首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed procedure for subcellular fractionation of the smooth muscle from pig coronary arteries based on dissection of the proper tissue, homogenization, differential centrifugation and sucrose density gradient centrifugation is described. A number of marker enzymes and Ca2+ uptake in presence or absence of oxalate, ruthenium red and azide were studied. The ATP-dependent oxalate-independent azide- or ruthenium red-insensitive Ca2+ uptake, and the plasma membrane markers K+-activated ouabain-sensitive p-nitrophenylphosphatase, 5'-nucleotidase and Mg2+-ATPase showed maximum enrichment in the F2 fraction (15-28% sucrose) which was also contaminated with the endoplasmic reticulum marker NADPH: cytochrome c reductase, and to a small extent with the inner mitochondrial marker cytochrome c reductase, and also showed a small degree of oxalate stimulation of the Ca2+ uptake. F3 fraction (28-40% sucrose) was maximally enriched in the ATP- and oxalate-dependent azide-insensitive Ca2+ uptake and the endoplasmic reticulum marker NADPH: cytochrome c reductase but was heavily contaminated with the plasma membrane and the inner mitochondrial markers. The mitochondrial fraction was enriched in cytochrome c oxidase and azide- or ruthenium red-sensitive ATP-dependent Ca2+ uptake but was heavily contaminated with other membranes. Electron microscopy showed that F2 contained predominantly smooth surface vesicles and F3 contained smooth surface vesicles, rough endoplasmic reticulum and mitochondria. The ATP-dependent azide-insensitive oxalate-independent and oxalate-stimulated Ca2+ uptake comigrated with the plasma membrane and the endoplasmic reticulum markers, respectively, and were preferentially inhibited by digitonin and phosphatidylserine, respectively. This study establishes a basis for studies on receptor distribution and further Ca2+ uptake studies to understand the physiology of coronary artery vasodilation.  相似文献   

2.
A membrane fraction was isolated from the smooth muscle of the pig stomach by density gradient centrifugation. It was observed that the ATP-dependent Ca uptake in this fraction was diminished if the microsomes were pelleted by differential centrifugation. The decrease of the oxalate-independent Ca uptake was relatively small, but the oxalate-stimulated Ca uptake was reduced dramatically. Evidence is presented which indicates that the selective decrease of the oxalate-stimulated Ca uptake is mainly caused by mechanical damage of the vesicles. Since the oxalate-stimulated Ca uptake can be largely preserved by avoiding pelleting during the membrane fractionation, this observation may be very useful for the further study of Ca transport in subcellular fractions of smooth muscle.  相似文献   

3.
This paper describes the stimulation by cyclic nucleotide dependent protein kinases on the Ca2+ uptake by isolated endoplasmic reticulum (ER) vesicles from the bovine main pulmonary artery. This ER fraction has previously been shown to be highly enriched in phospholamban, a protein kinase substrate that has been well characterized in cardiac sarcoplasmic reticulum (SR), where its phosphorylation is accompanied by an increased rate of Ca2+ uptake. As previously observed for the phosphorylation of phospholamban, the stimulation of the rate of Ca uptake was as high with cGMP dependent protein kinase as with cAMP dependent protein kinase. The effect of phosphorylation of the ER membranes from smooth muscle on the Ca2+ uptake was smaller than that seen in cardiac SR, and it was only observed if albumin was included during the isolation of the membranes. This relatively small effect is probably not due to a lower ratio of phospholamban to Ca2(+)-transport enzyme in the ER membranes as compared to cardiac SR. Several alternative explanations are discussed.  相似文献   

