首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tet(L) and Tet(K) are specific antibiotic-resistance determinants. They catalyze efflux of a tetracycline(Tc)-divalent metal complex in exchange for protons, as do other Tet efflux proteins. These Tet proteins also catalyze Na+ and K+ exchange for protons. Each of the "cytoplasmic substrates", Na+, K+ and the Tc-metal ion complex, can also be exchanged for K+, a catalytic mode that accounts for the long-recognized K+ uptake capacity conferred by some Tet proteins. The multiple catalytic modes of Tet(L) and Tet(K) provide potential new avenues for development of inhibitors of these efflux systems as well as avenues for exploration of structure-function relationships. The multiple catalytic modes of Tet(L), which is chromosomally encoded in Bacillus subtilis, also correspond to diverse physiological roles, including roles in antibiotic-, Na+-, and alkali-resistance as well as K+ acquisition. The use of K+ as an external coupling ion may contribute not only to the organism's K+ uptake capacity but also to its ability to exclude Na+ and Tc at elevated pH values. Regulation of the chromosomal tetL gene by Tc has been proposed to involve a translational re-initiation mechanism that is novel for an antibiotic-resistance gene and increases Tet expression seven-fold. Other elements of tetL expression and its regulation are already evident, including gene amplification and use of multiple promoters. However, further studies are required to clarify the full panoply of regulatory mechanisms, and their integration to ensure different levels of tetL expression that are optimal for its different functions. It will also be of interest to investigate the implications of Tet(L) and Tet(K) multifunctionality on the emergence and persistence of these antibiotic-resistance genes.  相似文献   

2.
Males and females share most of the same genes, so selection in one sex will typically produce a correlated response in the other sex. Yet, the sexes have evolved to differ in a multitude of behavioral, morphological, and physiological traits. How did this sexual dimorphism evolve despite the presence of a common underlying genome? We investigated the potential role of gene duplication in the evolution of sexual dimorphism. Because duplication events provide extra genetic material, the sexes each might use this redundancy to facilitate sex‐specific gene expression, permitting the evolution of dimorphism. We investigated this hypothesis at the genome‐wide level in Drosophila melanogaster, using the presence of sex‐biased expression as a proxy for the sex‐specific specialization of gene function. We expected that if sexually antagonistic selection is a potent force acting upon individual genes, duplication will result in paralog families whose members differ in sex‐biased expression. Gene members of the same duplicate family can have different expression patterns in males versus females. In particular, duplicate pairs containing a male‐biased gene are found more frequently than expected, in agreement with previous studies. Furthermore, when the singleton ortholog is unbiased, duplication appears to allow one of the paralog copies to acquire male‐biased expression. Conversely, female‐biased expression is not common among duplicates; fewer duplicate genes are expressed in the female‐soma and ovaries than in the male‐soma and testes. Expression divergence exists more in older than in younger duplicates pairs, but expression divergence does not correlate with protein sequence divergence. Finally, genomic proximity may have an effect on whether paralogs differ in sex‐biased expression. We conclude that the data are consistent with a role of gene duplication in fostering male‐biased, but not female‐biased, gene expression, thereby aiding the evolution of sexual dimorphism.  相似文献   

3.
PDZ domains in bacterial proteins   总被引:6,自引:1,他引:5  
  相似文献   

4.
The duplication-degeneration-complementation model of duplicate gene preservation by subfunctionalisation is currently the best explanation for the high level of retention of duplicate genes in early vertebrate evolution. But a direct test of the applicability of this model to such ancient evolutionary events may be difficult. More likely, recent duplications in other lineages will allow us to establish general principles concerning the fate of genes of different types that are duplicated in different ways. These principles may be then extrapolated to understanding the early evolution of the vertebrates.  相似文献   

