首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of endocrine pancreas in temperature acclimation in rats was investigated. Plasma glucagon level increased and insulin level decreased in cold-acclimated rats (CA). The reverse was observed in heat-acclimated rats (HA). In the pancreas there were no changes in glucagon and insulin in CA, but a decrease in glucagon and an increase in insulin were found in HA. Plasma insulin/glucagon molar ratio (I/G) declined in CA and rose in HA. Pancreatic I/G rose in HA. Acute cold exposure elevated plasma glucagon, but did not affect plasma insulin. Pancreatic glucagon, insulin and I/G were not influenced by acute cold exposure, while plasma I/G decreased. Plasma I/G was inversely correlated with both blood free fatty acids and glucose levels. These results suggest that endocrine pancreas is closely associated with metabolic acclimation to cold and heat through its regulation of the metabolic direction to catabolic phase in cold acclimation and to anabolic phase in heat acclimation.  相似文献   

2.
1. Colloid osmotic pressure, plasma osmolality and plasma protein concentration, percentage composition and A/G ratio were measured before and after haemorrhage in the pigeon. 2. Colloid osmotic pressure, total protein, albumin and beta-globulin concentrations decreased significantly immediately post-haemorrhage, but were significantly elevated after one week. 3. Osmolality and A/G ratio values were significantly increased post-haemorrhage. 4. The results are discussed in relation to fluid exchange across capillaries.  相似文献   

3.
The effects of theophylline (a phosphodiesterase inhibitor-adenosine receptor antagonist) and substrate feeding (Ensure, 250 kcal/235 ml) on cold resistance were studied in seminude males undertaking submaximal (50% maximum O2 consumption), intermittent (34% of total time) exercise in the cold (-5 to 15 degrees C, individually adjusted) for 3 h. Each subject (n = 7) served as his own control and was tested on a weekly schedule. Under control treatment, rectal temperature (Tre) decreased by 0.9 degrees C to approximately 36.2 degrees C after cold exposure, whereas under theophylline and Ensure, the decrease of Tre was only 0.4 degrees C, indicating a significant increase (P less than 0.05) in cold resistance (50% better than control). The plasma concentration of theophylline was 4.8-5.9 micrograms/ml and was positively correlated with plasma concentration of free fatty acids. Plasma norepinephrine (NE) increased significantly during cold exposure; the absolute concentration was significantly higher after theophylline pretreatment. The plasma concentrations of glucose, epinephrine, cortisol, and adenosine 3',5'-cyclic monophosphate did not change and the changes of free thyroxine and triiodothyronine were minor. Together, the effectiveness of theophylline + Ensure in acutely increasing cold resistance may be due to increased substrate availability for thermogenesis, part of which, through theophylline's potentiation of both sympathetic release of NE and NE-stimulated lipolysis and part of which, through supplementary feeding of Ensure.  相似文献   

4.
This investigation was designed to determine the relationship between the levels of plasma aldosterone and eccrine sweat gland sodium excretion following exercise and heat acclimation. Ten subjects exercised at 45% of their maximal O2 uptake in a hot (40 degrees C), moderately humid (45% relative humidity) environment for 2 h/day on ten consecutive days. Acclimation was verified by significant reductions in exercise heart rate, rectal temperature, and heat storage, as well as significant elevation of resting plasma volume (12%, P less than 0.05) and exercise sweat rate on day 10 compared with day 1 of acclimation. During exercise, the concentration and total content of sodium in sweat as well as plasma aldosterone were significantly decreased from day 1 to day 10. The ratio of sweat sodium reabsorbed to plasma aldosterone concentration was significantly increased from day 1 to day 10 after both 1 and 2 h of exercise. These data indicate that plasma aldosterone concentrations decrease following heat acclimation; and eccrine gland responsiveness to aldosterone, as represented by sweat sodium reabsorption, may be augumented through exercise and heat acclimation.  相似文献   

