首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— Essential fatty acid deficiency was induced in mice after feeding a fatty acid deficient diet for 6 months. Activity of the (Na++ K+)-ATPase in the total brain homogenates and in isolated synaptosomal plasma membranes was significantly higher ( P & lt; 0 05) in the deficient mice than the controls. Analysis of the acyl group composition of phosphoglycerides in brain as well as in the synaptosomal plasma membranes showed that mice fed the deficient diet had increased levels of 20:3(n-9) and 22:3(n-9) and decreased levels of 20:4(n-6) and 22:4(n-6). However, acyl group changes varied among individual phosphoglycerides and were most obvious in the two species of ethanolamine phosphoglycerides. A decrease in 22:6(n-3) level was also observed in some phosphoglycerides of the synaptosomal plasma membranes especially the diacyl- sn -glycerophosphorylserine. In this experiment, a new solvent system for chromatographic separation of the diacyl- sn -glycerophosphorylserine and diacyl- sn -glycerophosphorylinositol was reported. The separation technique was suitable for analysis of acyl group composition of individual phosphoglycerides by gas-liquid chromatography. The results were consislent with a positive correlation of the non-polar acyl groups of brain membranes with the active ion transport activity. The increase in enzymic activity during deficient state may be the result of a biological adaptation due to structural alteration of the brain membranes.  相似文献   

2.
A temperature decrease usually induces an ordering effect in membrane phospholipids that can lead to membrane dysfunction. Ectotherms typically counteract this temperature effect by remodeling membrane lipids as stipulated in the homeoviscous adaptation theory (HVA). Previous studies mostly focused on the remodeling of membrane lipids during long-term acclimatization or acclimation at constant temperature regimes, whereas in nature, many organisms experience variations in temperature on a daily basis and must react to this changing thermal environment. The objective of this study was to examine the composition of membrane lipids in oysters subjected to long-term acclimation at constant temperatures (12 or 25 degrees C) or to environmentally realistic daily fluctuations in temperature between 12 and 25 degrees C for 7 d. The lipid composition of gill in oysters subjected to long-term acclimation at a constant temperature or to daily temperature fluctuations varied in a way consistent with HVA: oysters adjusted their phospholipid to sterol ratio in response to long-term acclimation to a constant temperature but not to daily temperature fluctuations. In contrast, the unsaturation index of polar lipids in oysters varied in response to both long-term acclimation to a constant temperature and to daily temperature fluctuations, mainly due to changes in 22:6n-3 and 20:5n-3. The 20:4n-6 levels in oyster gills increased as temperature rose, suggesting an increasing availability of this fatty acid for eicosanoid biosynthesis during stress responses.  相似文献   

3.
About one-fourth the phosphatidylcholines (PC) from retina photoreceptor rod outer segment (ROS) membranes contain docosahexaenoic acid (22:6n-3) at sn-2 and a very long chain polyunsaturated fatty acid (VLCPUFA) (C24 to C36) at the sn-1 position of the glycerol backbone. In order to study the thermotropic behavior of these PCs, subfractions and molecular species of PC (16:0/22:6, 18:0/22:6, 22:6/22:6, 32:5/22:6, 32:6/22:6, 34:5/22:6), were isolated from bovine ROS, and liposomes containing different proportions of these PCs and dimyristoyl-PC (DMPC) or dipalmitoyl PC (DPPC) were compared using the fluorescence probes Laurdan and 1,6-diphenyl-1,3,5-hexatriene (DPH). With both probes, the 22:6n-3 containing PCs from ROS, in all proportions tested, decreased the transition temperature (Tt) of both DMPC and DPPC. Below the transition temperature, coexistence of phases was evidenced in all cases. Liposomes formed with 100% of any of these PCs did not show phase transitions in the temperature range studied (8 degrees C to 50 degrees C). At physiological temperatures, as it is likely to be the case in ROS membranes, all of these PC species were in the liquid-crystalline state. With Laurdan, all dipolyunsaturated PCs seemed to behave similarly: despite the large number of double bonds per molecule, all of them decreased the Tt of DPPC less than did the hexaenoic PCs. With DPH, an ample difference was detected between the dipolyunsaturates, 22:6/22:6-PC and VLCPUFA/22:6-PCs, and between the latter and hexaenoic PCs throughout the temperature range studied. This difference is consistent with the interpretation that the largest "disorder" produced by PCs containing a VLCPUFA like 32:6n-3 at the sn-1 position occurs toward the center of the membrane.  相似文献   

