首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BiP is found in association with calreticulin, both in the presence and absence of endoplasmic reticulum stress. Although the BiP-calreticulin complex can be disrupted by ATP, several properties suggest that the calreticulin associated with BiP is neither unfolded nor partially or improperly folded. (1) The complex is stable in vivo and does not dissociate during 8 hr of chase. (2) When present in the complex, calreticulin masks epitopes at the C terminus of BiP that are not masked when BiP is bound to an assembly-defective protein. And (3) overproduction of calreticulin does not lead to the recruitment of more BiP into complexes with calreticulin. The BiP-calreticulin complex can be disrupted by low pH but not by divalent cation chelators. When the endoplasmic reticulum retention signal of BiP is removed, complex formation with calreticulin still occurs, and this explains the poor secretion of the truncated molecule. Gel filtration experiments showed that BiP and calreticulin are present in distinct high molecular weight complexes in which both molecules interact with each other. The possible functions of this complex are discussed.  相似文献   

3.
Familial encephalopathy with neuroserpin inclusion bodies is a neurodegenerative disorder characterized by the accumulation of neuroserpin polymers in the endoplasmic reticulum (ER) of cortical and subcortical neurons in the CNS because of neuroserpin point mutations. ER-associated degradation (ERAD) is involved in mutant neuroserpin degradation. In this study, we demonstrate that two ER-associated E3 ligases, Hrd1 and gp78, are involved in the ubiquitination and degradation of mutant neuroserpin. Overexpression of Hrd1 and gp78 decreases the mutant neuroserpin protein level, whereas Hrd1 and gp78 knockdown increases mutant neuroserpin stability. Moreover, ERAD impairment by mutant valosin-containing protein increases the mutant neuroserpin protein level and aggregate formation. Thus, these findings identify mutant neuroserpin as an ERAD target and show that Hrd1 and gp78 mediate mutant neuroserpin turnover through the ERAD pathway.  相似文献   

4.
5.
6.
The endoplasmic reticulum (ER) chaperone BiP/GRP78 regulates ER function and the unfolded protein response (UPR). Human cytomegalovirus infection of human fibroblasts induces the UPR but modifies it to benefit viral replication. BiP/GRP78 protein levels are tightly regulated during infection, rising after 36 h postinfection (hpi), peaking at 60 hpi, and decreasing thereafter. To determine the effects of this regulation on viral replication, BiP/GRP78 was depleted using the SubAB subtilase cytotoxin, which rapidly and specifically cleaves BiP/GRP78. Toxin treatment of infected cells for 12-h periods beginning at 36, 48, 60, and 84 hpi caused complete loss of BiP but had little effect on viral protein synthesis. However, progeny virion formation was significantly inhibited, suggesting that BiP/GRP78 is important for virion formation. Electron microscopic analysis showed that infected cells were resistant to the toxin and showed none of the cytotoxic effects seen in uninfected cells. However, all viral activity in the cytoplasm ceased, with nucleocapsids remaining in the nucleus or concentrated in the cytoplasmic space just outside of the outer nuclear membrane. These data suggest that one effect of the controlled expression of BiP/GRP78 in infected cells is to aid in cytoplasmic virion assembly and egress.  相似文献   

7.
Liu G  Shang Y  Yu Y 《Mutation research》2006,596(1-2):12-21
Previously we have shown that alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) can induce the clustering of epidermal growth factor receptor (EGFR) in human amnion FL cells. However, the biological consequence of MNNG-induced clustering is different from that of epidermal growth factor (EGF)-induced clustering. In addition, MNNG strongly blocks the autophosphorylation of EGFR in response to its ligand, we speculate it might be due to the altered conformation of EGFR by MNNG alkylation, or the binding of some unknown suppressive molecules to EGFR, which could lead to the down-regulation of EGFR pathway. In this study, we further demonstrated that EGFR could not be phosphorylated by EGF in lysates prepared from MNNG-pretreated cell. In addition, it was found that the clustering of EGFR induced by low concentration (相似文献   

8.
The N-end rule pathway is a proteolytic system, in which single N-terminal residues act as a determinant of a class of degrons, called N-degrons. In the ubiquitin (Ub)-proteasome system, specific recognition components, called N-recognins, recognize N-degrons and accelerate polyubiquitination and proteasomal degradation of the substrates. In this study, we show that the pathway regulates the activity of the macroautophagic receptor SQSTM1/p62 (sequestosome 1) through N-terminal arginylation (Nt-arginylation) of endoplasmic reticulum (ER)-residing molecular chaperones, including HSPA5/GRP78/BiP, CALR (calreticulin), and PDI (protein disulfide isomerase). The arginylation is co-induced with macroautophagy (hereafter autophagy) as part of innate immunity to cytosolic DNA and when misfolded proteins accumulate under proteasomal inhibition. Following cytosolic relocalization and arginylation, Nt-arginylated HSPA5 (R-HSPA5) is targeted to autophagosomes and degraded by lysosomal hydrolases through the interaction of its N-terminal Arg (Nt-Arg) with ZZ domain of SQSTM1. Upon binding to Nt-Arg, SQSTM1 undergoes a conformational change, which promotes SQSTM1 self-polymerization and interaction with LC3, leading to SQSTM1 targeting to autophagosomes. Cargoes of R-HSPA5 include cytosolic misfolded proteins destined to be degraded through autophagy. Here, we discuss the mechanisms by which the N-end rule pathway regulates SQSTM1-dependent selective autophagy.  相似文献   