4.
A method is described for preparation of large amounts of a plasma membrane (PM) enriched fraction from the smooth muscle of dog antrum. It consists of preparing microsomes, treating them with ATP + EGTA + Mg, centrifuging in 30% sucrose and then centrifuging the resulting supernatant in 15% sucrose to yield the plasma membrane enriched fraction P6. The subcellular fractions obtained at various steps during purification were characterized by: 5'-nucleotidase and phosphodiesterase I as plasma membrane markers; cytochrome c oxidase as an inner mitochondrial marker; NADPH-cytochrome c reductase as a putative endoplasmic reticulum marker; electron microscopy; polyacrylamide sodium dodecyl sulfate slab gel electrophoresis. The distribution of ATP-dependent and independent Ca uptake in presence and absence of azide and the effect of 5 mM oxalate or 25 mM phosphate on this uptake was also examined. The fraction P6 consists of mostly smooth surface vesicles 164.3 +/- 7.2 nm in diameter, has an exclusion volume of 9.7 microL/mg for [3H]inulin and 11.1 microL/mg for [3H]sucrose. P6 is maximally enriched in the ATP-dependent azide-insensitive Ca-uptake capacity and as compared with the postnuclear supernatant (S1) it shows a very small percent stimulation by oxalate and phosphate. The ATP-dependent Ca uptake by the P6 fraction occurs optimally at pH 7.0-7.4 and is much larger than the ATP-independent Ca uptake. At pH 7.1, the ATP-dependent Ca uptake occurs with a Km of 0.27 microM and a Hill coefficient greater than 2 for Ca2+. Half maximum binding of Ca2+ occurred at 300 microM Ca2+. Ca ionophores A23187 and ionomycin inhibited the ATP-dependent Ca uptake, and if added after the uptake, these caused a release of the accumulated Ca2+. From these and other data it is concluded that this PM preparation contains a Ca transport system which can lead to formation of greater than 1000-fold Ca2+ concentration gradient across the vesicle membrane in 1 min when extravesicular Ca2+ concentration is 0.3 microM. Thus this preparation is an extremely useful material for studying the mechanism of action of the Ca pump in smooth muscle plasma membrane.  相似文献   

5.
A monoclonal antibody (2B3) directed against the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle was prepared. This antibody reacts with a 130,000-Mr protein that co-migrates on SDS/polyacrylamide-gel electrophoresis with the calmodulin-binding (Ca2+ + Mg2+)-ATPase purified from smooth muscle by calmodulin affinity chromatography. The antibody causes partial inhibition of the (Ca2+ + Mg2+)-ATPase activity in plasma membranes from pig stomach smooth muscle, in pig erythrocytes and human erythrocytes. It appears to be directed against a specific functionally important site of the plasmalemmal Ca2+-transport ATPase and acts as a competitive inhibitor of ATP binding. Binding of the antibody does not change the Km of the ATPase for Ca2+ and its inhibitory effect is not altered by the presence of calmodulin. No inhibition of (Ca2+ + Mg2+)-ATPase activity or of the oxalate-stimulated Ca2+ uptake was observed in a pig smooth-muscle vesicle preparation enriched in endoplasmic reticulum. These results confirm the existence in smooth muscle of two different types of Ca2+-transport ATPase: a calmodulin-binding (Ca2+ + Mg2+)-ATPase located in the plasma membrane and a second one confined to the endoplasmic reticulum.  相似文献   

6.
Saponin, a cell-skinning reagent which perforates the cell membrane via its specific interaction with plasmalemmal cholesterol, was used to identify the subcellular origin of ATP-dependent Ca2+ accumulation in the presence and absence of inorganic phosphate and oxalate by microsomal fractions isolated from rat vas deferens and dog aorta. The purified plasma membranes from rat gastric fundus muscle, which elicit the stimulation of ATP-dependent Ca2+ accumulation by inorganic phosphate but not by oxalate, were used as a control reference. Saponin at concentrations effective for skinning smooth muscle fibres (10-50 micrograms/ml) inhibited Ca2+ binding in the absence of ATP to a similar extent in all fractions, but the inhibition of ATP-dependent Ca2+ accumulation was more pronounced in dog aorta microsomes and rat gastric fundus muscle plasma membranes than in rat vas deferens microsomes. The resistance of phosphate- and oxalate-stimulated ATP-dependent Ca2+ accumulation to inhibition by saponin was much greater in rat vas deferens than in dog aorta microsomes. Our results suggest that phosphate- and oxalate-stimulated ATP-dependent Ca2+ accumulation also occurs in plasma membrane vesicles isolated from smooth muscle and is by no means an unique property of endoplasmic reticulum.  相似文献   