4.
1. The fatty acid composition of whole goldfish, whole-intestinal mucosa, intestinal mucosal membranes and individual phospholipids extracted from mucosal membranes were measured, fish adapted to different temperatures being used. 2. Alterations of the adaptation temperature did not noticeably affect the fatty acid composition of the whole-fish lipids, but there were marked changes in the fatty acids of lipids extracted from homogenates of goldfish intestinal mucosa. These changes were more pronounced in a membrane fraction prepared from these homogenates. Raising the adaptation temperature by 20 degrees C halved the percentage of C(20:1), C(20:4) and C(22:6) fatty acids and nearly doubled the percentage of C(18:0) and C(20:3) fatty acids recovered. 3. Choline phosphoglycerides constituted about one-half and ethanolamine phosphoglycerides about one-quarter of the total membrane phospholipids. 4. The fatty acids of choline and ethanolamine phosphoglycerides were more susceptible to temperature-dependent changes than were the phosphoglycerides of inositol or serine. 5. The increase in C(18:0) fatty acid that occurred in membranes of warm-adapted fish was greatest for ethanolamine phosphoglycerides, but increases also occurred in other phospholipid fractions and in membrane neutral lipids.  相似文献   

5.
We have investigated the effects of a 3-thia fatty acid (TTA) and of temperature on the fatty acid (FA) metabolism of Atlantic salmon (Salmo salar). One experiment investigated the activity of the peroxisomal beta-oxidation enzyme, acyl-CoA oxidase (ACO), and the incorporation of TTA into phospholipid (PL) molecular species. Salmon hepatocytes in culture were incubated either without TTA (control(spades)) or with 0.8 mM TTA (TTA(spades)) in a short term (48 h) temperature study at 5 degrees C and at 12 degrees C. TTA was incorporated into the four PL classes studied: phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylserine (PS). TTA was preferentially esterified with 18:1, 16:1, 20:4 and 22:6 in the PLs. Hepatocytes incubated with TTA had higher ACO activity at 5 degrees C than at 12 degrees C. In a second experiment salmon were fed a diet based on fish meal-fish oil without any TTA added (control) or a fish meal-fish oil diet supplemented with 0.6% TTA for 8 weeks at 12 degrees C and 20 weeks at 5 degrees C. At the end of the feeding trial, hepatocytes from fish acclimated to high or low temperatures were isolated from both dietary groups and incubated with either [1-(14)C]18:1 n-9 or [1-(14)C]20:4 n-3 at 5 degrees C or 12 degrees C. Radiolabelled 18:1 n-9 was mainly esterified into neutral lipids (NL), whereas [1-(14)C]20:4 n-3 was mainly esterified into PL at both temperatures. The rate of elongation of [1-(14)C]18:1 n-9 to 20:1 n-9 was twice as high in hepatocytes from fish fed the control diet than it was in hepatocytes from fish fed the TTA diet, at both temperatures. The amount of [1-(14)C]20:4 n-3 converted to 22:6 n-3 was approximately the same in hepatocytes from the two dietary groups, but there was a tendency to higher production of 22:6 n-3 at the lower temperature. Oxidation of [1-(14)C]18:1 n-9 to acid soluble products (ASP) and CO(2) was approximately 10-fold greater in hepatocytes kept at 5 degrees C than in those kept at 12 degrees C and the main oxidation products formed were acetate, oxaloacetate and malate.  相似文献   

