首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The DNA polymerase α-DNA primase complex was purified over 17 000-fold to near homogeneity from calf thymus using an immunoaffinity column. Sodium dodecyl sulfate gel electrophoresis revealed three polypeptides with molecular weights of 140, 50 and 47 kDa, in a ratio of 1:2:0.25. The complex showed a sedimentation coefficient of 9.7 S, a Stokes radius of 56 Å and a native molecular weight of 250–260 kDa. Taken together, the data suggest that the calf thymus dNA polymerase α-DNA primase complex is essentially a heterotrimer of large (140 kDa) and small (50 kDa) subunits in a ratio of 1:2, with a globular conformation. Electron-microscopic studies of the complex revealed a spherical particle of 120 Å in diameter, in agreement with the physicochemical results. The binding of the complex to DNA was also demonstrated.  相似文献   

2.
Highly purified DNA polymerase alpha-DNA primase from normal human tissue (human placenta) has been prepared by immunoaffinity purification on immobilized anti-human DNA polymerase alpha monoclonal antibody SJK 287-38. According to data from SDS electrophoresis this preparation consists of subunits of 180, 160, 145, 140 kDa (a cluster of DNA-polymerizing subunits), 73 kDa (function unknown) and 59, 52 kDa (corresponding to primase). Three active enzyme forms of 270, 460 and 575 kDa have been revealed using native electrophoresis followed by detection of DNA polymerase activity.  相似文献   

3.
Five major polypeptides are found in immunoaffinity-purified calf thymus DNA polymerase-DNA primase complex: 185, 160, 68, 55, and 48 kDa. Individual polypeptides purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were used to produce antibodies in rabbits to aid in identifying the relationships between these polypeptides by immunoblotting and enzyme neutralization procedures. Immunoblot analyses showed that the 160-kDa peptide is derived from the 185-kDa peptide and the 48-kDa peptide is derived from the 68-kDa peptide while antibodies to the 55-kDa peptide do not cross-react with other peptides found in the complex. Direct enzyme neutralization studies demonstrated that antibodies to 185- and 160-kDa peptides inhibit DNA polymerase activity in the complex, confirming earlier suggestions that these peptides are the catalytic peptides for DNA polymerase. DNA primase activity in the complex is inhibited by antibodies to 68-, 55-, and 48-kDa peptides and to a lesser extent by antibodies to the 160-kDa peptide. Free DNA primase isolated from the complex was estimated to have a native molecular weight of about 110,000. The 55- and 48-kDa peptides are found to be associated with the free primase activity. Rabbit antibodies to both 55- and 48-kDa peptides are inhibitory to this primase activity. From these results we suggest that the native calf thymus DNA polymerase-DNA primase complex contains only three unique peptides with the 185-kDa peptide as the catalytic peptide of DNA polymerase and the 55- and 68-kDa peptides constituting the primase peptides. A model illustrating the roles of these peptides in initiation and replication of DNA is presented.  相似文献   

4.
FABdCTP was found to be a substrate of DNA polymerization catalyzed by a DNA polymerase alpha-DNA primase complex on the 5'-GTGAGTAAGTGGAGTTTGGCACGAT-3' template and 3'-CTCAAACCGT-5' primer. After complete primer extension in the presence of FABdCTP under UV-irradiation of the reaction mixture, 70% of the template was covalently linked to the primer. Labeling of the 165 kDa subunit of the DNA polymerase alpha, 59 kDa and 49 kDa subunits of the DNA primase and an unknown protein with apparent molecular weight of 31 kDa was observed. By another way of protein labeling FABdCTP was covalently bound to the subunits of the enzyme under UV irradiation and then this moiety was introduced into the 3'-end of the 5'-[32P]primer by the catalytic activity of DNA polymerase or DNA primase. In this case covalent labeling of the 165 kDa, 49 kDa and 31 kDa subunits was observed.  相似文献   