5.
In an effort to assess the effects of environmental heat stress on muscle metabolism during exercise, 6 men performed work in the heat (Tdb = 44 degrees C, RH = 15%) and cold (Tdb = 9 degrees C, RH = 55%). Exercise consisted of three 15-min cycling bouts at 70 to 85% VO2max, with 10-min rest between each. Muscle biopsies obtained from the vastus lateralis before and after each work bout were analyzed for glycogen and triglyceride content. Venous blood samples drawn before and after exercise were assayed for lactate, glucose, free fatty acids, hemoglobin, and hematocrit. Oxygen uptake, heart rates and rectal temperatures were all significantly higher during exercise in the heat. Blood lactate concentration was roughly twice as great during the heat experiments as that measured in the 9 degrees C environment. Muscle glycogen utilization per 60 min was significantly greater in the heat ( - 74 m moles/kg-wet muscle) as compared to the cold exercise (- 42 m moles/kg-wet muscle). On the average, muscle triglyceride declined 23% during exercise in the cold and 11% in the heat. The findings of an enhanced glycolysis during exercise in the heat is compatible with earlier studies which demonstrate a decreased availability of oxygen due to a reduction in muscle blood flow.  相似文献   

6.
The metabolic and hormonal responses to an intensive single-circuit weight-training session were studied in 15 untrained male students. The training programme consisted of ten exercises, employing all the large groups of muscles. Students performed three circuits using a work-to-rest ratio of 30 s:30 s at 70% of one-repetition maximum. The whole programme lasted 30 min. Blood samples were obtained from the anticubital vein 30 min before exercise, immediately after exercise finished and after 1-h, 6-h, and 24-h periods of recovery. The training session produced significant increases in the plasma adrenocorticotropic hormone, cortisol, aldosterone, testosterone, progesterone and somatotropin concentrations. The plasma level of insulin and C-peptide remained unchanged. The strength exercises caused elevated ratios of cortisol:testosterone and cortisol:insulin, indicating a prevalence of stimulation of catabolic processes as well as of mobilization of energy reserves but during the recovery period the reverse of this was observed. Immediately after exercise the mean lactate concentration was 7.19 mmol.l-1, SD 0.56, the glucose concentration increased significantly during exercise and decreased rapidly during recovery. The high density lipoprotein-cholesterol increased in 1-h period of recovery compared with the initial level. The concentration of total cholesterol, low density lipoprotein-cholesterol and triglyceride, did not change. Packed cell volume did not change during exercise or recovery.  相似文献   

7.
Plasma volume was decreased by prolonged bicycle exercise, by passive heating in warm water, by sauna dehydration, and by diuretically induced dehydration in eleven well trained subjects. Blood samples from an arm vein were taken before and after this pre-treatment, as well as after a subsequent standard exercise test (SET) on a bicycle ergometer (50%, 70% and 105% of max VO2; the SET with no pre-treatment was used as a control condition. The changes in plasma concentration of Na+, K+ and Cl- were not proportional to the calculated plasma volume changes. The Na+ and Cl- concentrations always increased in the plasma, while plasma potassium concentration was increased after prolonged exercise, but decreased after the other types of dehydrations. The standard exercise test produced a pronounced fall in total calculated plasma potassium and in K+ concentration measured 3-5 min after exercise in all types of experiments. In the standard exercise test the calculated water loss from the plasma volume was relatively large. It amounted to about 2/3 of the total water loss in the standard exercise test and was independent of the pre-treatments.  相似文献   