6.
Male weanling rats were fed diets containing 20% (w/w) fat differing in fatty acid composition for 24 days. Synaptic plasma membranes were isolated from the brain and the fatty acid composition of phosphatidylethanolamine and phosphatidylcholine was determined. In vitro assays of phosphatidylethanolamine methyl-transferase activity were performed on fresh membrane samples to assess effect of dietary fat on the rate of phosphatidylethanolamine methylation for phosphatidylcholine synthesis via the phosphatidylethanolamine methyltransferase pathway. Dietary level of n-6 and ratio of n-6 to n-3 fatty acids influenced membrane phospholipid fatty acid composition and activity of the lipid-dependent phosphatidylethanolamine methyltransferase pathway. Rats fed a diet rich in n-6 fatty acids produced a high ratio of n-6/n-3 fatty acids in synaptosomal membrane phosphatidylethanolamine, and elevated rates of methylation of phosphatidylethanolamine to phosphatidylcholine by phosphatidylethanolamine methyltransferases, suggesting that the pathway exhibits substrate selectivity for individual species of phosphatidylethanolamine containing long-chain homologues of dietary n-6 and n-3 fatty acids (20:4(n-6), 22:4(n-6), 22:5(n-6) and 22:6(n-3). It may be concluded that diet alters the membrane content of n-6, n-3 and monounsaturated fatty acids, and that change in phosphatidylethanolamine species available for methylation to phosphatidylcholine alters the rate of product synthesis in vivo by the phosphatidylethanolamine methyltransferase pathway.  相似文献   

7.
The incorporation and metabolism of [1-14C]18:3(n-3), [1-14C]20:5(n-3), [1-14C]18:2(n-6), and [1-14C]20:4(n-6) were studied in primary cultures of trout brain astrocytes. There were no significant differences between the amounts of individual fatty acids incorporated into total lipid at 22 degrees C, with greater than 90% of all the fatty acids being incorporated into polar lipid classes. The distributions of 18:2(n-6), 18:3(n-3), and 20:5(n-3) in individual phospholipid classes at 22 degrees C were very similar, with 57-63 and 18-24% being incorporated into phosphatidylcholine and phosphatidylethanolamine, respectively. Approximately equal amounts of 20:4(n-6), approximately 30% of the total, were incorporated into each of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. The metabolism of the (n-3) fatty acids to longer-chain and more unsaturated species was significantly greater than that of (n-6) acids, but delta 4-desaturase activity was very low. A culture temperature of 10 degrees C increased the incorporation of all the fatty acids into total lipid and that of C20 fatty acids into polar lipid. At 10 degrees C, the incorporation of C20 fatty acids into phosphatidylethanolamine and phosphatidylinositol was increased, and the incorporation into phosphatidylcholine and phosphatidylserine was decreased. The distribution of C18 fatty acids was unchanged at the lower temperature, as was the desaturation and elongation of all the polyunsaturated fatty acids incorporated.  相似文献   

8.
The chloroplast membranes of all higher plants contain very high proportions of trienoic fatty acids. To investigate how these lipid structures are important in photosynthesis, we have generated a triple mutant line of Arabidopsis that contains negligible levels of trienoic fatty acids. For mutant plants grown at 22 degrees C, photosynthetic fluorescence parameters were indistinguishable from wild type at 25 degrees C. Lowering the measurement temperature led to a small decrease in photosynthetic quantum yield, Phi(II), in the mutant relative to wild-type controls. These and other results indicate that low temperature has only a small effect on photosynthesis in the short term. However, long-term growth of plants at 4 degrees C resulted in decreases in fluorescence parameters, chlorophyll content, and thylakoid membrane content in triple-mutant plants relative to wild type. Comparisons among different mutant lines indicated that these detrimental effects of growth at 4 degrees C are strongly correlated with trienoic fatty acid content with levels of 16:3 + 18:3, approximately one-third of wild type being sufficient to sustain normal photosynthetic function. In total, our results indicate that trienoic fatty acids are important to ensure the correct biogenesis and maintenance of chloroplasts during growth of plants at low temperatures.  相似文献   