9.
Previous studies on the fate of human thyroperoxidase (hTPO) molecules have shown that, after being synthesized, these glycoproteins interact with calnexin and calreticulin and that only some of them are able to acquire a partially folded structure. The aim of the present study was to further investigate the potential role of BiP, another major protein chaperon. Co-immunoprecipitation experiments showed the occurrence of interactions between hTPO and BiP. Pulse-chase studies showed that, when hTPO was expressed in a Chinese hamster ovary cell line overexpressing 5 times more BiP than the parent cells, the rate of hTPO recognized by a monoclonal antibody directed against a conformational structure decreased by 50% after 5 h of chase. Overexpression of the BiP-ATPase mutant G37T also led to a decrease in the correct folding rate of hTPO. When this protein was pulsed in the presence of 35S-(Met + Cys) and the reducing agent dithiotreitol and then chased in a culture medium without dithiothreitol, a 2.5-fold decrease in the correct folding rate was observed in cells overexpressing BiP, whereas co-overexpression of calnexin and Erp57 led to an increase in both the unfolded and partially folded form of hTPO after the pulse step. All of these findings show that BiP and calnexin have opposite effects on the folding behavior of hTPO and that the action of specific molecular chaperones may therefore crucially determine the fate of glycoproteins.  相似文献   

10.
Capture of newly synthesized proteins into endoplasmic reticulum (ER)-derived coat protomer type II (COPII) vesicles represents a critical juncture in the quality control of protein biogenesis within the secretory pathway. The yeast ATP-binding cassette transporter Yor1p is a pleiotropic drug pump that shows homology to the human cystic fibrosis transmembrane conductance regulator (CFTR). Deletion of a phenylalanine residue in Yor1p, equivalent to the major disease-causing mutation in CFTR, causes ER retention and degradation via ER-associated degradation. We have examined the relationship between protein folding, ERAD and forward transport during Yor1p biogenesis. Uptake of Yor1p into COPII vesicles is mediated by an N-terminal diacidic signal that likely interacts with the "B-site" cargo-recognition domain on the COPII subunit, Sec24p. Yor1p-DeltaF is subjected to complex ER quality control involving multiple cytoplasmic chaperones and degradative pathways. Stabilization of Yor1p-DeltaF by inhibiting its degradation does not permit access of Yor1p-DeltaF to COPII vesicles. We propose that the ER quality control checkpoint engages misfolded Yor1p even after it has been stabilized by inhibition of the degradative pathway.  相似文献   

11.
Immunofluorescence staining of yeast cells with anti-binding protein (BiP) antibodies shows uniform staining of the endoplasmic reticulum (ER). We have found that overproduction of Sec12p, an ER membrane protein, causes a change of BiP distribution within the cell. Upon induction of Sec12p by the GAL1 promoter, the staining pattern of BiP turns into bright dots scattering in the cell, whereas the staining of Sec12p remains to be the typical ER figure. Overproduction of other ER membrane proteins, HMG-CoA reductase or Sed4 protein, does not induce such relocalization of BiP. Pulse-chase experiments and electron microscopy have revealed that the overproduction of Sec12p inhibits protein transport from the ER to the Golgi apparatus. When the transport is arrested by one of the sec mutations that block the ER-to-Golgi step at the restrictive temperature, the BiP staining also changes into the punctate pattern. In contrast, the sec mutants that block later or earlier steps of the secretory pathway do not induce such change of BiP localization. These observations indicate that relocalization of BiP is caused by the inhibition of ER-to-Golgi transport. Using immunoelectron microscopy, we have found that the punctate staining is because of the accumulation of BiP in the restricted region of the ER, which we propose to call the "BiP body." This implicates existence of ER subdomains in yeast. A vacuolar protein, proteinase A, appears to colocalize in the BiP body when the ER-to-Golgi transport is blocked, suggesting that the BiP body may have a role as the site of accumulation of cargo molecules before exit from the ER.  相似文献   

