection with carcinogenic and non-carcinogenic HPV types that infect the genital tract and skin.

Methodology/Principal Findings

L2 peptides from eight different HPV types were displayed on the surface of PP7 bacteriophage VLPs. These recombinant L2 VLPs, both individually and in combination, elicited high-titer anti-L2 IgG serum antibodies. Immunized mice were protected from high dose infection with HPV pseudovirus (PsV) encapsidating a luciferase reporter. Mice immunized with 16L2 PP7 VLPs or 18L2 PP7 VLPs were nearly completely protected from both PsV16 and PsV18 challenge. Mice immunized with the mixture of eight L2 VLPs were strongly protected from genital challenge with PsVs representing eight diverse HPV types and cutaneous challenge with HPV5 PsV.

Conclusion/Significance

VLP-display of a cross-neutralizing HPV L2 epitope is an effective approach for inducing high-titer protective neutralizing antibodies and is capable of offering protection from a spectrum of HPVs associated with cervical cancer as well as genital and cutaneous warts.  相似文献   

5.
The aim of this study was to characterize the conformational neutralizing epitopes of the major capsid protein of human papillomavirus type 31. Analysis of the epitopes was performed by competitive epitope mapping using 15 anti‐HPV31 and by reactivity analysis using a HPV31 mutant with an insertion of a seven‐amino acid motif within the FG loop of the capsid protein. Fine mapping of neutralizing conformational epitopes on HPV L1 was analyzed by a new approach using a system displaying a combinatorial library of constrained peptides exposed on E. coli flagella. The findings demonstrate that the HPV31 FG loop is dense in neutralizing epitopes and suggest that HPV31 MAbs bind to overlapping but distinct epitopes on the central part of the FG loop, in agreement with the exposure of the FG loop on the surface of HPV VLPs, and thus confirming that neutralizing antibodies are mainly located on the tip of capsomeres. In addition, we identified a crossreacting and partially crossneutralizing conformational epitope on the relatively well conserved N‐terminal part of the FG loop. Moreover, our findings support the hypothesis that there is no correlation between neutralization and the ability of MAbs to inhibit VLP binding to heparan sulfate, and confirm that the blocking of virus attachment to the extracellular matrix is an important mechanism of neutralization.  相似文献   

6.
Secretory immunoglobulin A (sIgA) antibodies are the first line of defence at the genital mucosa, and are thought to hinder viral infections by binding to conformational epitopes on the viral capsid. To investigate if cervical sIgA binds to conformational epitopes of the Human papillomavirus type 16 (HPV16), cervical mucus samples from 109 HPV16-infected patients were examined in a HPV16 virus-like particles-induced hemagglutination inhibition assay. 48 (44.1%) patients were able to inhibit hemagglutination. Inhibition of hemagglutination was associated with the presence of sIgA (P=0.001). In conclusion, naturally occurring cervical anti-HPV16 sIgA binds to and hinders conformational epitopes on the viral capsid, suggesting that these antibodies might have a neutralizing capacity.  相似文献   

7.
Current human papillomavirus (HPV) major capsid protein L1 virus-like particles (VLPs)-based vaccines in clinic induce strong HPV type-specific neutralizing antibody responses. To develop pan-HPV vaccines, here, we show that the fusion protein E3R4 consisting of three repeats of HPV16 L2 aa 17–36 epitope (E3) and a modified human IgG1 Fc scaffold (R4) induces cross-neutralizing antibodies and protective immunity against divergent HPV types. E3R4 was expressed as a secreted protein in baculovirus expression system and could be simply purified by one step Protein A affinity chromatography with the purity above 90%. Vaccination of E3R4 formulated with Freunds adjuvant not only induced cross-neutralizing antibodies against HPV pseudovirus types 16, 18, 45, 52, 58, 6, 11 and 5 in mice, but also protected mice against vaginal challenges with HPV pseudovirus types 16, 45, 52, 58, 11 and 5 for at least eleven months after the first immunization. Moreover, vaccination of E3R4 formulated with FDA approved adjuvant alum plus monophosphoryl lipid A also induced cross-neutralizing antibodies against HPV types 16, 18 and 6 in rabbits. Thus, our results demonstrate that delivery of L2 antigen as a modified Fc-fusion protein may facilitate pan-HPV vaccine development.  相似文献   