9.
This study was designed to assess the effect of ambient temperature on lipid content, lipid classes and fatty acid compositions of heart, liver, muscle and brain in oviparous lizards, Phrynocephalus przewalskii, caught in the desert area of China. Significant differences could be observed in the contents of the total lipid and fatty acid compositions among different temperatures (4, 25 and 38 degrees C). The study showed that liver and muscle were principal sites of lipid storage. Triacylglycerol (TAG) mainly deposited in the liver, while phospholipids (PL) was identified as the predominant lipid class in the muscle and brain. Palmitic and stearic acid generally occupied the higher proportion in saturated fatty acids (SFA), while monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) consisted mainly of 16:1n-7, 18:1n-9, 18:2n-6, 18:3n-3, 20:4n-6 and 22:6n-3 regardless of tissue and temperature. These predominant fatty acids proportion fluctuations caused by temperature affected directly the ratio of unsaturated to saturated fatty acids. There was a tendency to increase the degree of unsaturation in the fatty acids of TAG and PL as environmental temperature dropped from 38 to 4 degrees C, although the different extent in different tissues. These results suggested that lipid characteristics of P. przewalskii tissues examined were influenced by ambient temperature.  相似文献   

10.
Although substantial information is available regarding the fatty acid composition of lipids of the yolk and of the developing tissues of the chicken embryo, there is little knowledge on this topic for other avian species. The aim of the present study was to compare the yolk and embryonic tissue fatty acid profiles for a species selecting its food in the wild (the lesser black backed gull) with one fed on a standard commercial diet (the commercially reared pheasant). The fatty acid compositions of the yolk lipids were determined, and major differences were observed between the two species. In particular, the phospholipid of the gull yolk was enriched in 20:4n-6 and 22:6n-3 (18.8 and 7.1%, respectively, by weight of total fatty acids) in comparison with the pheasant (4.0 and 4.1%, respectively). The fatty acid compositions of the embryonic tissues were determined using eggs incubated in the laboratory. For the liver and heart, the fatty acid composition of the lipids in the two species reflected the initial yolk composition, with the gull tissue lipids generally containing higher proportions of 20:4n-6 and 22:6n-3 than those of the pheasant. In contrast, the fatty acid profiles of the brain phospholipid were essentially identical in the two species, with 20:4n-6 and 22:6n-3 comprising approximately 9 and 17%, respectively, of total fatty acids in both cases.  相似文献   

11.
1. The direct effects of temperature on the metabolism of [1-14C]18:2(n-6), [1-14C]18:3(n-3), [1-14C]20:4(n-6) and [1-14C]20:5(n-3) were studied in isolated brain cells from rainbow trout, Oncorhynchus mykiss. 2. Recovery of radioactivity from all the polyunsaturated fatty acids (PUFA) in total lipid was significantly greater at 5 and 15 degrees C than at 25 degrees C. 3. The lower incubation temperatures decreased the relative net incorporation of all the 14C-labelled PUFA into phosphatidylcholine (PC) and increased the relative incorporation of the PUFA into the other phosphoglycerides, especially phosphatidylethanolamine (PE). 4. The effects on PC were generally more significant between 25 and 15 degrees C, whereas the effects on PE were generally significant both between 25 and 15 degrees C and between 15 and 5 degrees C. 5. This suggests that the lysophospholipid acyltransferases responsible for the incorporation of PUFA into different phosphoglycerides may have differential sensitivities to temperature. 6. In contrast, the acyltransferase activities showed fatty acyl preferences that were independent of temperature. 7. Although a trend towards decreased activity at 5 degrees C was apparent, temperature generally had little significant effect on the relative percentages of the PUFA metabolized via the desaturase pathways.  相似文献   