8.
This study determined the plasma volume (PV) and ion responses to heat acclimation and exercise in six trained Thoroughbred horses during 21 days of exposure to heat and humidity (33 degrees C, 83% relative humidity) for 4 h/day. During the 2nd h on days 0, 3, 7, 14, and 21, horses performed a standardized treadmill test, running at 50% of peak O(2) uptake until pulmonary artery temperature reached 41.5 degrees C. Heat acclimation resulted in an increase in PV from 21.3 +/- 1.1 liters on day 0 to 24.3 +/- 1.0 liters on day 14, returning to 22.6 +/- 0.9 liters on day 21. The corresponding total plasma protein contents were 1,273 +/- 53, 1,455 +/- 81, and 1,377 +/- 57 g, respectively, and increases in total plasma Na(+) plus Cl(-) content were 5,145 +/- 126, 5,749 +/- 146, and 5,394 +/- 114 mmol, respectively. Thus changes in PV were accompanied by direct changes in plasma protein and osmolyte contents. With exercise on day 0, PV decreased by 7.1 +/- 0.7% at 5 min of exercise and remained decreased (-6.7 +/- 1.3%) at 5 min of recovery. By day 21, PV decreased significantly less than on day 0 (by 5.2 +/- 0.9% at 5 min of exercise), was decreased by only 2.0 +/- 1.6% at 5 min of recovery, and was fully restored at 15 min of recovery. Plasma Na(+) concentration increased 3 meq/l during the first 5 min of exercise and was normalized by 5 min of recovery on day 0 and by end exercise on day 21. It is concluded that improved ability to regulate PV during exercise in response to heat acclimatization is associated with an increased PV and an improved conservation of Na(+).  相似文献   

9.
During exercise, the oxygen consumption and the production of free radicals increase and can lead to oxidative stress with a deleterious effect on cellular structures involved in physical activity. To evaluate the oxidative stress produced by exercise and the role of ascorbate as an antioxidant, venous blood samples were obtained from 44 thoroughbred racehorses, before and after a 1000+/-200-m race at maximum velocity. Fourteen of these horses were treated intravenously with 5 g of ascorbate before running. Antioxidant capacity (PAOC), endogenous and exogenous ascorbate concentration, total antioxidant reactivity (TAR), urate concentration, creatine kinase activity, protein concentration and thiobarbiturate reactive substances (TBAR) as oxidative stress indicators were measured in the plasma of some of these horses. PAOC, TAR and TBAR increased after the race, while plasma ascorbate and urate concentrations remained unchanged. Total plasma protein (TPP) concentrations increased in line with antioxidant capacity. As predicted, both the plasma ascorbate concentration and PAOC increased immediately after ascorbate administration, but was not modified after the race, such as TBAR. However, in both groups plasma creatine kinase activity increased after the race. These results would suggest that the administration of ascorbate could nullify the oxidative stress produced by exercise in thoroughbred racehorses, but could not prevent muscular damage.  相似文献   

10.
The effect of acute exercise was studied in a group of 42 clinically healthy young Standardbred trotters. These trotters had been divided into four groups according to their age. Their ages were from 1.5 to 3 years. Three jugular venous blood samples were collected via venipuncture from each horse. These samples were collected while (1) at rest, (2) after the end of the exercise and (3) 30 min after the end of the exercise. Exercise showed a significant increase in plasma leptin concentration (3.8 ± 0.31 at rest v. 4.3 ± 0.37 just after exercise and 4.4 ± 0.47 ng/ml after a 30-min rest; ANOVA P < 0.05). The difference between values obtained 30 min after exercise and at rest was significantly greater in 1.5-year-old horses than in those aged 2.5 years (+1.3 ± 0.43 v. +0.1 ± 0.15 ng/ml; ANOVA P < 0.05). The mean plasma leptin concentration was higher in fillies than in colts (4.9 ± 0.47 v. 3.5 ± 0.36 ng/ml; ANOVA P < 0.05). A positive correlation between the plasma concentrations of leptin and triacylglycerides measured just after exercise was detected (r = 0.65). The acute exercise significantly increased the plasma concentration of ghrelin that was measured just after exercise (1255 ± 55.9 v. 1127 ± 54.2 pg/ml; ANOVA P < 0.05). The exercise-induced age-related changes in the plasma ghrelin concentration were significantly lower in 2.5-year-old trotters than in 1.5-year olds. To sum up, the changes in plasma leptin and ghrelin concentrations during bouts of exertion tend to decrease with age and/or training of Standardbred foals.  相似文献   