8.
Mucosotropic, high-risk human papillomaviruses (HPV) are sexually transmitted viruses that are causally associated with the development of cervical cancer. The most common high-risk genotype, HPV16, is an obligatory intracellular virus that must gain entry into host epithelial cells and deliver its double stranded DNA to the nucleus. HPV capsid proteins play a vital role in these steps. Despite the critical nature of these capsid protein-host cell interactions, the precise cellular components necessary for HPV16 infection of epithelial cells remains unknown. Several neutralizing epitopes have been identified for the HPV16 L2 minor capsid protein that can inhibit infection after initial attachment of the virus to the cell surface, which suggests an L2-specific secondary receptor or cofactor is required for infection, but so far no specific L2-receptor has been identified. Here, we demonstrate that the annexin A2 heterotetramer (A2t) contributes to HPV16 infection and co-immunoprecipitates with HPV16 particles on the surface of epithelial cells in an L2-dependent manner. Inhibiting A2t with an endogenous annexin A2 ligand, secretory leukocyte protease inhibitor (SLPI), or with an annexin A2 antibody significantly reduces HPV16 infection. With electron paramagnetic resonance, we demonstrate that a previously identified neutralizing epitope of L2 (aa 108-120) specifically interacts with the S100A10 subunit of A2t. Additionally, mutation of this L2 region significantly reduces binding to A2t and HPV16 pseudovirus infection. Furthermore, downregulation of A2t with shRNA significantly decreases capsid internalization and infection by HPV16. Taken together, these findings indicate that A2t contributes to HPV16 internalization and infection of epithelial cells and this interaction is dependent on the presence of the L2 minor capsid protein.  相似文献   

9.
The variable surface loops on human papillomavirus (HPV) virions required for type-specific neutralization by human sera remain poorly defined. To determine which loops are required for neutralization, a series of hybrid virus-like particles (VLPs) were used to adsorb neutralizing activity from HPV type 16 (HPV16)-reactive human sera before being tested in an HPV16 pseudovirion neutralization assay. The hybrid VLPs used were composed of L1 sequences of either HPV16 or HPV31, on which one or two regions were replaced with homologous sequences from the other type. The regions chosen for substitution were the five known loops that form surface epitopes recognized by monoclonal antibodies and two additional variable regions between residues 400 and 450. Pretreatment of human sera, previously found to react to HPV16 VLPs in enzyme-linked immunosorbent assays, with wild-type HPV16 VLPs and hybrid VLPs that retained the neutralizing epitopes reduced or eliminated the ability of sera to inhibit pseudovirus infection in vitro. Surprisingly, substitution of a single loop often ablated the ability of VLPs to adsorb neutralizing antibodies from human sera. However, for all sera tested, multiple surface loops were found to be important for neutralizing activity. Three regions, defined by loops DE, FG, and HI, were most frequently identified as being essential for binding by neutralizing antibodies. These observations are consistent with the existence of multiple neutralizing epitopes on the HPV virion surface.  相似文献   

10.
The mechanisms of human papillomavirus (HPV) neutralization by antibodies are incompletely understood. We have used HPV16 pseudovirus infection of HaCaT cells to analyze how several neutralizing monoclonal antibodies (MAbs) generated against HPV16 L1 interfere with the process of keratinocyte infection. HPV16 capsids normally bind to both the cell surface and extracellular matrix (ECM) of HaCaT cells. Surprisingly, two strongly neutralizing MAbs, V5 and E70, did not prevent attachment of capsids to the cell surface. However, they did block association with the ECM and prevented internalization of cell surface-bound capsids. In contrast, MAb U4 prevented binding to the cell surface but not to the ECM. The epitope recognized by U4 was inaccessible when virions were bound to the cell surface but became accessible after endocytosis, presumably coinciding with receptor detachment. Treatment of capsids with heparin, which is known to interfere with binding to cell surface heparan sulfate proteoglycans (HSPGs), also resulted in HPV16 localization to the ECM. These results suggest that the U4 epitope on the intercapsomeric C-terminal arm is likely to encompass the critical HSPG interaction residues for HPV16, while the V5 and E70 epitopes at the apex of the capsomer overlap the ECM-binding sites. We conclude that neutralizing antibodies can inhibit HPV infection by multiple distinct mechanisms, and understanding these mechanisms can add insight to the HPV entry processes.  相似文献   