12.
Rat brain myelin, synaptosomal plasma membranes and synaptic vesicles were spin labelled with stearic acid nitroxide derivatives. Their electron spin resonance spectra were studied as a function of temperature and devalent ions (Ca2+ and Mg2+) concentrations. (1) Synaptosomal plasma membranes and synaptic vesicles show identical temperature variations of their order parameter (S = 0.58 at 35 degrees C and S = 0.72 AT 22 DEGREES C). Myelin appears more rigid (S = 0.66 at 35 degrees C and S = 0.76 at 22 degrees C). A discontinuity of the order parameter variation as a function of temperature, is observed between 14.5 degrees C and l9.5 degrees C with the three types of membranes. (2) The hydrophobic core of these membranes is very fluid. No transition temperature is observed. The measured values of the spin label rotation correlation times and rotational activation energies are 2.1 and 2.8 ns at 35 degrees C and 3.1 and 3.6 kcal/mol respectively for synaptosomal plasma membranes and myelin. (3) Ca2+ enhances the membrane rigidity (12+/-0.7% increase of the order parameter at 35 degrees C in the presence of 10(-3) M Ca2+) and increases the transition temperature. At a lower extend, similar effects are observed with Mg2+.  相似文献   

13.
Abstract— Phosphoglyceride and fatty acid composition was determined in the cellular membranes of isolated cerebral microvessels and brain parenchymal cells (neurons and glia) taken from 10-, 20-, and 27–30-month-old C57BL6/NNIA mice. Lipids were extracted from each fraction and the fatty acid profiles of ethanolamine, cho-line, serine, and inositol phosphoglycerides analyzed by gas chromatography. The results suggest that membrane phosphoglycerides from cerebral microvessels are significantly more affected by the aging process than are those of the brain parenchyma. Relative percentage for fatty acids in cerebral microvessels indicate an overall decline in membrane unsaturation with a concomitant elevation in the level of saturation. The decline in unsaturation is reflected primarily in the loss of precursor fatty acids for arachidonic (18:2n-6 and 20:3n-6) and docosahexaenoic (20:5n-3 and 22:5n-3) acids. Levels of arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acids in each phos-phoglyceride remained unchanged with age; however, mol% for ethanolamine plasmalogen, a major source of these fatty acids, was significantly reduced in 27–30-month-old mice. Conversely, mol% for choline phospho-glyceride increased with age. The age-related changes in fatty acid profile for microvessel membrane phosphoglycerides are reflected by increased saturation/unsaturation ratios and decreased unsaturation indices. These parameters were not affected by aging in parenchymal membranes.  相似文献   

14.
Purified cytoplasmic and outer membranes isolated from cells of wild type Escherichia coli grown at 12, 20, 37 and 43 degrees C were labelled with the fatty acid spin probe 5-doxyl stearate. Electron spin resonance spectroscopy revealed broad thermotropic phase changes. The inherent viscosity of both membranes was found to increase as a function of elevated growth temperature. The lipid order to disorder transition in the outer membrane but not the cytoplasmic membrane was dramatically affected by the temperature of growth. As a result, the cytoplasmic membrane presumably existed in a gel + liquid crystalline state during cellular growth at 12 and 20 degrees C, but in a liquid crystalline state when cells were grown at 37 and 43 degrees C. In contrast, the outer membrane apparently existed in a gel + liquid crystalline state at all incubation temperatures. Data presented here indicate that the temperature range over which the cell can maintain the outer membrane phospholipids in a mixed (presumedly gel + liquid crystalline) state correlates with the temperature range over which growth occurs.  相似文献   