7.
ATP promotes 45Ca uptake by the microsomal fraction from the longitudinal smooth muscle of guinea-pig ileum and this uptake is stimulated by oxalate. As the microsomal fraction is made up of various subcellular entities, we examined the localization of the Ca2+-transport activity by density gradient centrifugation, taking advantage of the selective effect of digitonin (at low concentration) on the density of plasmalemmal elements. When the 45Ca-uptake activity was measured in the absence of oxalate, its behavior in subfractionation experiments closely paralleled that of the plasmalemmal marker 5′-nucleotidase. In contrast, the additional Ca2+-transport activity elicited by oxalate behaved like NADH-cytochrome c reductase, a putative endoplasmic reticulum marker. The endoplasmic reticulum vesicles constituted only a small part of the membranes in the microsomal fraction, which explains that their Ca2+-storage capacity was not detectable in the absence of Ca2+-trapping agent. Low digitonin concentrations selectively increased the Ca2+ permeability of the plasmalemmal vesicles. The two Ca2+-transport activities were further differentiated by their distinct sensitivities to K+, vanadate and calmodulin. In this respect, the oxalte-insensitive and oxalate-stimulated Ca2+-transport systems resembled, respectively, the sarcolemmal and sarcoplasmic reticulum Ca2+ pumps in cardiac and skeletal muscle, in accordance with the subcellular locations established by density gradient centrifugation.  相似文献   

8.
ATP promotes 45Ca uptake by the microsomal fraction from the longitudinal smooth muscle of guinea-pig ileum and this uptake is stimulated by oxalate. As the microsomal fraction is made up of various subcellular entities, we examined the localization of the Ca2+-transport activity by density gradient centrifugation, taking advantage of the selective effect of digitonin (at low concentration) on the density of plasmalemmal elements. When the 45Ca-uptake activity was measured in the absence of oxalate, its behavior in subfractionation experiments closely paralleled that of the plasmalemmal marker 5′-nucleotidase. In contrast, the additional Ca2+-transport activity elicited by oxalate behaved like NADH-cytochrome c reductase, a putative endoplasmic reticulum marker. The endoplasmic reticulum vesicles constituted only a small part of the membranes in the microsomal fraction, which explains that their Ca2+-storage capacity was not detectable in the absence of Ca2+-trapping agent. Low digitonin concentrations selectively increased the Ca2+ permeability of the plasmalemmal vesicles. The two Ca2+-transport activities were further differentiated by their distinct sensitivities to K+, vanadate and calmodulin. In this respect, the oxalte-insensitive and oxalate-stimulated Ca2+-transport systems resembled, respectively, the sarcolemmal and sarcoplasmic reticulum Ca2+ pumps in cardiac and skeletal muscle, in accordance with the subcellular locations established by density gradient centrifugation.  相似文献   

9.
A K Grover 《Cell calcium》1985,6(3):227-236
For several years it has been debated whether the Ca-pump in smooth muscle is located in the plasma membrane or in the endoplasmic reticulum (alias sarcoplasmic reticulum). Experimental evidence using skinned smooth muscle cells and subcellular membrane fractions isolated from a number of smooth muscles is reviewed here to hopefully resolve this issue. The inescapable conclusion is that there are two modes of nonmitochondrial ATP-dependent Ca-transport. The first one, unaffected by oxalate, is localized in the plasma membranes and the second, potentiated by oxalate, is localized in the endoplasmic reticulum. Clear experiments to delineate the roles of the two pumps in the excitation-contraction cycle of the smooth muscle remain to be conducted.  相似文献   

10.
Isolated membrane vesicles from pig stomach smooth muscle (antral part) were subfractionated by a density gradient procedure modified in order to obtain an efficient extraction of extrinsic proteins. By using this method in combination with digitonin-treatment, an endoplasmic reticulum fraction contaminated with maximally 10 to 20% of plasma membranes was isolated, together with a plasma membrane fraction containing at most 30% endoplasmic reticulum. The endoplasmic reticulum and plasma membrane fractions differed in protein composition, reaction to digitonin, binding of wheat germ agglutinin, activities of marker enzymes and in the characteristics of the Ca2+ uptake. The Ca2+ uptake by the endoplasmic reticulum was much more stimulated by oxalate than the uptake by plasma membranes. Both fractions showed a (Ca2+ + Mg2+)-ATPase activity, but the largest amount of this enzyme was present in the plasma membranes. The study of the phosphorylated intermediates of the (Ca2+ + Mg2+)-ATPase by polyacrylamide gel electrophoresis revealed two phosphoproteins one of 130 kDa and one of 100 kDa (Wuytack, F., Raeymaekers, L., De Schutter, G. and Casteels, R. (1982) Biochim. Biophys. Acta 693, 45-52). The 130 kDa enzyme was predominant in the fraction enriched in plasma membrane whereas the distribution of the 100 kDa polypeptide correlated with the endoplasmic reticulum markers. The 130 kDa ATPase was the main 125I-calmodulin binding protein detected on nitrocellulose blots of proteins separated by gel electrophoresis. The (Ca2+ + Mg2+)-ATPase activity of the plasma membranes was higher than the (Na+ + K+)-ATPase activity, suggesting that the Ca2+ extrusion from these cells depends much more on the activity of the (Ca2+ + Mg2+)-ATPase than on Na+-Ca2+ exchange.  相似文献   