5.
It has been shown that DNA primase activity is tightly associated with 10S DNA polymerase alpha from calf thymus (Yoshida, S. et al. (1983) Biochim. Biophys. Acta 741, 348-357). In the present study, the primase activity was separated from DNA polymerase alpha by treating purified 10S DNA polymerase alpha with 3.4 M urea followed by a fast column chromatography (Pharmacia FPLC, Mono Q column equilibrated with 2 M urea). Ten to 20 % of the primase activity was separated from 10S DNA polymerase alpha by this procedure but 80-90% remained in the complex. The separated primase activity sedimented at 5.6S through a gradient of glycerol. The separated primase was strongly inhibited by araATP (Ki = 10 microM) and was also sensitive to salts such as KCl (50% inhibition at 30 mM). The primase used poly(dT) or poly(dC) as templates efficiently, but showed little activity with poly(dA) or poly(dI). These properties agree well with those of the primase activity in the DNA polymerase alpha-primase complex (10S DNA polymerase alpha). These results indicate that the calf thymus primase may be a part of the 10S DNA polymerase alpha and its enzymological characters are preserved after separation from the complex.  相似文献   

6.
Mechanism of DNA polymerase alpha inhibition by aphidicolin   总被引:9,自引:0,他引:9  
R Sheaff  D Ilsley  R Kuchta 《Biochemistry》1991,30(35):8590-8597
Synthetic oligonucleotides of defined sequence were used to examine the mechanism of calf thymus DNA polymerase alpha inhibition by aphidicolin. Aphidicolin competes with each of the four dNTPs for binding to a pol alpha-DNA binary complex and thus should not be viewed as a dCTP analogue. Kinetic evidence shows that inhibition proceeds through the formation of a pol alpha.DNA.aphidicolin ternary complex, while DNase I protection experiments provide direct physical evidence. When deoxyguanosine is the next base to be replicated, Ki = 0.2 microM. In contrast, the Ki is 10-fold higher when the other dNMPs are at this position. Formation of a pol alpha.DNA.aphidicolin ternary complex did not inhibit the primase activity of the pol alpha.primase complex. Neither the rate of primer synthesis nor the size distribution of primers 2-10 nucleotides long was changed. Elongation of the primase-synthesized primers by pol alpha was inhibited both by ternary complex formation using exogenously added DNA and by aphidicolin alone.  相似文献   

7.
An immunoaffinity chromatographic procedure was developed to purify DNA polymerase-DNA primase complex from crude soluble extracts of yeast cells. The immunoabsorbent column is made of mouse monoclonal antibody to yeast DNA polymerase I covalently linked to Protein A-Sepharose. Purification of the complex involves binding of the complex to the immunoabsorbent column and elution with concentrated MgCl2 solutions. After rebinding to the monoclonal antibody column free primase activity is selectively eluted with a lower concentration of MgCl2. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed the presence of five major peptides, p180, p140, p74, p58, and p48 in the immunoaffinity-purified DNA polymerase-DNA primase complex. Free primase and free polymerase fractions obtained by fractionation on the immunoabsorbent column were analyzed on activity gels and immunoblots. These analyses showed that p180 and p140 are DNA polymerase peptides. Two polypeptides of 58 and 48 kDa co-fractionated with the free yeast DNA primase. From sucrose gradient analysis we estimate a molecular weight of 110 kDa for the native DNA primase.  相似文献   

8.
A novel DNA primase activity has been identified in HeLa cells infected with herpes simplex virus type 1 (HSV-1). Such an activity has not been detected in mock-infected cells. The primase activity coeluted with a portion of HSV-1 DNA polymerase from single-stranded DNA agarose columns loaded with high-salt extracts derived from infected cells. This DNA primase activity could be distinguished from host HeLa cell DNA primase by several criteria. First, the pH optimum of the HSV primase was relatively broad and peaked at 8.2 to 8.7 pH units. In contrast, the pH optimum of the HeLa DNA primase was very sharp and fell between pH 7.9 and 8.2. Second, freshly isolated HSV DNA primase was less salt sensitive than the HeLa primase and was eluted from single-stranded DNA agarose at higher salt concentrations than the host primase. Third, antibodies raised against individual peptides of the calf thymus DNA polymerase:primase complex cross-reacted with the HeLa primase but did not react with the HSV DNA primase. Fourth, freshly prepared HSV DNA primase appeared to be associated with the HSV polymerase, but after storage at 4 degrees C for several weeks, the DNA primase separated from the viral DNA polymerase. Separation or decoupling could also be achieved by gel filtration of the HSV polymerase:primase. This free DNA primase had an apparent molecular size of approximately 40 kilodaltons, whereas free HeLa DNA primase had an apparent molecular size of approximately 110 kilodaltons. On the basis of these data, we believe that the novel DNA primase activity in HSV-infected cells may be virus coded and that this enzyme represents a new and important function involved in the replication of HSV DNA.  相似文献   