11.
Antibodies specific for neutralizing epitopes in either Human papillomavirus (HPV) capsid protein L1 or L2 can mediate protection from viral challenge and thus their accurate and sensitive measurement at high throughput is likely informative for monitoring response to prophylactic vaccination. Here we compare measurement of L1 and L2-specific neutralizing antibodies in human sera using the standard Pseudovirion-Based Neutralization Assay (L1-PBNA) with the newer Furin-Cleaved Pseudovirion-Based Neutralization Assay (FC-PBNA), a modification of the L1-PBNA intended to improve sensitivity towards L2-specific neutralizing antibodies without compromising assay of L1-specific responses. For detection of L1-specific neutralizing antibodies in human sera, the FC- PBNA and L1-PBNA assays showed similar sensitivity and a high level of correlation using WHO standard sera (n = 2), and sera from patients vaccinated with Gardasil (n = 30) or an experimental human papillomavirus type 16 (HPV16) L1 VLP vaccine (n = 70). The detection of L1-specific cross-neutralizing antibodies in these sera using pseudovirions of types phylogenetically-related to those targeted by the L1 virus-like particle (VLP) vaccines was also consistent between the two assays. However, for sera from patients (n = 17) vaccinated with an L2-based immunogen (TA-CIN), the FC-PBNA was more sensitive than the L1-PBNA in detecting L2-specific neutralizing antibodies. Further, the neutralizing antibody titers measured with the FC-PBNA correlated with those determined with the L2-PBNA, another modification of the L1-PBNA that spacio-temporally separates primary and secondary receptor engagement, as well as the protective titers measured using passive transfer studies in the murine genital-challenge model. In sum, the FC-PBNA provided sensitive measurement for both L1 VLP and L2-specific neutralizing antibody in human sera. Vaccination with TA-CIN elicits weak cross-protective antibody in a subset of patients, suggesting the need for an adjuvant.  相似文献   

12.
人乳头瘤病毒(Human papillomavirus,HPV)是一类无包膜的小DNA病毒,其衣壳蛋白由主要衣壳蛋白L1和次要衣壳蛋白L2组成,持续感染HPV将引起宫颈癌和尖锐湿疣等多种疾病。HPV衣壳蛋白L1和L2中分布着大量中和表位,并具有较强的免疫原性,HPV疫苗可诱导机体产生高滴度的中和抗体并阻碍病毒感染,进而预防宫颈癌等疾病的发生。分析阐述HPV衣壳蛋白中和表位及抗体的中和作用机理,有助于阐明HPV疫苗预防病毒感染的作用机制,为今后设计新一代保护范围更广的HPV疫苗奠定良好的基础。本文就HPV衣壳蛋白中和表位及抗体的中和作用机制进行综述。  相似文献   

13.
Human papillomavirus type 16 (HPV16) is the primary etiologic agent of cervical carcinoma, whereas bovine papillomavirus type 1 (BPV1) causes benign fibropapillomas. However, the capsid proteins, L1 and L2, of these divergent papillomaviruses exhibit functional conservation. A peptide comprising residues 1 to 88 of BPV1 L2 binds to a variety of cell lines, but not to the monocyte-derived cell line D32, and blocks BPV1 infection of mouse C127 cells. Residues 13 to 31 of HPV16 L2 and BPV1 L2 residues 1 to 88 compete for binding to the cell surface, and their binding, unlike that of HPV16 L1/L2 virus-like particles, is unaffected by heparinase or trypsin pretreatment of HeLa cells. A fusion of HPV16 L2 peptide 13-31 and GFP binds (K(d), approximately 1 nM) to approximately 45,000 receptors per HeLa cell. Furthermore, mutation of L2 residues 18 and 19 or 21 and 22 significantly reduces both the ability of the HPV16 L2 13-31-GFP fusion protein to bind to SiHa cells and the infectivity of HPV16 pseudovirions. Antibody to BPV1 L2 peptides comprising residues 115 to 135 binds to intact BPV1 virions, but fails to neutralize at a 1:10 dilution. However, deletion of residues 91 to 129 from L2 abolishes the infectivity of BPV1, but not their binding to the cell surface. In summary, L2 residues 91 to 129 contain epitopes displayed on the virion surface and are required for infection, but not virion binding to the cell surface. Upon the binding of papillomavirus to the cell surface, residues 13 to 31 of L2 interact with a widely expressed, trypsin- and heparinase-resistant cell surface molecule and facilitate infection.  相似文献   