12.
Wang J  White AL 《Biochemistry》2000,39(30):8993-9000
Apolipoprotein(a) [apo(a)] is a component of atherogenic lipoprotein(a) [Lp(a)]. Differences in the extent of endoplasmic reticulum (ER) associated degradation (ERAD) of apo(a) allelic variants contribute to the >1000-fold variation in plasma Lp(a) levels. Using human apo(a) transgenic mouse hepatocytes, we analyzed the role of the ER chaperones calnexin (CNX) and calreticulin (CRT), and ER mannosidase I in apo(a) intracellular targeting. Co-immunoprecipitation and pulse-chase analyses revealed similar kinetics of apo(a) interaction with CNX and CRT, peaking 15-30 min after apo(a) synthesis. Trapping of apo(a) N-linked glycans in their monoglucosylated form, by posttranslational inhibition of ER glucosidase activity with castanospermine (CST), enhanced apo(a)-CNX/CRT interaction and prevented both apo(a) secretion and ERAD. Delay of CST addition until 20 or 30 min after apo(a) synthesis [when no apo(a) had yet undergone degradation or Golgi-specific carbohydrate modification] allowed a portion of apo(a) to be secreted or degraded. These results are consistent with a transient apo(a)-CNX/CRT association and suggest that events downstream of CNX/CRT interaction determine apo(a) intracellular targeting. Inhibition of ER mannosidase I with deoxymannojirimycin or kifunensine had no effect on apo(a) secretion, but inhibited proteasome-mediated apo(a) ERAD even under conditions where apo(a)-CNX/CRT interaction was prevented. These results suggest a role for an additional, mannose-specific, ER lectin in targeting secretory proteins to the proteasome for destruction.  相似文献   

13.
14.
The 94-kDa glucose-regulated protein (GRP94) is a glycoprotein in the endoplasmic reticulum (ER). It has been characterized as a Ca2+-binding protein and a molecular chaperone. In this report we show that highly purified GRP94 exhibits an active Mg2+-dependent serine kinase activity (termed 94-kinase). The 94-kinase can be recovered from ER membrane fractions and is able to phosphorylate both the constitutive and stress-induced forms of GRP94, correlating with their induction kinetics. The 94-kinase activity is distinct from casein kinase II. In contrast to the heat-stable, Ca2+-dependent autophosphorylation activity recently reported for GRP94, the labile 94-kinase activity is inhibited by Ca2+. We determined that the phosphopeptide map of in vitro phosphorylated GRP94 by the 94-kinase resembles that of the in vivo phosphorylated GRP94. Further, the 94-kinase activity can be specifically stimulated by GRP78, a coregulated protein in the ER known to interact with GRP94. J. Cell. Physiol. 170:115–129, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
To examine the role of early carbohydrate recognition/trimming reactions in targeting endoplasmic reticulum (ER)-retained, misfolded glycoproteins for ER-associated degradation (ERAD), we have stably expressed the cog thyroglobulin (Tg) mutant cDNA in Chinese hamster ovary cells. We found that inhibitors of ER mannosidase I (but not other glycosidases) acutely suppressed Cog Tg degradation and also perturbed the ERAD process for Tg reduced with dithiothreitol as well as for gamma-carboxylation-deficient protein C expressed in warfarin-treated baby hamster kidney cells. Kifunensine inhibition of ER mannosidase I also suppressed ERAD in castanospermine-treated cells; thus, suppression of ERAD does not require lectin-like binding of ER chaperones calnexin and calreticulin to monoglucosylated oligosaccharides. Notably, the undegraded protein fraction remained completely microsome-associated. In pulse-chase studies, kifunensine-sensitive degradation was still inhibitable even 1 h after Tg synthesis. Intriguingly, chronic treatment with kifunensine caused a 3-fold accumulation of Cog Tg in Chinese hamster ovary cells and did not lead to significant induction of the ER unfolded protein response. We hypothesize that, in a manner not requiring lectin-like activity of calnexin/calreticulin, the recognition or processing of a specific branched N-linked mannose structure enhances the efficiency of glycoprotein retrotranslocation from the ER lumen.  相似文献   

16.
Previously we showed that two antithrombin mutants were degraded through an endoplasmic reticulum (ER)-associated degradation (ERAD) pathway [F. Tokunaga et al., FEBS Lett. 412 (1997) 65]. Here, we examined the combined effects of inhibitors of glycosidases, protein synthesis, proteasome, and tyrosine phosphatase on ERAD of a Glu313-deleted (DeltaGlu) mutant of antithrombin. We found that kifunensine, an ER mannosidase I inhibitor, suppressed ERAD, indicating that specific mannose trimming plays a critical role. Cycloheximide and puromycin, inhibitors of protein synthesis, also suppressed ERAD, the effects being cancelled by pretreatment with castanospermine. In contrast, kifunensine suppressed ERAD even in castanospermine-treated cells, suggesting that suppression of ERAD does not always require the binding of lectin-like ER chaperones-like calnexin and/or calreticulin. These results indicate that, besides proteasome inhibitors, inhibitors of ER mannosidase I and protein synthesis suppress ERAD of the antithrombin deltaGlu mutant at different stages, and processing of N-linked oligosaccharides highly correlated with the efficiency of ERAD.  相似文献   