9.
Human placenta and calf thymus DNA-polymerase-alpha-primases were analyzed using native gradient-polyacrylamide-gel electrophoresis followed by overlay assays of polymerase and primase activities. The human enzyme contained three catalytically active native forms of 330, 440 and 560 kDa and the bovine enzyme five forms of 330, 440, 500, 590 and 660 kDa. Of the various DNA polymerase forms, only the largest (560 kDa for human DNA polymerase and 590 kDa and 660 kDa for bovine DNA polymerase) contained primase activity. Titration of human DNA-polymerase-alpha-primase with DNA-polymerase-free primase caused the conversion of the 440-kDa to the 560-kDa form. The data favour the idea that primase binds to DNA polymerase alpha as an oligomer of 3 primases/polymerase core. In addition, the ability of primase to utilize oligoriboadenylates containing (prA)n or pp(prA)n was investigated. The primase elongated pp(prA)2-7 up to nanoadenylates or decaadenylates, but did not add 9 or 10 mononucleotides to a preexistent primer. In contrast to pp(prA)n less than 10, (prA)n less than 10 were rather poor primers for the primase. Both pp(prA)8,9 and (prA)n greater than 10 were elongated by primase, producing characteristic multimeric oligonucleotides. The possible connection of the structure of the DNA-polymerase-alpha-primase complex with the catalytical properties of primase is discussed.  相似文献   

10.
T Yagura  T Kozu  T Seno  S Tanaka 《Biochemistry》1987,26(24):7749-7754
A hybrid cell line (HDR-854-E4) secreting monoclonal antibody (E4 antibody) against a subunit of human DNA polymerase alpha was established by immunizing mice with DNA replicase complex (DNA polymerase alpha-primase complex) prepared from HeLa cells. The E4 antibody immunoprecipitates DNA replicase complex from both human and mouse cells. The E4 antibody neutralizes the primase activity as assessed either by the direct primase assay (incorporation of [alpha-32P]AMP) or by assay of DNA polymerase activity coupled with the primase activity using unprimed poly(dT) as a template. The E4 antibody does not neutralize DNA polymerase alpha activity with the activated calf thymus DNA as a template. Western immunoblotting analysis shows that the E4 antibody binds to a polypeptide of 77 kilodaltons (kDa) which is tightly associated with DNA polymerase alpha. The 77-kDa polypeptide was distinguished from the catalytic subunit (160 and 180 kDa) for DNA synthesis which was detected by another monoclonal antibody, HDR-863-A5. Furthermore, it is unlikely that the 77-kDa peptide is the primase, since we found that the E4 antibody also immunoprecipitates the mouse 7.3S DNA polymerase alpha which has no primase activity, and Western immunoblotting analysis shows that the 77-kDa polypeptide is a subunit of the 7.3S DNA polymerase alpha. Furthermore, after dissociation of the primase from mouse DNA replicase by chromatography on a hydroxyapatite column in the presence of dimethyl sulfoxide and ethylene glycol, the 77-kDa polypeptide is associated with DNA polymerase alpha, and not with the primase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The DNA polymerase alpha-DNA primase complex from the human lymphoblast line HSC93 has been enriched to near homogeneity by using an immunoaffinity purification protocol which was developed earlier for the purification of the calf thymus enzyme (Nasheuer, H.-P. and Grosse, F. (1987) Biochemistry 26, 8458-8466). Immunoaffinity purified polymerase-primase from human cells consisted of four subunits displaying molecular weights of 195,000 and 180,000 for the DNA synthesizing alpha-subunit, of 68,000 for the beta-subunit, and of 55,000 and 48,000 for the primase-carrying gamma- and delta-subunit, respectively. The isoelectric pH values for the individual subunits were estimated from non-equilibrium pH gradients to be between 5.9 and 5.7 for the alpha-subunit, at 5.5 for the beta-subunit, and at 7.5 and 8.0 for the gamma- and delta-subunit, respectively. The purified polymerase-primase converted single-stranded phi X174 DNA into the double-stranded form in a primase-initiated reaction. During this process, 3-10 RNA primers were formed. RNA primers were about 11 nucleotides long. Elongation of existing RNA primers by the human polymerase-primase was semi-processive; following primer binding the DNA polymerase continuously incorporated 20 to 50 nucleotides, then it dissociated from the template DNA.  相似文献   