15.
Our objectives were to compare spermatozoa activity, morphology, and seminal plasma (SP) biochemistry between wild and cultivated Atlantic cod (Gadus morhua). Swimming velocities of wild cod spermatozoa were significantly faster than those of cultivated males. Wild males had a significantly larger spermatozoa head area, perimeter, and length, while cultivated males had more circular heads. Total monounsaturated fatty acids and the ratio of n-3/n-6 were significantly higher in sperm from wild males, while total n-6 from cultivated males was significantly higher than the wild males. Significantly higher concentrations of the fatty acids C14:0, C16:1n-7, C18:4n-3, C20:1n-11, C20:1n-9, C20:4n-3, C22:1n-11, and C22:6n-3 were observed in wild males, while significantly higher concentrations of C18:2n-6, C20:2n-6, and C22:5n-3 occurred in cultivated males. Osmolality, protein concentration, lactate dehydrogenase and superoxide dismutase activity of SP of wild males were significantly higher than the cultivated males. Antioxidant capacity of SP was significantly higher in cultivated males, while pH and anti-trypsin did not differ between fish origins. Four bands of anti-trypsin activity and nine protein bands were detected in SP. Performing a discriminant function analysis, on morphology and fatty acid data showed significant discrimination between wild and cultivated fish. Results are relevant to breeding programs and aquaculture development.  相似文献   

16.
We investigated the mechanism by which rat retina conserves docosahexaenoic acid during essential fatty acid deficiency. Weanling female albino rats were fed diets containing either 10% by weight hydrogenated coconut oil, safflower oil, or linseed oil for 15 weeks. Plasma and rod outer segment (ROS) membranes were prepared for fatty acid and phospholipid molecular species analysis. In addition, retinas were removed for morphometric analysis. We found the following: (1) Plasma phospholipids and cholesterol esters from coconut oil, safflower oil, and linseed oil diet groups were enriched in 20:3(n-9), 20:4(n-6), and 20:5(n-3), respectively. The levels of these 20-carbon fatty acids in the ROS, however, were only slightly affected by diet. (2) The fatty acids and molecular species of ROS phospholipids from the safflower oil and coconut oil groups showed a selective replacement of 22:6(n-3) with 22:5(n-6), as evidenced by a reduction of the 22:6(n-3)-22:6(n-3) molecular species and an increase in the 22:5(n-6)-22:6(n-3) species. (3) The renewal rate of ROS integral proteins, determined by autoradiography, was 10% per day for each diet group. (4) Morphometric analysis of retinas showed no differences in the outer nuclear layer area or in ROS length between the three groups. We conclude that the conservation of 22:6(n-3) in ROS is not accomplished through reductions in the rate of membrane turnover, the total amount of ROS membranes, or in the number of rod cells. The retina may conserve 22:6(n-3) through recycling within the retina or between the retina and the pigment epithelium, or through the selective uptake of 22-carbon polyunsaturated fatty acids from the circulation.  相似文献   

17.
The serotonin (5-HT) and 5-hydroxyindoleacttic acid (5-HIAA) levels and 5-HT turnover were studies in the brain stem of warm- (+30 degrees C) and cold- (+6 degrees C) acclimated golden hamsters, exposed for 3 hours to temperatures of +6 degrees C, +30 degrees C and +37 degrees C, respectively. In war-acclimated hamsters kept under conditions the 5-HT level in the brain did not change significantly during the year. The 5-HIAA level was slightly higher in the winter. The 5-HT turnover varied within limits of 0.071 to 0.180 mug/g/hour-1. Three hours' exposure of warm-acclimated golden hamsters to cold (6 degrees C) increased the concentrations of 5-HT and 5-HIAA and the 5-HT turnover in the brain. After long-term adaptation to cold (6 degrees C) the 5-HT level, and the 5-HT turnover returned to the original level. Three hours' exposure of golden hamsters to higher environmental temperatures (warm-acclimated individuals to 37 degrees C and cold-acclimated individuals to 30 degrees C) also increased the 5-HT turnover. The concentrations of 5-HT and 5-HIAA increased in cold-acclimated golden hamsters exposed to 30 degrees C and was not changed in warm-acclimated ones, exposed to 37 degrees C. Although the elevated temperatures induce greater changes in serotonin metabolism than lowered temperatures, the serotonin pathways in the brain do not seem to be affected by short-term temperature changes specifically. The findings are rather indicative that changes in 5-HT turnover may be the primary reaction to stressful conditions.  相似文献   

