首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parvibaculum lavamentivorans DS-1T utilized the commercial surfactant linear alkylbenzenesulfonate (LAS) (20 congeners with C10 to C13 side chains) as a carbon and energy source by shortening the side chain, and sulfophenylcarboxylates (SPCs) and similar compounds (e.g., α,β-unsaturated SPCs [SPC-2Hs]) were excreted with quantitative recovery of the sulfophenyl moiety. 2-(4-Sulfophenyl)decane (2-C10-LAS) was converted largely to 3-(4-sulfophenyl)butyrate (3-C4-SPC), as were 2-C12-LAS and 2-C14-LAS; the other products were 5-C6-SPC (SPC+2C) and 3-C4-SPC-2H. 2-C11-LAS was converted largely to 4-C5-SPC with the corresponding SPC+2C and SPC-2H; similarly, 3-C12-LAS yielded 4-C6-SPC with the corresponding SPC+2C and SPC-2H. This pattern of products confirmed that LAS is degraded by ω-oxygenation and chain shortening through β-oxidation. At least nine major SPCs were formed from commercial LAS. The novel isolates Comamonas testosteroni SPB-2 and KF-1 utilized 3-C4-SPC; Delftia acidovorans SPH-1 utilized 4-C6-SPC enantioselectively. The substrate-dependent oxygen uptake of whole cells of strain SPB-2 indicated that there was inducible oxygenation of 3-C4-SPC and of 4-sulfophenol in whole cells of the strains of C. testosteroni during growth with 3-C4-SPC or 4-sulfophenol. The degradative pathways apparently involved 4-sulfocatechol and 4-sulfocatechol 1,2-dioxygenase. Strain SPB-2 and strain DS-1T grew together in LAS-salts medium, and only seven of the nine major SPCs were recovered. Strain SPB-2 utilized 3-C4-SPC, 3-C5-SPC, and 3-C4-SPC-2H. Strain SPH-1 grew together with strain DS-1T in LAS-salts medium, and a different set of seven major SPCs was recovered. Strain SPH-1 utilized 4-C6-SPC, 4-C5-SPC, 4-C6-SPC-2H, and 4-C5-SPC-2H. A three-member community consisting of strains DS-1T, SPB-2, and SPH-1 utilized four major SPCs. We inferred that this community mineralized the major SPCs derived from 8 of the 20 LAS congeners.  相似文献   

2.
1. A study has been made of the incorporation of carbon from [14C]formaldehyde and [14C]formate by cultures of Pseudomonas methanica growing on methane. 2. The distribution of radioactivity within the non-volatile constituents of the ethanol-soluble fractions of the cells, after incubation with labelled compounds for periods of up to 1min., has been analysed by chromatography and radioautography. 3. Radioactivity was fixed from [14C]formaldehyde mainly into the phosphates of the sugars, glucose, fructose, sedoheptulose and allulose. 4. Very little radioactivity was fixed from [14C]formate; after 1min. the only products identified were serine and malate. 5. The distribution of radioactivity within the carbon skeleton of glucose, obtained from short-term incubations with [14C]methanol of Pseudomonas methanica growing on methane, has been investigated. At the earliest time of sampling over 70% of the radioactivity was located in C-1; as the time increased the radioactivity spread throughout the molecule. 6. The results have been interpreted in terms of a variant of the pentose phosphate cycle, involving the condensation of formaldehyde with C-1 of ribose 5-phosphate to give allulose phosphate.  相似文献   

3.
Methyl 2-O-benzoyl-3-bromo-3,6-dideoxy-α-l-altropyranoside (4) and methyl 2-O-benzoy]-3-bromo-3,6-dideoxy-4-O-methyl-α-l-altropyranoside (5) have been prepared from methyl-α-l-rhamnopyranoside, respectively, in 2 and 3 steps. Reduction of 4 with lithium aluminium hydride followed by acid hydrolysis afforded the 3,6-dideoxy-l-arabino-bexose (l-ascarylose). The anhydro sugars 8 and 9 have been used as intermediates in the stereoselective synthesis of 6-deoxy-3-O-methyl-l-altropyranose (l-vallarose) and of 3-amino-3-degxy-l-altro sugars. Under azidolysis conditions, and according to the temperature, 5 gave unsaturated sugars such as 20 and the derived 26, or azido compounds such as 21 and 24, and the derived sugar methyl 2-amino-2,3,6-trideoxy-α-l-threo-hexopyranosid-4-ulose (25).  相似文献   