11.
This study examined plasma volume changes (deltaPV) in humans during periods with or without changes in body hydration: exercise-induced dehydration, heat-induced dehydration and glycerol hyperhydration. Repeated measurements of plasma volume were made after two injections of Evans blue. Results were compared to deltaPV calculated from haematocrit (Hct) and blood haemoglobin concentration ([Hb]). Eight well-trained men completed four trials in randomized order: euhydration (control test C), 2.8% dehydration of body mass by passive controlled hyperthermia (D) and by treadmill exercise (60% of their maximal oxygen uptake, VO2max) (E), and hyperhydration (H) by glycerol ingestion. The Hct, [Hb], plasma protein concentrations and plasma osmolality were measured before, during and after the changes in body hydration. Different Hct and [Hb] reference values were obtained to allow for posture-induced variations between and during trials. The deltaPV values calculated after two Evans blue injections were in good agreement with deltaPV calculated from Hct and [Hb]. Compared to the control test, mean plasma volume declined markedly during heat-induced dehydration [-11.4 (SEM 1.7)%] and slightly during exercise-induced dehydration [-4.2 (SEM 0.9)%] (P < 0.001 compared to D), although hyperosmolality was similar in these two trials. Conversely, glycerol hyperhydration induced an increase in plasma volume [+7.5 (SEM 1.0)%]. These results would indicate that, for a given level of dehydration, plasma volume is dramatically decreased during and after heat exposure, while it is better maintained during and after exercise.  相似文献   

12.
Postexercise immune impairment has been linked to exercise-induced decrease in plasma glutamine concentration. This study examined the possibility of abolishing the exercise-induced decrease in salivary IgA through glutamine supplementation during and after intense exercise. Eleven athletes performed cycle ergometer exercise for 2 h at 75% of maximal oxygen uptake on 3 separate days. Glutamine (a total of 17.5 g), protein (a total of 68.5 g/6.2 g protein-bound glutamine), and placebo supplements were given during and up to 2 h after exercise. Unstimulated, timed saliva samples were obtained before exercise and 20 min, 140 min, 4 h, and 22 h postexercise. The exercise protocol induced a decrease in salivary IgA (IgA concentration, IgA output, and IgA relative to total protein). The plasma concentration of glutamine was decreased by 15% 2 h postexercise in the placebo group, whereas this decline was abolished by both glutamine and protein supplements. None of the supplements, however, was able to abolish the decline in salivary IgA. This study does not support that postexercise decrease in salivary IgA is related to plasma glutamine concentrations.  相似文献   

13.
The effects of the discontinuation (DET) of an endurance training/heat acclimation (T/A) program on vascular volumes were studied in 16 adult males. Resting and exercise blood volume dynamics were examined prior to and during an exercise task performed after completion of T/A (CT1) and again at the end of DET (CT2). T/A consisted of cycling at 60% of peak VO2 for 90 min per day, 6 days per week, for 4 weeks. Ambient temperature was 20 degrees C for the first 3 weeks and 40 degrees C for the last week (rh = 30-35%). Subjects were randomly assigned to one of the following DET conditions: 1) cycling one day per week at 40 degrees C, 2) cycling one day per week at 20 degrees C, 3) resting one day per week at 40 degrees C, 4) control. The exercise tasks consisted of 60 min of continuous cycle ergometer exercise at 50% of peak VO2 (Ta = 30 degrees C, rh = 35%). Although significant differences were found between CT1 and CT2, there were no interactions between the various DET conditions. Resting red cell volume decreased 98 ml and plasma volume decreased 248 ml following DET. A reduction in plasma protein content accounted for 97% of the decrease in plasma volume. Hemoconcentration occurred during exercise in both CT1 and CT2, while there were slight increases in plasma [Na+] and [Cl-] and a rapid rise in [K+]. It appears that a single exercise and/or heat exposure per week was not different from complete cessation of endurance exercise in the heat with regard to maintenance of the various vascular volumes.  相似文献   

14.
We determined the participation of the cellular compartment in the changes of plasma amino acid concentrations during maximal exercise test on a cycle ergometer. Following an overnight fast, male athletes were submitted to a maximal exercise test until fatigue (for 25 min approximately) to determine maximal oxygen uptake. The amino acid concentrations in total blood, plasma, and blood cells were determined before and after the maximal exercise test. Most essential amino acids were decreased significantly in the total blood concentration as a result of the maximal exercise test. However, the concentrations of most nonessential amino acids tended to be significantly increased. Amino acid concentration was increased most in plasma. Concentrations of blood cell alanine and proline were significantly increased by 26% and 15%, respectively, after the maximal exercise test. No significant differences in blood cell concentrations of other amino acids induced by the exercise test were found, although the amount of tryptophan in blood cells was increased after exhaustive exercise.  相似文献   