12.
DNA polymerase delta from calf thymus was purified under conditions that minimized proteolysis to a specific activity of 27,000 units/mg. The four step isolation procedure included phosphocellulose, hydroxyapatite, heparin-Sepharose and FPLC-MonoS. This enzyme consists of four polypeptides with Mr of 140, 125, 48 and 40 kilodaltons. Velocity gradient sedimentation in glycerol removed the 48 kDa polypeptide while the other three sedimented with the DNA polymerase activity. The biochemical properties of the three subunit enzyme and the copurification of 3'----5' exonuclease activity were typical for a bona fide DNA polymerase delta. Tryptic peptide analysis showed that the 140 kDa polypeptide was different from the catalytic 180 kDa polypeptide of calf thymus DNA polymerase alpha. Both high Mr polypeptides (140 and 125 kDa) were catalytically active as analysed in an activity gel. Four templates were used by DNA polymerase delta with different preferences, namely poly(dA)/oligo(dT)12-18 much much greater than activated DNA greater than poly(dA-dT) greater than primed single-stranded M13DNA. Calf thymus proliferating cell nuclear antigen (PCNA) could not stimulated this DNA polymerase delta in any step of the isolation procedure. If tested on poly(dA)/oligo(dT)12-18 (base ratio 10:1), PCNA had no stimulatory effect on DNA polymerase delta when tested with low enzyme DNA ratio nor did it change the kinetic behaviour of the enzyme. DNA polymerase delta itself did not contain PCNA. The enzyme had an intrinsic processivity of several thousand bases, when tested either on the homopolymer poly(dA)/oligo(dT)12-18 (base ratio 64:1) or on primed single-stranded M13DNA. Contrary to DNA polymerase alpha, no pausing sites were seen with DNA polymerase delta. Under optimal in vitro replication conditions the enzyme could convert primed single-stranded circular M13 DNA of 7,200 bases to its double-stranded form in less than 10 min. This supports that a PCNA independent DNA polymerase delta exists in calf thymus in addition to a PCNA dependent enzyme (Lee, M.Y.W.T. et al. (1984) Biochemistry 23, 1906-1913).  相似文献   

13.
Complex, multiprotein forms of bovine (calf thymus), hamster (Chinese hamster ovary cell), and human (HeLa) cell DNA polymerase alpha (Pol alpha) were analyzed for their content of calmodulin-binding proteins. The approach used an established autoradiographic technique employing 125I-labeled calmodulin to probe proteins in denaturing SDS-polyacrylamide gel electropherograms. All three Pol alpha enzymes were associated with discrete, Ca2+-dependent calmodulin-binding proteins. Conventionally purified calf thymus Pol alpha holoenzyme contained three prominent, trifluoperazine-sensitive species with apparent molecular masses of approx. 120, 80 and 48 kDa. The 120 and 48 kDa species remained associated with the polymerase.primase core of the calf enzyme during immunopurification with monoclonal antibodies directed specifically against the polymerase subunit. The patterns of the calmodulin-binding proteins displayed by conventionally purified preparations of hamster and human Pol alpha enzymes were similar to each other and distinctly different from the pattern of comparable preparations of calf thymus Pol alpha. Immunopurified preparations of the human and hamster Pol alphas retained significant calmodulin-binding activity of apparent molecular masses of approx. 55, 80 and 150-200 kDa.  相似文献   

14.
Immunoaffinity-purified DNA polymerase alpha-primase complex from calf thymus consists of subunits with molecular weights of 148,000-180,000, 73,000, 59,000, and 48,000 (Nasheuer, H.-P., and Grosse, F. (1987) Biochemistry 26, 8458-8466). Primase activity was separated from the immobilized complex by washing extensively with 2 M KCl or, alternatively, by shifting to pH 11.5 in the presence of 1 M KCl. From both elution procedures, the primase activity was found to be associated with the polypeptides with molecular weights of 59,000 and 48,000. The specific activity, using either elution procedure, was 30,000 units/mg. Both polypeptides sedimented together at 5.7 S upon zonal centrifugation on a sucrose gradient. Primase activity was found in the flow-through fraction after DEAE-cellulose chromatography of the free primase. Analysis of this fraction by sodium dodecyl sulfate gel electrophoresis revealed only one band with a Mr of 48,000. Polyclonal antibodies were raised against the Mr 59,000 and 48,000 polypeptides. The anti-Mr 59,000 antibody affected the primase activity only marginally, whereas the anti-Mr 48,000 antibody inhibited the primase activity nearly completely. UV cross-linking of the DNA polymerase alpha-primase complex with alpha-32P-labeled GTP revealed a binding site at the Mr 48,000 polypeptide, but none at the other subunits of the complex. Taken together, these results suggest that the Mr 48,000 polypeptide bears the active site of the DNA primase activity. The Mr 59,000 polypeptide stabilizes the primase activity.  相似文献   