4.
A novel synthesis of furanodictines A [2-acetamido-3,6-anhydro-2-deoxy-5-O-isovaleryl-d-glucofuranose (1)] and B [2-acetamido-3,6-anhydro-2-deoxy-5-O-isovaleryl-d-mannofuranose (2)] is described starting from 2-acetamido-2-deoxy-d-glucose (GlcNAc). The synthetic protocol is based on deriving the epimeric bicyclic 3,6-anhydro sugars [2-acetamido-3,6-anhydro-2-deoxy-d-glucofuranose (4) and 2-acetamido-3,6-anhydro-2-deoxy-d-mannofuranose (5)] from GlcNAc. Reaction with borate upon heating led to a facile transformation of GlcNAc into the desired epimeric 3,6-anhydro sugars. The C5 hydroxyl group of the 3,6-anhydro compounds 4 and 5 was regioselectively esterified with the isovaleryl chloride to complete the synthesis of furanodictines A and B, respectively. The targets 1 and 2 were synthesized in only two steps requiring no protection/deprotection.  相似文献   

5.
Under carefully controlled conditions, sucrose is converted by selective reaction with sulphuryl chloride into either 6-chloro-6-deoxy-α-d-glucopyranosyl 6-chloro-6-deoxy-β-d-fructofuranoside or 4,6-dichloro-4,6-dideoxy-α-d-galactopyranosyl 6-chloro-6-deoxy-β-d-fructofuranoside, which could be isolated without recourse to chromatography. Treatment of the dichloride with sodium methoxide gave 3,6-anhydro-β-d-glucopyranosyl, 3,6-anhydro-β-d-fructofuranoside in high yield. In contrast, 4,6-dichloro-4,6-dideoxy-α-d-galactopyranosyl 6-chloro-6-deoxy-β-d-fructofuranoside gave, in two distinct stages, 3,6-anhydro-4-chloro-4-deoxy-α-d-galactopyranosyl 6-chloro-6-deoxy-β-d-fructofuranoside and 3,6-anhydro-4-chloro-4-deoxy-α-d-galactopyranosyl 3,6-anhydro-β-d-fructofuranoside. The structures of these products were ascertained by 1H-n.m.r. and mass spectrometry.  相似文献   

6.
Convallaria majalis plants were fed dl-methionine-[1-14C]. [1-14C, 4-3H], and [1-14C, 2-3H], S-adenosyl-l-methionine-[1-14C], and dl-homoserine-[1-14C], resulting in the formation of labeled azetidine-2-carboxylic acid (A-2-C). The complete retention of tritium relative to carbon-14 in the feeding experiment involving methionine-[1-14C, 4-3H] indicates that aspartic acid or aspartic-β-semialdehyde are not intermediates between methionine and A-2-C. However, since the A-2-C derived from methionine-[1-14C, 2-3H] had lost 95% of the tritium relative to the C-14, it is not considered that methionine or its S-adenosyl derivative are the immediate precursors of A-2-C. Our data and that of others is consistent with the intermediate formation of γ-amino-α-ketobutyric acid which on cyclization yields 1-azetine-2-carboxylic acid, A-2-C then being formed on reduction.  相似文献   

7.
The electrophilic reactivity of the bioactive marine sponge natural product halenaquinone has been investigated by reaction with the biomimetic nucleophiles N-acetyl-l-cysteine and Nα-acetyl-l-lysine. While cysteine reacted at the vacant quinone positions C-14 and C-15, lysine was found to react preferentially at the keto-furan position C-1. A small library of analogues was prepared by reaction of halenaquinone with primary amines, and evaluated against a range of biological targets including phospholipase A2, farnesyltransferases (FTases) and Plasmodium falciparum. Geranylamine analogue 11 exhibited the most potent activity towards FTases (IC50 0.017-0.031 μM) and malaria (IC50 0.53-0.62 μM).  相似文献   

8.
Design and syntheses of putative bioactive taxanes   总被引:2,自引:0,他引:2  
Reduction of 5 alpha-hydroxy-7 beta,9 alpha,10 beta-triacetoxy-4(20), 11(12)-taxadien-13-one 1 with activated zinc in glacial acetic acid led to rearranged products, including compounds with double bonds at C3-C4, C10-C11 or with an epoxide at C11-C12. Molecular modeling studies suggested that addition of a side chain at C-20 or C-5 of the taxanes with a C3-C4 double bond might lead to bioactivity. Semi-syntheses and results of bioactivities are discussed.  相似文献   