5.
We investigated the evolution of transmembrane (TM) topology by detecting partial sequence repeats in TM protein sequences and analyzing them in detail. A total of 377 sequences that seem to have evolved by internal gene duplication events were found among 38,124 predicted TM protein sequences (except for single-spannings) from 87 prokaryotic genomes. Various types of internal duplication patterns were identified in these sequences. The majority of them are diploid-type (including quasi-diploid-type) duplication in which a primordial protein sequence was duplicated internally to become an extant TM protein with twice as many TM segments as the primordial one, and the remaining ones are partial duplications including triploid-type. The diploid-type repeats are recognized in many 8-tms, 10-tms and 12-tms TM protein sequences, suggesting the diploid-type duplication was a principle mechanism in the evolutionary development of these types of TM proteins. The "positive-inside" rule is satisfied in whole sequences of both 10-tms and 8-tms TM proteins and in both halves of 10-tms proteins while not necessarily in the second half of 8-tms proteins, providing fit examples of "internal divergent topology evolution" likely occurred after a diploid-type internal duplication event. From analyzing the partial duplication patterns, several evolutionary pathways were recognized for 6-tms TM proteins, i.e. from primordial 2-tms, 3-tms and 4-tms TM proteins to extant 6-tms proteins. Similarly, the duplication pattern analysis revealed plausible evolution scenarios that 7-tms TM proteins have arisen from 3-tms, 4-tms and 5-tms TM protein precursors via partial internal gene duplications.  相似文献   

6.
Gene duplication as a major force in evolution   总被引:4,自引:0,他引:4  
Gene duplication is an important mechanism for acquiring new genes and creating genetic novelty in organisms. Many new gene functions have evolved through gene duplication and it has contributed tremendously to the evolution of developmental programmes in various organisms. Gene duplication can result from unequal crossing over, retroposition or chromosomal (or genome) duplication. Understanding the mechanisms that generate duplicate gene copies and the subsequent dynamics among gene duplicates is vital because these investigations shed light on localized and genomewide aspects of evolutionary forces shaping intra-specific and inter-specific genome contents, evolutionary relationships, and interactions. Based on whole-genome analysis of Arabidopsis thaliana, there is compelling evidence that angiosperms underwent two whole-genome duplication events early during their evolutionary history. Recent studies have shown that these events were crucial for creation of many important developmental and regulatory genes found in extant angiosperm genomes. Recent studies also provide strong indications that even yeast (Saccharomyces cerevisiae), with its compact genome, is in fact an ancient tetraploid. Gene duplication can provide new genetic material for mutation, drift and selection to act upon, the result of which is specialized or new gene functions. Without gene duplication the plasticity of a genome or species in adapting to changing environments would be severely limited. Whether a duplicate is retained depends upon its function, its mode of duplication, (i.e. whether it was duplicated during a whole-genome duplication event), the species in which it occurs, and its expression rate. The exaptation of preexisting secondary functions is an important feature in gene evolution, just as it is in morphological evolution.  相似文献   

7.
The sequences of six tetracycline efflux proteins and three transport proteins which have some resemblance to them were compared. The tetracycline efflux proteins fall into three families: (i) those encoded by pBR322, RP1, and Tn10 (Escherichia coli); (ii) pT181 (Staphylococcus aureus) and pTHT15 (Bacillus subtilis); and (iii) tet347 (Streptomyces rimosus). There is global sequence homology within each of the first two families, but there is none between the families. The pT181/pTHT15 family shares close homology with the N-terminal half of the methylenomycin A efflux protein (Streptomyces coelicor), while tet347 resembles the C-terminal half. Portions of the N-terminal half of the Tn10-encoded protein show significant resemblance to portions in the N-terminal half of the pT181/pTHT15 family, but this sometimes occurs among transport proteins which do not have a common substrate. Tetracycline efflux proteins, therefore, appear to have arisen on at least two, or possibly three, separate occasions, probably from other transport proteins.  相似文献   