14.
The first step of papillomavirus infection is believed to be binding of major capsid protein L1 to the cell surface without involvement of minor capsid protein L2, but the viral infectivity can be neutralized either by anti-L1 or anti-L2 antibody. To understand the role of L2 in human papillomavirus (HPV) infection, we examined a segment of HPV type 16 (HPV16) L2, which contains a neutralization epitope common to HPV6, for its involvement in adsorption and penetration of the capsids. Preincubation of monkey COS-1 cells with a synthetic peptide having amino acids (aa) 108 to 120 of HPV16 L2 reduced the susceptibility of COS-1 cells to infection with HPV16 pseudovirions. Confocal microscopy showed that the green fluorescence protein (GFP) fused with the L2 peptide was found to bind to the surface of a HeLa cell, an HPV18-positive human cancer cell line, at 4 degrees C and to enter the cytoplasm after subsequent incubation at 37 degrees C. Flow cytometry showed that fused GFP did not bind to HeLa cells that had been treated with trypsin. Besides COS-1 and HeLa cells, some human and rodent cell lines were detected by flow cytometry to be susceptible to binding with fused GFP, showing a tendency of epithelial cells toward higher susceptibility. Substitutions at aa 108 to 111 inhibited fused GFP from binding to HeLa cells and reduced the infectivity in COS-1 cells of the in vitro-constructed pseudovirions. The results suggest that L2 plays an important role in enhancing HPV infection through interaction between the N-terminal region and a cellular surface protein, facilitating penetration of the virions and determining part of the tropism of HPVs.  相似文献   

15.
The human papillomavirus (HPV) minor capsid protein L2 is a promising candidate for a broadly protective HPV vaccine yet the titers obtained in most experimental systems are rather low. Here we examine the potential of empty AAV2 particles (AAVLPs), assembled from VP3 alone, for display of L2 epitopes to enhance their immunogenicity. Insertion of a neutralizing epitope (amino acids 17-36) from L2 of HPV16 and HPV31 into VP3 at positions 587 and 453, respectively, permitted assembly into empty AAV particles (AAVLP(HPV16/31L2)). Intramuscularly vaccination of mice and rabbits with AAVLP(HPV16/31L2)s in montanide adjuvant, induced high titers of HPV16 L2 antibodies as measured by ELISA. Sera obtained from animals vaccinated with the AAVLP(HPV16/31L2)s neutralized infections with several HPV types in a pseudovirion infection assay. Lyophilized AAVLP(HPV16/31L2) particles retained their immunogenicity upon reconstitution. Interestingly, vaccination of animals that were pre-immunized with AAV2--simulating the high prevalence of AAV2 antibodies in the population--even increased cross neutralization against HPV31, 45 and 58 types. Finally, passive transfer of rabbit antisera directed against AAVLP(HPV16/31L2)s protected na?ve mice from vaginal challenge with HPV16 pseudovirions. In conclusion, AAVLP(HPV16/31L2) particles have the potential as a broadly protective vaccine candidate regardless of prior exposure to AAV.  相似文献   

16.
The neutralizing activities of polyclonal antibodies and monoclonal antibodies (MAbs) obtained by immunization of mice with L1 virus-like particles (VLPs) were investigated by using pseudovirion infectivity assays for human papillomavirus type 16 (HPV-16), HPV-31, HPV-33, HPV-45, HPV-58, and HPV-59 to obtain a better definition of cross-neutralization between high-risk HPVs. In this study, we confirmed and extended previous studies indicating that most genital HPV genotypes represent separate serotypes, and the results suggest that the classification of serotypes is similar to that of genotypes. In addition, three cross-neutralizing MAbs were identified (HPV-16.J4, HPV-16.I23, and HPV-33.E12). MAb HPV-16.J4 recognized a conserved linear epitope located within the FG loop of the L1 protein, and HPV-16.I23 recognized another located within the DE loop. The results suggested that reactivity of MAb HPV-16.I23 to L1 protein is lost when leucine 152 of the HPV-16 L1 protein is replaced by phenylalanine. This confirmed the existence of linear epitopes within the L1 protein that induce neutralizing antibodies, and this is the first evidence that such linear epitopes induce cross-neutralization. However, the cross-neutralization induced by L1 VLPs represents less than 1% of the neutralizing activity induced by the dominant conformational epitopes, and it is questionable whether this is sufficient to offer cross-protection in vivo.  相似文献   

