首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
12-Lipoxygenases oxygenate arachidonic acid producing its 12S-hydroperoxy derivative and are well known as platelet and leukocyte enzymes. When a peroxidase-linked immunoassay of the enzyme according to the avidin-biotin method was applied to the cytosol fractions from various parts of porcine brain, a considerable amount of the enzyme was found in the anterior pituitary. The enzyme level (about 200 ng/mg cytosol protein) corresponded to about 6% of the enzyme content in porcine peripheral leukocytes. Posterior and intermediate lobes showed about one-tenth of the enzyme level of anterior pituitary. Other parts of porcine brain contained the 12-lipoxygenase in amounts below 7 ng/mg cytosol protein. The cytosol fraction (0.7 mg of protein) of anterior pituitary produced 12S-hydroxy-5,8,10,14-eicosatetraenoic acid from 25 microM arachidonic acid in about 34% conversion at 24 degrees C for 5 min, giving a specific enzyme activity about 3 nmol/min/mg protein. Furthermore, various octadecapolyenoic acids were oxygenated almost as fast as the arachidonate 12-oxygenation. When anterior pituitary was investigated immunohistochemically with anti-12-lipoxygenase antibody, most of the immunostained cells were certain parenchymal cells with granules, which were not blood cells. These biochemical and immunohistochemical results provide a good reason for considering that 12-lipoxygenase does play an important role in pituitary function.  相似文献   

2.
Linoleic acid oxidation by 12-lipoxygenase from porcine leukocytes has been studied as affected by linoleyl-hydroxamic acid. Linoleyl-hydroxamic acid has been found to be an effective inhibitor of porcine leucocyte 12-lipoxygenase. Aerobic preincubation of 12-lipoxygenase with 0.1-6 microM of linoleyl-hydroxamic acid led to a time- and dose-dependent inhibition of the enzyme. The inhibitor's concentration able to induce a 50% loss of the enzyme activity with and without 15-min preincubation were 3.5 and 0.65 microM, respectively. Experimental results obeyed a kinetic scheme, which supposed 2 extra substrate molecules bounding with the enzyme-substrate complex in the presence of linoleyl-hydroxamic acid.  相似文献   

3.
12-Lipoxygenases were found in the cytosol fraction of bovine leukocytes and platelets. The bovine leukocyte enzyme was immunoprecipitable by a monoclonal antibody directed to 12-lipoxygenase of porcine leukocytes, but not by a monoclonal antibody against the human platelet enzyme. In contrast, the bovine platelet enzyme cross-reacted only with antibody against the human platelet enzyme. The leukocyte and platelet enzymes were partially purified to final specific enzyme activities of 1.1 and 0.3 mumol/min/mg protein, respectively, by immunoaffinity chromatography using each cross-reacting antibody as a ligand. The leukocyte enzyme reacted with various octadecapolyenoic acids as well as eicosapolyenoic and docosapolyenoic acids, whereas the platelet enzyme was almost inactive with octadecapolyenoic acids. Moreover, the two enzymes showed different heat-instabilities and reaction time courses. Thus, the 12-lipoxygenases of bovine leukocytes and platelets were immunologically and catalytically distinct enzymes.  相似文献   

4.
12-Lipoxygenase oxygenates the 12 position of arachidonic acid and produces its 12-hydroperoxy derivative. The enzyme is found in greatest amounts in porcine leukocytes and is distributed widely in various other tissues. An anti-12-lipoxygenase antibody was raised in rabbits with the immunoaffinity-purified enzyme as an antigen and was used in immunohisto- and cytochemical studies on the enzyme, the physiological significance of which remains to be clarified. When peripheral blood cells were examined by immunoelectron microscopy, the enzyme was found in neutrophils and monocytes but was not detected in lymphocytes, platelets, and erythrocytes. In immunostained neutrophils and monocytes the enzyme was localized in the cytosol but was not clearly detected in the plasma membrane, nuclear membrane, endoplasmic reticulum, and other organelles. Several other organs known to contain considerable amounts of 12-lipoxygenase were also investigated immunohistochemically, i.e., alimentary tract (ileum and jejunum), lymphatic organs (spleen, lymph node, and thymus), ovary, lung, liver, and others. In these organs, resident mast cells and granulocytes infiltrating the interstitial tissues were positively immunostained. The enzyme was not detected in parenchymal cells of these organs under our experimental conditions.  相似文献   