15.
Four monoclonal antibodies against chicken DNA polymerase alpha were obtained from mouse hybridomas (see ref. 1). Two of them, 4-2D and 4-8H, recognized different epitopes of the DNA polymerase alpha-DNA primase complex as determined by a competitive enzyme-linked immunosorbent assay. Antibody 4-8H partially (about 30%) neutralized the combined activity of primase-DNA polymerase alpha as well as the DNA polymerase alpha activity. In contrast, antibody 4-2D did not neutralize DNA polymerase alpha activity, but neutralized the primase-DNA polymerase alpha activity extensively (up to 80%). Furthermore, although an immunoaffinity column made with 4-8H antibody retained virtually all of the DNA polymerase alpha with and without associated primase, a column made with 4-2D antibody did not bind DNA polymerase alpha without the primase, but retained the enzyme associated with the primase. These results indicate that 4-8H monoclonal antibody is specific for DNA polymerase alpha and 4-2D monoclonal antibody is specific for the primase or a special structure present in the primase-DNA polymerase alpha complex.  相似文献   

16.
An auxiliary protein for DNA polymerase-delta from fetal calf thymus   总被引:62,自引:0,他引:62  
An auxiliary protein which affects the ability of calf thymus DNA polymerase-delta to utilize template/primers containing long stretches of single-stranded template has been purified to homogeneity from the same tissue. The auxiliary protein coelutes with DNA polymerase-delta on DEAE-cellulose and phenyl-agarose chromatography but is separated from the polymerase on phosphocellulose chromatography. The physical and functional properties of the auxiliary protein strongly resemble those of the beta subunit of Escherichia coli DNA polymerase III holoenzyme. A molecular weight of 75,000 has been calculated from a sedimentation coefficient of 5.0 s and a Stokes radius of 36.5 A. A single band of 37,000 daltons is seen on sodium dodecyl sulfate gel electrophoresis, suggesting that the protein exists as a dimer of identical subunits. The purified protein has no detectable DNA polymerase, primase, ATPase, or nuclease activity. The ability of DNA polymerase-delta to replicate gapped duplex DNA is relatively unaffected by the presence of the auxiliary protein, however, it is required to replicate templates with low primer/template ratios, e.g. poly(dA)/oligo(dT) (20:1), primed M13 DNA, and denatured calf thymus DNA. The auxiliary protein is specific for DNA polymerase-delta; it has no effect on the activity of calf thymus DNA polymerase-alpha or the Klenow fragment of E. coli DNA polymerase I with primed homopolymer templates. Although the auxiliary protein does not bind to either single-stranded or double-stranded DNA, it does increase the binding of DNA polymerase-delta to poly(dA)/oligo(dT), suggesting that the auxiliary protein interacts with the polymerase in the presence of template/primer, stabilizing the polymerase-template/primer complex.  相似文献   

17.
Among multiple subspecies of DNA polymerase α of calf thymus, only 10 S DNA polymerase α had a capacity to initiate DNA synthesis on an unprimed single-stranded, circular M13 phage DNA in the presence of ribonucleoside triphosphates (DNA primase activity). The primase was copurified with 10 S DNA polymerase α through the purification and both activities cosedimented at 10 S through gradients of either sucrose or glycerol. Furthermore, these two activities were immunoprecipitated at a similar efficiency by a monoclonal antibody directed against calf thymus DNA polymerase α. These results indicate that the primase is tightly bound to 10 S DNA polymerase α. The RNA polymerizing activity was resistant to α-amanitin, required high concentration of all four ribonucleoside triphosphates (800 μM) for its maximal activity, and produced the limited length of oligonucleotides (around 10 nucleotides long) which were necessary to serve as a primer for DNA synthesis. Covalent bonding to RNA to DNA was strongly suggested by the nearest neighbour frequency analysis and the DNAase treatment. The DNA synthesis primed by the RNA oligomers may be carried out by the associating DNA polymerase α because it was strongly inhibited by araCTP, resistant to d2TTP, and was also inhibited by aphidicolin but at relatively high concentration. The primase preferred single-stranded DNA as a template, but it also showed an activity on the double-stranded DNA from calf thymus at an efficiency of approx. 10% of that with single-stranded DNA.  相似文献   