11.
Electron-dense deposits representing calcium oxalate crystals which result from ATP-dependent calcium uptake have been localized within vesicles of of a heavy microsomal fraction prepared from mouse pancreatic acini. In the absence of either ATP or oxalate, no electron-dense deposits could be observed. By subfractionation of microsomes on discontinuous sucrose gradients, it could be shown that the highest energy-dependent calcium transport activity was associated with the rough endoplasmic reticulum. In rough microsomes, the 45Ca2+-uptake measured was 7 times greater than that of smooth microsomes in the presence of ATP and oxalate and about 3 times greater in he presence of ATP alone. When ribosomes were released from the rough endoplasmic reticulum vesicles by treatment with KCl in the presence of puromycin, the stripped microsomes showed a 40% increase in the specific 45Ca2+-uptake activity measured in he presence of ATP and oxalate and an increase of 80 to 90% in the presence of ATP alone. From these results it can be concluded that the calcium transport activity of microsomes prepared from mouse pancreatic acini is located predominantly in the rough endoplasmic reticulum membrane.  相似文献   

12.
Isopycnic centrifugation experiments using sucrose density gradients showed that in digitonin-treated microsomes the distribution of the plasma membrane (PM) marker 5'-nucleotidase was shifted to higher densities. The treatment also caused similar but less pronounced changes in the distribution of protein, the putative endoplasmic reticulum (ER) marker NADPH-dependent cytochrome c reductase, and the inner mitochondrial marker cytochrome c oxidase. Similar experiments using more purified membrane fractions showed that the digitonin treatment led to a comparable increase in the densities of the fractions N1 and N2 previously described as subfractions of plasma membrane and to considerably less increase in the density of the fraction N3B which is enriched in the endoplasmic reticulum and the inner mitochondrial markers. Digitonin inhibited the ATP-dependent Ca uptake by the N1 fraction in a concentration-dependent manner (I50 = 0.3 mg/mL). Digitonin (0.5 mg/mL) inhibited the ATP-dependent azide-insensitive Ca uptake by all the fractions. The results support the hypothesis that (a) N1 and N2 are subfractions of plasma membrane, and (b) ATP-dependent azide-insensitive Ca uptake in rat myometrium is a property of plasma membranes.  相似文献   

13.
Thomas J. Buckhout 《Planta》1983,159(1):84-90
Endoplasmic reticulum membranes were isolated from roots of garden cress (Lepidium sativum L. cv Krause) using differential and discontinuous sucrose gradient centrifugation. The endoplasmic reticulum fraction was 80% rough endoplasmic reticulum oriented with the cytoplasmic surface directed outward and contaminated with 12% unidentified smooth membranes and 8% mitochondria. Marker enzyme analysis showed that the activity for endoplasmic reticulum was enriched 2.4-fold over total membrane activity while no other organelle activity showed an enrichment. All evidence indicated that the fraction was composed of highly enriched endoplasmic reticulum membranes. Ca2+ uptake activity was measured using the filter technique described by Gross and Marmé (1978). The results of these experiments showed an ATP-dependent, oxalate-stimulated Ca2+ uptake into vesicles of the endoplasmic reticulum fraction. The majority of the transport activity was microsomal since specific inhibitors of mitochondrial Ca2+ transport (ruthenium red, LaCl3 and oligomycin) inhibited the activity by only 25%. Sodium azide showed no inhibition. The transport was likely directly coupled to ATP hydrolysis since there was no inhibition with carbonylcyanidem-chlorophenylhydrazone. The transport activity was specific for ATP showing only 36% and 29% of the activity with inosine diphosphate and guanosine 5′-triphosphate, respectively. The results indicate a Ca2+ transport function located on the endoplasmic reciculum of garden cress roots.  相似文献   