5.
Arachidonate 5-lipoxygenase is an enzyme that catalyzes the oxygenation of arachidonic acid, producing 5-hydroperoxy acid. This enzymatic reaction initiates the biosynthesis of various bioactive leukotrienes. An antiserum was raised in a rabbit against the purified 5-lipoxygenase of porcine leukocytes, and various types of porcine leukocytes were immunostained by use of the antibody. As examined by light and electron microscopy, neutrophils and eosinophils were positively stained. The 5-lipoxygenase was localized in the cytoplasm but not in the plasma membrane and subcellular organelles of the positively stained cells. In contrast, lymphocytes were unstained. In porcine ileum, the majority of 5-lipoxygenase-positive cells were eosinophils and mast cells resident in the lamina propria mucosae, whereas parenchymal cells were not stained. In porcine lung, certain bronchiolar or bronchial epithelial cells were clearly immunostained, in addition to eosinophils and mast cells found in the interstitium.  相似文献   

6.
Arachidonate 12-lipoxygenase purified from porcine leukocytes shows 14R-oxygenase and 14,15-leukotriene A synthase activities with 15-hydroperoxy-arachidonic acid as substrate. The enzyme transformed 5,15-dihydroperoxy-arachidonic acid to several compounds with a conjugated tetraene. A major product was identified as 5S,14R,15S-trihydroperoxy-6,10,12-trans-8-cis-eicosatetraenoic acid, which was reduced to 5S,14R,15S-8-cis-lipoxin B. A requirement of molecular oxygen and the results of H218O experiments suggested that formation of the latter compound was attributed mostly to the 14R-oxygenase activity of the enzyme. There were several other minor products identified as lipoxin A and B isomers. They were produced presumably by hydrolysis of 14,15-epoxy compound formed by the leukotriene A synthase activity of 12-lipoxygenase.  相似文献   

7.
Arachidonate 5-lipoxygenase has been found so far in various types of leukocyte. When a homogenate of porcine pancreas was incubated with arachidonic acid, 5-hydroxy-6,8,11,14-eicosatetraenoic acid was predominantly produced concomitant with small amounts of compounds derived from leukotriene A4. After differential centrifugation of the homogenate, the 5-lipoxygenase activity was found predominantly in the 1000 x g pellet and 105,000 x g supernatant. When porcine pancreas was investigated immunohistochemically with anti-5-lipoxygenase antibody, Langerhans islets were unstained, and infiltration of 5-lipoxygenase-positive leukocytes was hardly observed. In contrast, acinar cells were positively stained. Immunoelectron microscopy demonstrated the localization of the enzyme along the nuclear membranes of the acinar cells.  相似文献   

8.
Purified recombinant human 5-lipoxygenase was used to investigate the catalytic properties of the protein in the presence and absence of leukocyte stimulatory factors. Recombinant human 5-lipoxygenase was purified to apparent homogeneity (95-99%) from a high expression baculovirus system by chromatography on ATP-agarose with a yield of 0.6 mg of protein per 100 ml of culture (2 x 10(8) cells) and a specific activity of 3-6 mumol of 5-hydroperoxyeicosatetraenoic acid (5-HPETE) per mg of protein in the presence of ATP, Ca2+, and phosphatidylcholine as the only factors. In the absence of leukocyte factors, the reaction catalyzed by the purified recombinant enzyme showed a half-time of maximal 5-HPETE formation of 0.5-0.7 min and was sensitive to the selective 5-lipoxygenase inhibitors BW755C (IC50 = 13 microM) and L-656,224 (IC50 = 0.8 microM). The reaction products of arachidonic acid oxidation were 5-HPETE and 6-trans- and 12-epi-6-trans-leukotriene B4, the nonenzymatic hydrolysis products of leukotriene A4 (LTA4), indicating that the purified protein expressed both the 5-oxygenase and leukotriene A4 synthase activities (ratio 6:1). The microsomal fraction and the 60-90% ammonium sulfate precipitate fraction from sonicated human leukocytes did not increase product formation by the isolated enzyme when assayed in the presence of ATP, Ca2+, and phosphatidylcholine. These factors were found to stabilize 5-lipoxygenase during preincubation of the enzyme at 37 degrees C with the assay mixture but they failed to stimulate enzymatic activity when added at the end of the preincubation period. The results demonstrate that human 5-lipoxygenase can be isolated in a catalytically active form and that protein factors from leukocytes protect against enzyme inactivation but are not essential for enzyme activity.  相似文献   