9.
Seven-carbon (7-C) sugars and sugar alcohols are common in higher plants, algae, fungi and bacteria. The biochemical origin and physiological function of these monosaccharides in plants and algae however is not well understood and has not been fully investigated. Here the occurrence, metabolism, and transport of heptuloses, heptitols, and heptoses are integrated in accordance with function to emphasise the importance of these apparently neglected sugars. This therefore is the first comprehensive synthesis of knowledge about 7-C sugar biochemistry, a relatively underexplored area of carbohydrate biology that needs to be integrated into mainstream sugar research. Available information on the metabolism of heptuloses, heptitols, and heptoses in Medicago sativa (alfalfa), Persea americana (avocado), Primula sp., Kalanchoë pinnata, and the red alga Porphyridium sp. was thoroughly investigated and evaluated. Results indicate that 7-C sugars share a common precursor and are products of a TKT-dependent heptulose shunt in which Suc-derived Fru 6-P is converted either to Sed 7-P or mannoheptulose 7-P or both in competent tissues and species. In plants, free heptuloses probably arise as a consequence of phosphatase activity, whereas heptoses appear to be formed by isomerisation of the corresponding phloem translocated heptuloses following import into non-photosynthetic tissue. It is proposed that the major physiological function of 7-C sugars and heptitols, in addition to serving as a carbon sink, involves metal ion chelation, translocation and remobilisation to fulfil nutrient requirements essential for growth and development.  相似文献   

10.
The fraction of carrageenan from the red seaweed Gigartina skottsbergii that is precipitated with 0.3-0.4m potassium chloride has been studied by methylation analysis. The results agree qualitatively with the structure previously suggested, except that 3-linked D-galactose 4-sulfate residues are present rather than the corresponding 2-sulfate. For every ten D-galactose residues linked at C-3, there are, on the average, six residues of 3,6-anhydro-D-galactose linked at C-4 and ten sulfate groups (five as 3,6-anhydro-D-galactose 2-sulfate and five as D-galactose 4-sulfate residues).  相似文献   

11.
Substrate specificity of cis-desaturation of alipahtic compounds by resting cells of a mutant, Rhodococcus sp. strain KSM-MT66, was examined. Among substrates tested, the rhodococcal cells were able to convert n-alkanes (C13-C19), 1-chloroalkanes (C16 and C18), ethyl fatty acids (C14-C17) and alkyl (C1-C4) esters of palmitic acid to their corresponding unsaturated products of cis configuration. The products from n-alkanes and 1-chloroalkanes had a double bond mainly at the 9th carbon from their terminal methyl groups, and the products from acyl fatty acids had a double bond mainly at the 6th carbon from their carbonyl carbons.  相似文献   

12.
In mechanistic studies by isotope-exchange tecniques of the conversion of D-fructose and D-glucose into 2-(hydroxyacetyl)furan, it was shown that both sugars are converted in acidified, tritiated water into the furan containing essentially no carbon-bound tritium. As the hydroxymethyl carbon atom of the furan corresponds to C-1 of the hexose, this result suggests that one of the hydrogen atoms in this group, when it is produced from D-glucose, must arise intramolecularly. This hypothesis was verified by synthesizing D-glucose-2-3H and converting it into the furan in acidified water. The 2-(hydroxyacetyl)furan obtained was labeled exclusively on the hydroxymethyl carbon atom, thus showing that intramolecular hydrogen-transfer occurs, during the conversion, from C-2 of D-glucose to the carbon atom corresponding to C-1. The specific activities of the product and reactant permitted calculation of the tritium isotope-effect (kh/kt4.4) for the reaction. The precise step for the transfer from C-2 of the aldose to the carbon atom corresponding to C-1 was found to be during the isomerization of D-glucose to D-fructose, as evidenced by the conversion of D-glucose-2-3H into D-fructose-1-3H in acidified water.  相似文献   