14.
SOCE (store-operated calcium entry) is a ubiquitous cellular mechanism linking the calcium depletion of the ER (endoplasmic reticulum) to the activation of PM (plasma membrane) Ca2+-permeable channels. The activation of SOCE channels favours the entry of extracellular Ca2+ into the cytosol, thereby promoting the refilling of the depleted ER Ca2+ stores as well as the generation of long-lasting calcium signals. The molecules that govern SOCE activation comprise ER Ca2+ sensors [STIM1 (stromal interaction molecule 1) and STIM2], PM Ca2+-permeable channels {Orai and TRPC [TRP (transient receptor potential) canonical]} and regulatory Ca2+-sensitive cytosolic proteins {CRACR2 [CRAC (Ca2+ release-activated Ca2+ current) regulator 2]}. Upon Ca2+ depletion of the ER, STIM molecules move towards the PM to bind and activate Orai or TRPC channels, initiating calcium entry and store refilling. This molecular rearrangement is accompanied by the formation of specialized compartments derived from the ER, the pre-cER (cortical ER) and cER. The pre-cER appears on the electron microscope as thin ER tubules enriched in STIM1 that extend along microtubules and that are devoid of contacts with the PM. The cER is located in immediate proximity to the PM and comprises thinner sections enriched in STIM1 and devoid of chaperones that might be dedicated to calcium signalling. Here, we review the molecular interactions and the morphological changes in ER structure that occur during the SOCE process.  相似文献   

15.
A generalized approach to obtain relatively pure fractions of plasma membrane from smooth muscle tissues for studying calcium transport is described. The use of various markers for cellular membranes to establish the purity of various fractions is critically considered. Plasma membranes from rat myometrium have been isolated in a purity estimated to be 95-99%. Plasma membrane purifications to 70-80% have been achieved from rat mesenteric arteries and veins, canine tracheal smooth muscle, rabbit intestinal muscle, rat vas deferens, rat fundus, and dog gastric corpus. The ATP-dependent transport of Ca is correlated with the distribution of plasma membrane markers. Ca gradient of greater than 1000-fold have been achieved. ATP-dependent active Ca transport by plasma membranes could sometimes be stimulated by oxalate or phosphate. Anion activation of Ca active transport is not a marker for endoplasmic reticulum. In some smooth muscles (e.g., rat vas deferens) ATP-dependent Ca uptake did not correlate exclusively with the distribution of plasma membrane markers. Instead, the correlation seemed to be with NADPH-cytochrome reductase EC 1.6.2.5 activity (putative endoplasmic reticulum marker) as well as with plasma membrane markers. In all smooth muscles, active Ca transport appears to be a property of the plasma membrane; in some it may also be a property of the endoplasmic reticulum. Mitochondria actively transport Ca, but in most systems studied to date, the Km for Ca2+ for this transport is higher than that for plasma membrane. Thus the plasma membrane may be the major physiological mechanism of active transport for Ca out of cytoplasm of smooth muscle cells. In two plasma membrane fractions (from rat myometrium and mesenteric arteries) it has been possible to demonstrate the existence of an Na-Ca exchange system. Its contribution to lowering cytoplasmic Ca is unknown.  相似文献   

16.
Fixation in the presence of oxalate was used to demonstrate the electron-dense Ca2+ precipitates in the endoplasmic reticulum in glomus cells of the carotid body. Glomus cells in intact carotid bodies or cells dissociated from the organ by treatment with collagenase were studied electron microscopically. In the intact organ as well as in dissociated glomus cells, electron-dense endoplasmic reticulum-like profiles were seen closely associated with mitochondria, while these lacked reaction product. The interspace between mitochondria was occupied by electron-dense, slightly distended ER, which appeared to contact the outer membrane of the mitochondria. Occasionally, a mitochondrion was in contact with several ER profiles or the ER formed an electron-dense 'cap' on the mitochondrion. The electron-dense precipitates could be removed from ultrathin sections with the calcium chelator ethyleneglycol-2(2-aminoethyl tetra-acetic acid) (EGTA). It is tentatively suggested that the endoplasmic reticulum could be involved in intracellular buffering of Ca2+ in the glomus cell, as has been previously suggested for neurons.  相似文献   