17.
Apoaequorin was targeted to the cytosol, nucleus, and endoplasmic reticulum of HeLa cells in order to determine the effect of Ca(2+) release from the ER on protein degradation. In resting cells apoaequorin had a rapid half-life (ca. 20-30 min) in the cytosol or nucleus, but was relatively stable for up to 24 h in the ER (t(1/2) > 24 h). However, release of Ca(2+) from the ER, initiated by the addition of inhibitors of the ER Ca(2+)/Mg(2+) ATPase such as 2 microM thapsigargin or 1 microM ionomycin, initiated rapid loss of apoaequorin in the ER, but had no detectable effect on apoaequorin turnover in the cytosol nor the nucleus. This loss of apoprotein was not the result of secretion into the external fluid, and could not be inhibited by inhibitors of protein degradation by proteosomes. Proteolysis of apoaequorin in cell extracts (t(1/2) < 20 min) was completely inhibited in the presence of 1 mM Ca(2+), and this effect was independent of the ER retention signal KDEL at the C-terminus. Proteolysis was unaffected by the presence of selected serine protease inhibitors, or 10 microM Zn(2+), a known caspase-3 inhibitor. The results show that apoaequorin can monitor proteolysis of ER proteins activated by loss of ER Ca(2+). Several Ca(2+)-binding proteins exist in the ER, acting as the Ca(2+) store and chaperones. Our results have important implications both for the role of ER Ca(2+) in cell activation and stress and when using aequorin for monitoring free ER Ca(2+) over long time periods.  相似文献   

18.
L Chen  S Xu  L Liu  X Wen  Y Xu  J Chen  J Teng 《Cell death & disease》2014,5(5):e1219
Disturbance of endoplasmic reticulum (ER) homeostasis causes ER stress and leads to activation of the unfolded protein response, which reduces the stress and promotes cell survival at the early stage of stress, or triggers cell death and apoptosis when homeostasis is not restored under prolonged ER stress. Here, we report that Cab45S, a member of the CREC family, inhibits ER stress-induced apoptosis. Depletion of Cab45S increases inositol-requiring kinase 1 (IRE1) activity, thus producing more spliced forms of X-box-binding protein 1 mRNA at the early stage of stress and leads to phosphorylation of c-Jun N-terminal kinase, which finally induces apoptosis. Furthermore, we find that Cab45S specifically interacts with 78-kDa glucose-regulated protein/immunoglobulin heavy chain binding protein (GRP78/BiP) on its nucleotide-binding domain. Cab45S enhances GRP78/BiP protein level and stabilizes the interaction of GRP78/BiP with IRE1 to inhibit ER stress-induced IRE1 activation and apoptosis. Together, Cab45S, a novel regulator of GRP78/BiP, suppresses ER stress-induced IRE1 activation and apoptosis by binding to and elevating GRP78/BiP, and has a role in the inhibition of ER stress-induced apoptosis.  相似文献   

19.
20.
The activity of Hsp70 proteins is regulated by accessory proteins, which include members of the DnaJ-like protein family. Characterized by the presence of a highly conserved 70-amino acid J domain, DnaJ homologues activate the ATPase activity of Hsp70 proteins and stabilize their interaction with unfolded substrates. DnaJ homologues have been identified in most organelles where they are involved in nearly all aspects of protein synthesis and folding. Within the endoplasmic reticulum (ER), DnaJ homologues have also been shown to assist in the translocation, secretion, retro-translocation, and ER-associated degradation (ERAD) of secretory pathway proteins. By using bioinformatic methods, we identified a novel mammalian DnaJ homologue, ERdj4. It is the first ER-localized type II DnaJ homologue to be reported. The signal sequence of ERdj4 remains uncleaved and serves as a membrane anchor, orienting its J domain into the ER lumen. ERdj4 co-localized with GRP94 in the ER and associated with BiP in vivo when they were co-expressed in COS-1 cells. In vitro experiments demonstrated that the J domain of ERdj4 stimulated the ATPase activity of BiP in a concentration-dependent manner. However, mutation of the hallmark tripeptide HPD (His --> Gln) in the J domain totally abolished this activation. ERdj4 mRNA expression was detected in all human tissues examined but showed the highest level of the expression in the liver, kidney, and placenta. We found that ERdj4 was highly induced at both the mRNA and protein level in response to ER stress, indicating that this protein might be involved in either protein folding or ER-associated degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号