18.
DNA polymerase alpha and DNA polymerase alpha--primase complex of Physarum polycephalum were purified by rapid methods, and antibodies were raised against the complex. In crude extracts, immune-reactive polypeptides of 220 kDa, 180 kDa, 150 kDa, 140 kDa, 110 kDa, 86 kDa, 57 kDa and 52 kDa were identified. The structural relationships between the 220 kDa, 110 kDa and 140 kDa (the most abundant form) was investigated by peptide mapping. The 140 kDa form was active DNA polymerase alpha. The 57 kDa and the 52 kDa polypeptides were identified as primase subunits by auto-catalytic labelling. In amoebae, the immune-reactive 140 kDa polypeptide was replaced by a 135 kDa active DNA polymerase alpha.  相似文献   

19.
DNA polymerase and DNA primase activities in the maize α-type DNA polymerase 2 were dissociated and DNA polymerase-free DNA primase was studied. DNA primase synthesized primers that were 8–34 nucleotides long, with more intense bands at 15–17 nucleotides in length. DNA polymerase 1 (a putative δ-type enzyme) or DNA polymerase 2 were assayed after template-priming with purified DNA primase and showed a differential use of templates: whereas DNA polymerase 2 used a polydT template more efficiently than a natural template, DNA polymerase 1 used both of them poorly. The molecular size of DNA primase was estimated to be 68 kDa by gel filtration, western blotting and by a DNA primase 'trapping' assay.  相似文献   

20.
A procedure is described for the purification from cultured mouse cells of two DNA polymerase "delta-like" enzymes, as defined by intrinsic 3'-exonuclease activity, inhibition by aphidicolin, and relative insensitivity to N2-(p-n-butylphenyl)-dGTP. One of the two enzymes has been purified to near homogeneity and, similar to the DNA polymerase delta from calf thymus described by Lee et al. (Lee, M. Y. W. T., Tan, C. K., Downey, K. M., and So, A. G. (1984) Biochemistry 23, 1906-1913), it has a total molecular mass of 178 kDa (from sedimentation velocity of 8.0 S and Stokes radius of 54 A) and is composed of one each of 125- and 50-kDa polypeptides. It also resembles the DNA polymerase delta of Lee et al. in being stimulated by proliferating cell nuclear antigen (PCNA). It is the first clear structural and functional counterpart of the calf thymus enzyme. The major difference between the mouse DNA polymerase delta and the calf thymus enzyme of Lee et al. is that, under specific conditions, the mouse enzyme is active with poly(dA).oligo(dT) in the absence of PCNA, whereas the activity of the calf thymus enzyme with this template is reported to be completely dependent on PCNA. The reason for this difference is not known at this time. The second mouse cell enzyme has a molecular mass of 112 kDa (from sedimentation velocity of 6.3 S and Stokes radius of 43.0 A) and consists of a single polypeptide of 123-125 kDa in denaturing gels (p125). On the basis of its apparent formation by dissociation of DNA polymerase delta, and multiple similarities with DNA polymerase delta in enzymatic properties, the p125 is provisionally identified as the 125-kDa polypeptide of DNA polymerase delta. The p125 does not respond to PCNA, suggesting that the 50-kDa polypeptide is required for the stimulation of DNA polymerase delta by PCNA. The presence of the p125 in cell extracts would explain reports that DNA polymerase delta consists of a single polypeptide of approximately 125 kDa and/or thast it has a smaller molecular mass than DNA polymerase delta of Lee et al. and is not affected by PCNA (this does not apply to PCNA-independent DNA polymerase delta-like enzymes with higher molecular mass than the polymerase delta of Lee et al., which have recently been named DNA polymerases epsilon).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号