18.
A considerable body of biological evidence has accumulated that suggests that docosahexaenoic acid (22:6n3) is an essential component in the nervous system. Moreover, it appears from these studies that long chain polyunsaturates of the n-6 family such as arachidonate (20:4n6) and docosapentaenoate (22:5n6) cannot substitute for 22:6n3. This evidence is briefly reviewed and two hypotheses centering upon either biochemical or biophysical aspects of polyunsaturate function are presented and discussed. It is concluded that a bioactive metabolite of 22:6n3 is not responsible for its function in brain and that the best hypothesis asserts that a membrane function of a 22:6n3-containing species of phospholipid, such as phosphatidylserine, is critical for optimal neural function. Moreover, data are presented indicating that the biophysical properties of various highly unsaturated species of phospholipid are distinguishable. It is further contended that these species are not randomly distributed in membranes and thus the differences in physical properties may be amplified. It is concluded that a conceptual framework is needed in which the distinct membrane roles of phospholipid species may be understood as a function of the positions and numbers of double bonds. Only then may the critical role of the highly unsaturated n-3 polyunsaturates in the brain and retina be understood.  相似文献   

19.
1. The maximum velocity (Vmax) and apparent Michaelis constant (Km) of brain and liver monoamine oxidase (MAO) in goldfish were different in fish acclimated to 22 degrees C and to 7 degrees C ambient temperature. 2. In brain, Vmax and Km were dependent upon incubation temperature, but both parameters were lower in 7 degrees C, adapted fish over most of the incubation temperature range. 3. The values obtained for Km showed a plateau at incubation temperatures at and below 25 degrees C for warm water fish, and at and below 20 degrees C for cold water fish. The activation energy of brain MAO was lower in fish adapted to the colder water. 4. These results show that goldfish MAO displays changes in functional activity in response to a change in environmental temperature. Apparently the purpose of this adaptation is to compensate for a reduction in enzyme concentration.  相似文献   

20.
Major glyco- and phospholipids as well as betaine lipid 1,2-diacylglycero-O-4'-(N,N,N-tri-methyl)-homoserine (DGTS) were isolated from five species of marine macrophytes harvested in the Sea of Japan in summer and winter at seawater temperatures of 20-23 and 3 degrees C, respectively. GC and DSC analysis of lipids revealed a common increase of ratio between n-3 and n-6 polyunsaturated fatty acids (PUFAs) of polar lipids from summer to winter despite their chemotaxonomically different fatty acid (FA) composition. Especially, high level of different n-3 PUFAs was observed in galactolipids in winter. However, the rise in FA unsaturation did not result in the lowering of peak maximum temperature of phase transition of photosynthetic lipids (glycolipids and phosphatidylglycerol (PG)) in contrast to non-photosynthetic ones [phosphatidylcholine (PC) and phosphatidylethanolamine (PE)]. Different thermotropic behavior of these lipid groups was accompanied by higher content of n-6 PUFAs from the sum of n-6 and n-3 PUFAs in PC and PE compared with glycolipids and PG in both seasons. Seasonal changes of DSC transitions and FA composition of DGTS studied for the first time were similar to PC and PE. Thermograms of all polar lipids were characterized by complex profiles and located in a wide temperature range between -130 and 80 degrees C, while the most evident phase separation occurred in PGs in both seasons. Polarizing microscopy combined with DSC has shown that the liquid crystal - isotropic melt transitions of polar lipids from marine macrophytes began from 10 to 30 degrees C mostly, which can cause the thermal sensitivity of plants to superoptimal temperatures in their environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号