17.
The SOCE (store-operated Ca2+ entry) pathway is a central component of cell signalling that links the Ca2+-filling state of the ER (endoplasmic reticulum) to the activation of Ca2+-permeable channels at the PM (plasma membrane). SOCE channels maintain a high free Ca2+ concentration within the ER lumen required for the proper processing and folding of proteins, and fuel the long-term cellular Ca2+ signals that drive gene expression in immune cells. SOCE is initiated by the oligomerization on the membrane of the ER of STIMs (stromal interaction molecules) whose luminal EF-hand domain switches from globular to an extended conformation as soon as the free Ca2+ concentration within the ER lumen ([Ca2+]ER) decreases below basal levels of ~500 μM. The conformational changes induced by the unbinding of Ca2+ from the STIM1 luminal domain promote the formation of higher-order STIM1 oligomers that move towards the PM and exposes activating domains in STIM1 cytosolic tail that bind to Ca2+ channels of the Orai family at the PM and induce their activation. Both SOCE and STIM1 oligomerization are reversible events, but whether restoring normal [Ca2+]ER levels is sufficient to initiate the deoligomerization of STIM1 and to control the termination of SOCE is not known. The translocation of STIM1 towards the PM involves the formation of specialized compartments derived from the ER that we have characterized at the ultrastructural level and termed the pre-cortical ER, the cortical ER and the thin cortical ER. Pre-cortical ER structures are thin ER tubules enriched in STIM1 extending along microtubules and located deep inside cells. The cortical ER is located in the cell periphery in very close proximity (8-11?nm) to the plasma membrane. The thin cortical ER consists of thinner sections of the cortical ER enriched in STIM1 and devoid of chaperones that appear to be specialized ER compartments dedicated to Ca2+ signalling.  相似文献   

18.
Antibodies directed against the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase [(Ca2+ + Mg2+)-dependent ATPase] from pig erythrocytes and from smooth muscle of pig stomach (antral part) were raised in rabbits. Both the IgGs against the erythrocyte (Ca2+ + Mg2+)-ATPase and against the smooth-muscle (Ca2+ + Mg2+)-ATPase inhibited the activity of the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase from smooth muscle. Up to 85% of the total (Ca2+ + Mg2+)-ATPase activity in a preparation of KCl-extracted smooth-muscle membranes was inhibited by these antibodies. The (Ca2+ + Mg2+)-ATPase activity and the Ca2+ uptake in a plasma-membrane-enriched fraction from this smooth muscle were inhibited to the same extent, whereas in an endoplasmic-reticulum-enriched membrane fraction the (Ca2+ + Mg2+)-ATPase activity was inhibited by only 25% and no effect was observed on the oxalate-stimulated Ca2+ uptake. This supports the hypothesis that, in pig stomach smooth muscle, two separate types of Ca2+-transport ATPase exist: a calmodulin-binding ATPase located in the plasma membrane and a calmodulin-independent one present in the endoplasmic reticulum. The antibodies did not affect the stimulation of the (Ca2+ + Mg2+)-ATPase activity by calmodulin.  相似文献   

19.
Human platelet membrane vesicles that accumulated Ca2+ in the presence of ATP were isolated on an isoosmotic KCl-Percoll gradient. ATP-dependent Ca2+ uptake was stimulated by oxalate and phosphate to steady-state levels of greater than 100 nmol/mg protein, and the accumulated Ca2+ could be largely released by ionophore A23187. Inositol 1,4,5-trisphosphate, in a dose-dependent manner (0.5-5.0 microM), caused the rapid release (less than 5 s) of 40-70% of the total A23187-releasable store of accumulated Ca2+. The membrane vesicles that release accumulated Ca2+ in response to inositol 1,4,5-trisphosphate were enriched in enzymes characteristically found in smooth endoplasmic reticulum. These results support the hypothesis that inositol 1,4,5-trisphosphate, produced by the hydrolysis of phosphatidylinositol 1,4-bisphosphate in response to stimulation of cell surface receptors, is a second messenger mediating the release of Ca2+ from intracellular storage sites.  相似文献   

20.
Store-operated Ca2+ entry: evidence for a secretion-like coupling model.   总被引:8,自引:0,他引:8  
The elusive coupling between endoplasmic reticulum (ER) Ca2+ stores and plasma membrane (PM) "store-operated" Ca2+ entry channels was probed through a novel combination of cytoskeletal modifications. Whereas coupling was unaffected by disassembly of the actin cytoskeleton, in situ redistribution of F-actin into a tight cortical layer subjacent to the PM displaced cortical ER and prevented coupling between ER and PM Ca2+ entry channels, while not affecting inositol 1,4,5-trisphosphate-mediated store release. Importantly, disassembly of the induced cortical actin layer allowed ER to regain access to the PM and reestablish coupling of Ca2+ entry channels to Ca2+ store depletion. Coupling is concluded to be mediated by a physical "secretion-like" mechanism involving close but reversible interactions between the ER and the PM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号