8.
Many proteins consist of several structural domains. These multi-domain proteins have likely been generated by selective genome growth dynamics during evolution to perform new functions as well as to create structures that fold on a biologically feasible time scale. Domain units frequently evolved through a variety of genetic shuffling mechanisms. Here we examine the protein domain statistics of more than 1000 organisms including eukaryotic, archaeal and bacterial species. The analysis extends earlier findings on asymmetric statistical laws for proteome to a wider variety of species. While proteins are composed of a wide range of domains, displaying a power-law decay, the computation of domain families for each protein reveals an exponential distribution, characterizing a protein universe composed of a thin number of unique families. Structural studies in proteomics have shown that domain repeats, or internal duplicated domains, represent a small but significant fraction of genome. In spite of its importance, this observation has been largely overlooked until recently. We model the evolutionary dynamics of proteome and demonstrate that these distinct distributions are in fact rooted in an internal duplication mechanism. This process generates the contemporary protein structural domain universe, determines its reduced thickness, and tames its growth. These findings have important implications, ranging from protein interaction network modeling to evolutionary studies based on fundamental mechanisms governing genome expansion.  相似文献   

9.
The immunoglobulin-related chains of cell-surface receptors for the Fc region of immunoglobulins (FCERIα, FcγRI, FcγRII, and FcγRIIIα) are encoded by members of a gene family. Phylogenetic analysis of representative members of this family from mammals revealed that FcγRIIIα genes of human, mouse, and rat are not orthologous to one another in the region of the gene encoding the Immunoglobulin C2-set domains. In phylogenetic trees of this region, FcγRIIIα and FcγRII clustered together. However, in trees based on both coding and noncoding regions 5′ and 3′ to the C2 domains, FcγRIIIα genes of human, mouse, and rat clustered together. This pattern of relationship is most easily explained as a result of two independent recombinational events occurring in the mouse and rat after these two species diverged, in each of which the exons encoding the C2 domains were donated to an FcγRIIIα gene by an FcγRII gene.  相似文献   

10.
Gene duplication is an important evolutionary process thought to facilitate the evolution of phenotypic diversity. We investigated if gene duplication was associated with the evolution of phenotypic differences in a highly social insect, the honeybee Apis mellifera. We hypothesized that the genetic redundancy provided by gene duplication could promote the evolution of social and sexual phenotypes associated with advanced societies. We found a positive correlation between sociality and rate of gene duplications across the Apoidea, indicating that gene duplication may be associated with sociality. We also discovered that genes showing biased expression between A. mellifera alternative phenotypes tended to be found more frequently than expected among duplicated genes than singletons. Moreover, duplicated genes had higher levels of caste‐, sex‐, behavior‐, and tissue‐biased expression compared to singletons, as expected if gene duplication facilitated phenotypic differentiation. We also found that duplicated genes were maintained in the A. mellifera genome through the processes of conservation, neofunctionalization, and specialization, but not subfunctionalization. Overall, we conclude that gene duplication may have facilitated the evolution of social and sexual phenotypes, as well as tissue differentiation. Thus this study further supports the idea that gene duplication allows species to evolve an increased range of phenotypic diversity.  相似文献   

11.
12.
13.
14.
In addition to the nuclear genome, organisms have organelle genomes. Most of the DNA present in eukaryotic organisms is located in the cell nucleus. Chloroplasts have independent genomes which are inherited from the mother. Duplicated genes are common in the genomes of all organisms. It is believed that gene duplication is the most important step for the origin of genetic variation, leading to the creation of new genes and new gene functions. Despite the fact that extensive gene duplications are rare among the chloroplast genome, gene duplication in the chloroplast genome is an essential source of new genetic functions and a mechanism of neo-evolution. The events of gene transfer between the chloroplast genome and nuclear genome via duplication and subsequent recombination are important processes in evolution. The duplicated gene or genome in the nucleus has been the subject of several recent reviews. In this review, we will briefly summarize gene duplication and evolution in the chloroplast genome. Also, we will provide an overview of gene transfer events between chloroplast and nuclear genomes.  相似文献   