13.
Ligand-based and structure-based methods were applied in combination to exploit the physicochemical properties of 2,3-dideoxy hex-2-enopyranosid-4-uloses against Mycobacterium tuberculosis H37Rv. Statistically valid 3D-QSAR models with good correlation and predictive power were obtained with CoMFA steric and electrostatic fields (r2 = 0.797, q2 = 0.589) and CoMSIA with combined steric, electrostatic, hydrophobic and hydrogen bond acceptor fields (r2 = 0.867, q2 = 0.570) based on training set of 33 molecules with predictive r2 of 0.808 and 0.890 for CoMFA and CoMSIA respectively. The results illustrate the requirement of optimal alkyl chain length at C-1 position and acceptor groups along hydroxy methyl substituent of C-6 to enhance the anti-tubercular activity of the 2,3-dideoxy hex-2-enopyranosid-4-uloses while any substitution at C-3 position exert diminishing effect on anti-tubercular activity of these enulosides. Further, homology modeling of M. tuberculosis alpha-mannosidase followed by molecular docking and molecular dynamics simulations on co-complexed models were performed to gain insight into the rationale for binding affinity of selected inhibitors with the target of interest. The comprehensive information obtained from this study will help to better understand the structural basis of biological activity of this class of molecules and guide further design of more potent analogues as anti-tubercular agents.  相似文献   

14.
《Carbohydrate research》1986,154(1):103-113
A direct synthetic route from methyl α-d-glucopyranoside to 3,6-dideoxy-3-(methylamino)hexoses having the d-gluco, d-galacto, and d-manno configurations has been developed. Methyl α-d-glucoside was converted into the 4,6- <O-benzylidene-2,3,-di-O-tosyl derivative, which has then transformed into the 4-O-benzyl-6-deoxy 2,3-ditosylate (5) by successive reductive cleavage of the acetal ring, iodination, and reduction. The intermediate 5 was readily converted into the allo 2,3-epoxide, which yielded the pivotal intermediate methyl 4-O-benzyl-3,6-dideoxy-3-(methylamino)-α-d-glucopyranoside (7) by cleavage of the oxirane ring with methylamine. The amino compound 7 can be directly converted into the derivatized galacto and manno derivatives for mass-spectrometric identification by selective inversion at C-4 and C-2, respectively, followed by hydrolysis, reduction, and acetylation.  相似文献   

15.
When 3-C-sulfonyl-pent-2-enofuranosides and 3-C-sulfonyl-hex-2-enofuranosides were reacted with primary and secondary amines, only the beta-anomeric methoxy group of the pent-2-enofuranoside did not cause any hindrance to incoming nitrogen nucleophiles. This resulted in the 'unusual' addition of amines, in which the diastereoselectivity of the reaction was overwhelmingly in favor of amino sugars of the D-arabino configuration. Selected products were desulfonylated to obtain a new class of beta-anomeric 2-amino-2,3-dideoxy-D-threo-pentofuranosides.  相似文献   

16.
Henry reactions of a novel higher sugar derivative, (1R)-(1,4:3,6-dianhydro-d-mannitol-2-yl)-1,4:3,6-dianhydro-d-fructose 5,5′-dinitrate (Alternate nomenclature: (1R)-(isomannid-2-yl)-1,4:3,6-dianhydro-d-fructose 5,5′-dinitrate), with nitromethane and nitroethane were studied. The kinetic and thermodynamic reactions with nitromethane under different conditions were carried out to afford (2S)- and (2R)-β-nitroalcohols, respectively. But when using nitroethane the reaction gave a (2S)-β-nitroalcohol with an inverted configuration at vicinal carbon C-1. Two stereogenic centers were generated, and one was altered in the reaction.  相似文献   

17.
The substrate specificity of mammalian endo-β-N-acetylglucosaminidase was studied in detail by using rat liver enzyme. The enzyme hydrolytically cleaves the N,N′-diacetylchitobiose moiety of Manα1 → 6 (Manα1 → 3)Manβ1 → 4GlcNacβ1 → 4R in which R represents either GlcNac → Asn or N-acetylglucosamine. The enzyme can hardly act on the sugar chains with Fucα1 → 3 or 6GlcNac → Asn or N-acetylglucosaminitol as their R residues. The sugar chains substituted at C-3 and C-6 positions of the Manα1 → 6 residue and at C-2 position of the Manα1 → 3 residue by other sugars are also cleaved by the enzyme. The sugar chains substituted at C-4 position of the β-mannosyl residue and at C-2 position of the Manα1 → 6 residue by other sugars are hydrolyzed at one place lower rate. The specificity of the mammalian endo-β-N-acetylglucosaminidase indicates that the enzyme is responsible for the formation of most of the oligosaccharides excreted in the urine of patients with congenital exoglycosidase deficiencies and also explains why large amount of glycopeptides are excreted in the urine of fucosidosis patients.  相似文献   