15.
Role of the sympathetic nervous system in cold-induced hypertension in rats   总被引:8,自引:0,他引:8  
Hypertension develops in rats exposed chronically to cold [6 +/- 2 degrees C (SE)] and includes both an elevation of mean arterial pressure and cardiac hypertrophy. Previous studies suggest that cold-exposed animals, at least initially, have a large sustained increase in the activity of their sympathetic nervous system, suggesting a failure of the baroreceptor system to provide sufficient negative feedback to the central nervous system. The present study was designed to investigate whether alterations in the activity of the sympathetic nervous system, including the baroreceptor reflex, occur during exposure to cold and whether they contribute to cold-induced hypertension. Twenty male rats were prepared with indwelling catheters in the femoral artery and vein. Ten of the rats were exposed to cold (6 +/- 2 degrees C) chronically, while the remaining 10 were kept at 26 +/- 2 degrees C. Withdrawal of arterial blood samples (less than 5 ml/kg), measurement of direct arterial pressures, and measurement of baroreflex function were carried out at 0800 h at intervals throughout the experiment. Norepinephrine and epinephrine concentrations in plasma were also determined at intervals throughout the experiment. Systolic, diastolic, and mean blood pressures of cold-exposed rats were increased to levels significantly above those of controls. The sensitivity of the baroreflex (delta heart period/delta mean arterial pressure) was decreased in the cold-treated group. The concentration of norepinephrine in plasma increased after 24 h of exposure to cold and remained elevated throughout the experiment, whereas the concentration of epinephrine in plasma increased initially but returned to control levels after 19 days of exposure to cold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Five untrained females having no history of heat exposure worked in a cool (16-20 degrees C db, 28% rh) environment on day 1 and a warm environment on day 2 (45 degrees C db, 28% rh). Exercise level (bicycle ergometer) was 30% of individual Vo2 max values and work time on both days was 45 min. Venous blood samples were obtained at rest, after 40 min of exercise and 25 min after exercise ceased. Analysis of blood samples indicated an 8.3% increase in Hct during exercise on day 1 and a plasma volume reduction of 12.8% though total circulating protein increased 11.5%. Except for K+ all parameters approximated control values within 25 min postexercise. On day 2, exercise in heat caused a 12% increase in Hct and a plasma volume reduction of 17.7%. Mean total protein did not significantly change from resting values. These data indicated that for a given % Vo2 max, untrained females suffer considerably greater reductions in plasma volumes than do exercised males. Similar to males, dilatation of the cutaneous vascular bed in unacclimatized females resulted in loss of protein from the vascular volume.  相似文献   

17.
The aims of this study were 1) to characterize changes in matrix metalloproteinase (MMP), endostatin, and vascular endothelial growth factor (VEGF)-A expression in skeletal muscle in response to a single bout of exercise in humans; and 2) to determine if any exchange of endostatin and VEGF-A between circulation and the exercising leg is associated with a change in the tissue expression or plasma concentration of these factors. Ten healthy males performed 65 min of cycle exercise, and muscle biopsies were obtained from the vastus lateralis muscle at rest and immediately and 120 min after exercise. In the muscle biopsies, measurements of mRNA expression levels of MMP-2, MMP-9, MMP-14, and tissue inhibitor of metalloproteinase; VEGF and endostatin protein levels; and MMP activities were performed. Femoral arterial and venous concentrations of VEGF-A and endostatin were determined before, during, and 120 min after exercise. A single bout of exercise increased MMP-9 mRNA and activated MMP-9 protein in skeletal muscle. No measurable increase of endostatin was observed in the skeletal muscle or in plasma following exercise. A concurrent increase in skeletal muscle VEGF-A mRNA and protein levels was induced by exercise, with no signs of peripheral uptake from the circulation. However, a decrease in plasma VEGF-A concentration occurred following exercise. Thus 1) a single bout of exercise activated the MMP system without any resulting change in tissue endostatin protein levels, and 2) the increased VEGF-A protein levels are due to changes in the skeletal muscle tissue itself. Other mechanisms are responsible for the observed exercise-induced decrease in VEGF-A in plasma.  相似文献   