15.
16.
17.
Phylogenetic analysis of tetracycline resistance genes, which confer resistance due to the efflux of tetracycline from the cell catalyzed by drug:H(+) antiport and share a common structure with 12 transmembrane segments (12-TMS), suggested the monophyletic origin of these genes. With a high degree of confidence, this tet subcluster unifies 11 genes encoding tet efflux pumps and includes tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(H), tet(J), tet(Y), tet(Z), and tet(30). Phylogeny-aided alignments were used to design a set of PCR primers for detection, retrieval, and sequence analysis of the corresponding gene fragments from a variety of bacterial and environmental sources. After rigorous validation with the characterized control tet templates, this primer set was used to determine the genotype of the corresponding tetracycline resistance genes in total DNA of swine feed and feces and in the lagoons and groundwater underlying two large swine production facilities known to be impacted by waste seepage. The compounded tet fingerprint of animal feed was found to be tetCDEHZ, while the corresponding fingerprint of total intestinal microbiota was tetBCGHYZ. Interestingly, the tet fingerprints in geographically distant waste lagoons were identical (tetBCEHYZ) and were similar to the fecal fingerprint at the third location mentioned above. Despite the sporadic detection of chlortetracycline in waste lagoons, no auxiliary diversity of tet genes in comparison with the fecal diversity could be detected, suggesting that the tet pool is generated mainly in the gut of tetracycline-fed animals, with a negligible contribution from selection imposed by tetracycline that is released into the environment. The tet efflux genes were found to be percolating into the underlying groundwater and could be detected as far as 250 m downstream from the lagoons. With yet another family of tet genes, this study confirmed our earlier findings that the antibiotic resistance gene pool generated in animal production systems may be mobile and persistent in the environment with the potential to enter the food chain.  相似文献   

18.
Most proteins comprise one or several domains. New domain architectures can be created by combining previously existing domains. The elementary events that create new domain architectures may be categorized into three classes, namely domain(s) insertion or deletion (indel), exchange and repetition. Using 'DomainTeam', a tool dedicated to the search for microsyntenies of domains, we quantified the relative contribution of these events. This tool allowed us to collect homologous bacterial genes encoding proteins that have obviously evolved by modular assembly of domains. We show that indels are the most frequent elementary events and that they occur in most cases at either the N- or C-terminus of the proteins. As revealed by the genomic neighbourhood/context of the corresponding genes, we show that a substantial number of these terminal indels are the consequence of gene fusions/fissions. We provide evidence showing that the contribution of gene fusion/fission to the evolution of multi-domain bacterial proteins is lower-bounded by 27% and upper-bounded by 64%. We conclude that gene fusion/fission is a major contributor to the evolution of multi-domain bacterial proteins.  相似文献   

19.
The nucleotide sequence of the chloramphenicol-resistance gene (cmr) of Rhodococcus fascians NCPPB 1675 (located on the conjugative plasmid pRF2) allowed the identification of two possible open reading frames (ORFs), of which ORF1 was consistent with the mutational analysis. Biochemical analysis of cmr revealed that it does not encode an antibiotic-modifying enzyme. The amino acid sequence of ORF1 predicted a hydrophobic protein, with 12 putative membrane-spanning domains, homologous to proteins involved in the efflux of tetracycline across the plasma membrane. Expression of the cmr gene was induced by addition of chloramphenicol to the growth media. The promoter of this gene was restricted to 50 bp upstream from a 200 bp 5'-untranslated mRNA region, the latter containing two inverted repeats. At the amino acid level, the cmr gene is 52% identical to a previously identified chloramphenicol-resistance determinant in Streptomyces lividans, indicating a wider dispersion of this type of cmr gene among the actinomycetes.  相似文献   

20.

Background  

The biosynthesis of aflatoxin (AF) involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST) and O -methylsterigmatocystin (OMST), the respective penultimate and ultimate precursors of AF. Although these precursors are chemically and structurally very similar, their accumulation differs at the species level for Aspergilli. Notable examples are A. nidulans that synthesizes only ST, A. flavus that makes predominantly AF, and A. parasiticus that generally produces either AF or OMST. Whether these differences are important in the evolutionary/ecological processes of species adaptation and diversification is unknown. Equally unknown are the specific genomic mechanisms responsible for ordering and clustering of genes in the AF pathway of Aspergillus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号