18.
Campylobacter jejuni is a Gram‐negative bacterium that represents a leading cause of human gastroenteritis worldwide. Of particular concern is the link between C. jejuni infections and the subsequent development of Guillain‐Barré syndrome, an acquired autoimmune disorder leading to paralysis. All Gram‐negative bacteria contain complex glycoconjugates anchored to their outer membranes, but in most strains of C. jejuni, this lipoglycan lacks the O‐antigen repeating units. Recent mass spectrometry analyses indicate that the C. jejuni 81116 (Penner serotype HS:6) lipoglycan contains two dideoxyhexosamine residues, and enzymological assay data show that this bacterial strain can synthesize both dTDP‐3‐acetamido‐3,6‐dideoxy‐d ‐glucose and dTDP‐3‐acetamido‐3,6‐dideoxy‐d ‐galactose. The focus of this investigation is on WlaRG from C. jejuni, which plays a key role in the production of these unusual sugars by functioning as a pyridoxal 5′‐phosphate dependent aminotransferase. Here, we describe the first three‐dimensional structures of the enzyme in various complexes determined to resolutions of 1.7 Å or higher. Of particular significance are the external aldimine structures of WlaRG solved in the presence of either dTDP‐3‐amino‐3,6‐dideoxy‐d ‐galactose or dTDP‐3‐amino‐3,6‐dideoxy‐d ‐glucose. These models highlight the manner in which WlaRG can accommodate sugars with differing stereochemistries about their C‐4′ carbon positions. In addition, we present a corrected structure of WbpE, a related sugar aminotransferase from Pseudomonas aeruginosa, solved to 1.3 Å resolution.  相似文献   

19.
Numerous different nucleotide sugars are used as sugar donors for the biosynthesis of glycans by bacteria, humans, fungi, and plants. However, many of these nucleotide sugars are not available either in their native form or with the sugar portion labeled with a stable or radioactive isotope. Here we demonstrate the use of Escherichia coli metabolically engineered to contain genes that encode proteins that convert monosaccharides into their respective monosaccharide-1-phosphates and subsequently into the corresponding nucleotide sugars. In this system, which we designated “in-microbe”, reactions occur within 2 to 4 h and can be used to generate nucleotide sugars in amounts ranging from 5 to 12.5 μg/ml cell culture. We show that the E. coli can be engineered to produce the seldom observed nucleotide sugars UDP–2-acetamido-2-deoxy-glucuronic acid (UDP–GlcNAcA) and UDP–2-acetamido-2-deoxy-xylose (UDP–XylNAc). Using similar strategies, we also engineered E. coli to synthesize UDP–galacturonic acid (UDP–GalA) and UDP–galactose (UDP–Gal). 13C- and 15N-labeled NDP–sugars are formed using [13C] glucose as the carbon source and with [15N]NH4Cl as the nitrogen source.  相似文献   

20.
In rat liver mitochondria, swollen with phosphate and supplemented with NAD+, the oxidation of the methyl carbon of sarcosine to formate is enhanced by the addition of NADP+. No carbon dioxide is formed. Formaldehyde and serine, which are the only oxidation products of the methyl group in the absence of the pyridine nucleotides, are decreased by an amount equal to the formate produced. Carbon dioxide, as well as formate, is produced when the mitochondria are treated with EDTA, even without the addition of the pyridine nucleotides. When the mitochondria are exposed to pyrophosphate without added NAD+ and/or NADP+, all of the oxidized sarcosine-methyl can be recovered as formate, [3-C]serine, and carbon dioxide. Formaldehyde accumulates only if the system is supplemented with Mg2+. In the presence of NADP+ or the combined pyridine nucleotides, serine accumulation is depressed by an amount equal to the increase in carbon dioxide production. Both carbons of glycine and the 3-C of serine can also be oxidized to carbon dioxide in the pyrophosphate-treated mitochondria. The oxidation of the methyl carbon of S-adenosylmethionine to formaldehyde, [3-C]serine, formate, and carbon dioxide requires a whole homogenate supplemented with glycine. Neither exogenous formaldehyde nor formate is oxidized to carbon dioxide in any of the mitochondrial systems capable of converting sarcosine-methyl to carbon dioxide. Under conditions in which [N5,N10-14C-methylene]- and [N10-14C-formyl]tetrahydrofolate can be isolated as intermediate products of [14CH3]sarcosine, exogenous [N5,N10-14C-methylene]tetrahydrofolate can also be converted to [3-14C]serine, [14C]formate, and [14C]carbon dioxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号