18.
The affect of negative thermal stress on hematological variables at rest, and during submaximal (sub ex) and maximal exercise (max ex) were observed for young males who volunteered in two experimental sessions, performed in cold (0°C) and in normal room temperature (20°C). At rest, hematological variables such as RBC and derivates Hb and Hct were significantly increased (P<0.05) during cold stress exposure, while plasma volume decreased. The findings of this study suggest that the major factor inducing hypovolemia during low thermal stress can be imputed to local plasma water-shift mechanisms and especially to a transient shift of plasma water from intrato extravascular compartments. Rest values for WBC and platelets (Pla) were also slightly increased during cold stress exposure. However this increase can partly be related to hemoconcentration but also to the cold induced hyperventilation activating the lung circulation. Maximal exhaustive exercise induced, in both experimental temperatures, significant (P<0.05) increments of RBC, Hb, Hct, and WBC while plasma volume decreased. However, Pla increase was less marked. On the other hand, cold stress raised slightly the observed variations of the different hematological variables. Submaximal exercise induced a similar, though non-significant, pattern for the different hematological variables in both experimental conditions. Observed plasma volume ( PV%) reduction appears during exercise. However cold stress induced resting plasma volume variations that are transferred at every exercise level. Neither exercise nor cold inducement significantly modified the hematological indices (MCH, MCV, MCHC). In conclusion hematological variables are affected by cold stress exposure, even when subjects perform a physical activity.  相似文献   

19.
Four groups of rats were subjected to the following conditions: (1) 48 h fasting, (2) 48 h of 4 degrees C cold exposure, (3) 5 h treadmill running, (4) 48 h fasting with 4 degrees C cold exposure. The groups were compared to fed control rats in order to study hormonal and metabolic responses in blood and tissue samples. Isolated hepatocytes were used to evaluate the rate of ketogenesis. Decreases in liver glycogen and increases in blood free fatty acids (FFA) confirmed that glycogenolysis and lipolysis occur in these situations of metabolic stress. Increases in the glucagon/insulin plasma ratio were also noted. Plasma catecholamine levels were only enhanced after running and after cold exposure. Production of blood ketone bodies was stimulated more by running and by fasting than by cold exposure. The low ketone body production observed after cold exposure seems to be linked to increases liver glycogen levels and decreased FFA availability. Liver cells isolated after cold exposure exhibited higher ketogenesis than these isolated after running. This difference in ketogenic capacity could result both from the longer hormonal stimulation by high glucagon/insulin plasma ratios and from the metabolic state of the liver.  相似文献   

20.
This study was designed to describe changes in plasma fatty acyl moieties during a 2-h endurance exercise. Sixteen endurance-trained subjects cycled 2 h at 55% of maximal power output and capillary blood was sampled every 15 min. Fourier-transform infrared (FT-IR) spectrometry was used to determine correlated changes between plasma fatty acyl moieties (FAM) structural characteristics and metabolic parameters (oxygen consumption, respiratory exchange ratio, glucose, lactate, TG, glycerol, and albumin). Opposite changes were found between carbohydrate and fatty acid metabolism during the second hour of exercise, i.e., a decrease of glucose and lactate concentrations while albumin, FAM, and TG increased. For fatty acid metabolism, FAM and TG did not showed the same pattern of changes at the end of exercise, i.e., TG remained constant after 90 min while FAM continued to increase. This late FAM concentration increase was correlated to the changes in albumin concentration and the nu C=C-H/nu(as) CH3 and nu(as) CH2/nu(as) CH3 ratios. These ratios clearly showed that FAM unsaturation increased while chain length decreased. It was hypothesized that PUFA from TG adipose lipolysis ketone bodies (beta-hydroxybutyric acid) from liver may have been released in higher amounts as glycogen stores became depleted after 90 min of exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号