17.
人乳头瘤病毒16型假病毒中和实验的建立和初步应用   总被引:4,自引:0,他引:4  
探讨了应用多质粒磷酸钙共转染方法在293FT细胞中生产HPV16(human papillomavirus type 16)假病毒。蛋白印迹检测显示在转染后细胞的裂解上清中具有很好的L1蛋白活性,通过透射电镜可观察到形态与天然病毒粒子相似的假病毒颗粒。对293FT细胞的感染实验显示,该假病毒可有效将EGFP报告质粒导入靶细胞中进行表达,经测定其滴度约为2×107TU/mL。通过与4株HPV16对照单抗的中和实验证明该假病毒可有效应用于中和实验。应用该方法从18株抗HPV16L1的单克隆抗体中鉴定获得了2株中和单抗3D10、PD1。所建立的HPV16假病毒生产和中和实验方法具有快速高效、低成本和易于检测的优点,适于进行较大规模应用,为快速准确鉴定HPV16中和单抗和候选疫苗的免疫保护效果提供了有效手段。  相似文献   

18.
Following attachment to primary receptor heparan sulfate proteoglycans (HSPG), human papillomavirus type 16 (HPV16) particles undergo conformational changes affecting the major and minor capsid proteins, L1 and L2, respectively. This results in exposure of the L2 N-terminus, transfer to uptake receptors, and infectious internalization. Here, we report that target cell cyclophilins, peptidyl-prolyl cis/trans isomerases, are required for efficient HPV16 infection. Cell surface cyclophilin B (CyPB) facilitates conformational changes in capsid proteins, resulting in exposure of the L2 N-terminus. Inhibition of CyPB blocked HPV16 infection by inducing noninfectious internalization. Mutation of a putative CyP binding site present in HPV16 L2 yielded exposed L2 N-terminus in the absence of active CyP and bypassed the need for cell surface CyPB. However, this mutant was still sensitive to CyP inhibition and required CyP for completion of infection, probably after internalization. Taken together, these data suggest that CyP is required during two distinct steps of HPV16 infection. Identification of cell surface CyPB will facilitate the study of the complex events preceding internalization and adds a putative drug target for prevention of HPV–induced diseases.  相似文献   

19.
Although epitope mapping has identified residues on the human papillomavirus (HPV) major capsid protein (L1) that are important for binding mouse monoclonal antibodies, epitopes recognized by human antibodies are not known. To map epitopes on HPV type 6 (HPV6) L1, surface-exposed loops were mutated to the corresponding sequence of HPV11 L1. HPV6 L1 capsomers had one to six regions mutated, including the BC, DE, EF, FG, and HI loops and the 139 C-terminal residues. After verifying proper conformation, hybrid capsomers were used in enzyme-linked immunosorbent assays with 36 HPV6-seropositive sera from women enrolled in a study of incident HPV infection. Twelve sera were HPV6 specific, while the remainder reacted with both HPV6 and HPV11 L1. By preadsorption studies, 6/11 of these sera were shown to be cross-reactive. Among the HPV6-specific sera there was no immunodominant epitope recognized by all sera. Six of the 12 sera recognized epitopes that contained residues from combinations of the BC, DE, and FG loops, one serum recognized an epitope that consisted partially of the C-terminal arm, and three sera recognized complex epitopes to which reactivity was eliminated by switching all five loops. Reactivity in two sera was not eliminated even with all six regions swapped. The patterns of epitope recognition did not change over time in women whose sera were examined 9 years after their first-seropositive visit.  相似文献   

20.
Human papillomaviruses (HPVs) are known etiologic agents of cervical cancer. Vaccines that contain virus-like particles (VLPs) made of L1 capsid protein from several high risk HPV types have proven to be effective against HPV infections. Raising high levels of neutralizing antibodies against each HPV type is believed to be the primary mechanism of protection, gained by vaccination. Antibodies elicited by a particular HPV type are highly specific to that particular HPV type and show little or no cross-reactivity between HPV types. With an intention to understand the interplay between the L1 structure of different HPV types and the type specificity of neutralizing antibodies, we have prepared the L1 pentamers of four different HPV types, HPV11, HPV16, HPV18, and HPV35. The pentamers only bind the type-specific neutralizing monoclonal antibodies (NmAbs) that are raised against the VLP of the corresponding HPV type, implying that the surface loop structures of the pentamers from each type are distinctive and functionally active as VLPs in terms of antibody binding. We have determined the crystal structures of all four L1 pentamers, and their comparisons revealed characteristic conformational differences of the surface loops that contain the known epitopes for the NmAbs. On the basis of these distinct surface loop structures, we have provided a molecular explanation for the type specificity of NmAbs against HPV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号