9.
Four mouse monoclonal IgG1 antibody-producing cell lines (5LO-1, 5LO-2, 5LO-3, 5LO-4), produced against highly purified human leukocyte 5-lipoxygenase have been characterized. The monoclonal antibodies produced by these cell lines exhibited differential reactivity against 5-lipoxygenase as determined by ELISA and immunoprecipitation analyses. Monoclonal antibodies 5LO-2 and 5LO-3 inhibited the activity of recombinant human leukocyte 5-lipoxygenase in a dose-dependent manner. This inhibition was selective for 5-lipoxygenase activity since these monoclonal antibodies did not inhibit human leukocyte 15-lipoxygenase or porcine leukocyte 12-lipoxygenase.  相似文献   

10.
The cytosol fraction from a thoroughly irrigated canine cerebrum was subjected to immunoaffinity chromatography using a monoclonal antibody against porcine leukocyte 12-lipoxygenase. Arachidonate 12-lipoxygenase eluted from the column with some retardation. The enzyme, with a specific activity of 9 nmol/min/mg of protein, converted arachidonic acid to 12(S)-hydroperoxy-5,8,10,14-eicosatetraenoic acid. The enzyme was active not only with arachidonic acid, but also with linoleic and alpha-linolenic acids. In contrast, 12-lipoxygenase of canine platelets was almost inactive with linoleic and alpha-linolenic acids, and the platelet enzyme was also distinguished from the cerebral enzyme in terms of reactivity with the anti-12-lipoxygenase antibody. 12-Lipoxygenase activity was also detected in the cytosol fractions of other parts of canine brain: basal ganglia, hippocampus, cerebellum, olfactory bulb, and medulla oblongata.  相似文献   

11.
Challenge of human peripheral blood leukocytes with ionophore A23187 resulted in leukotriene (LT) synthesis, a decrease in total cellular 5-lipoxygenase activity, and a change in the subcellular localization of the enzyme. In homogenates from control cells, greater than 90% of the 5-lipoxygenase activity and protein was localized in the cytosol (100,000 X g supernatant). Ionophore challenge (2 microM) resulted in a loss of approximately 55% of the enzymatic activity and 35% of the enzyme protein from the cytosol. Concomitantly, there was an accumulation of inactive 5-lipoxygenase in the membrane (100,000 X g pellets) which accounted for at least 45% of the lost cytosolic protein. There was a good correlation between the quantities of LT synthesized and 5-lipoxygenase recovered in the membrane over an ionophore concentration range of 0.1-6 microM. The time course of the membrane association was similar to that of LT synthesis. Furthermore, although the pellet-associated enzyme recovered from ionophore-treated leukocytes was inactive, an irreversible, Ca2+-dependent membrane association of active 5-lipoxygenase could be demonstrated in cell-free systems. To determine whether ionophore treatment induced proteolytic degradation of 5-lipoxygenase, the total activity and protein content of 10,000 X g supernatants from control and ionophore-treated cells were examined. These supernatants, which included both cytosolic and membrane-associated enzyme, showed a 35% loss of 5-lipoxygenase activity but only an 8% loss of enzyme protein as a result of ionophore challenge (2 microM). Therefore, the majority of the loss of 5-lipoxygenase activity was most likely due to suicide inactivation during the LT synthesis, rather than to proteolytic degradation. Together these results are consistent with the hypothesis that ionophore treatment results in a Ca2+-dependent translocation of 5-lipoxygenase from the cytosol to a membrane-bound site, that the membrane-associated enzyme is preferentially utilized for LT synthesis, and that it is consequently inactivated. Thus, membrane translocation of 5-lipoxygenase may be an important initial step in the chain of events leading to full activation of this enzyme in the intact leukocyte.  相似文献   

12.
Arachidonate 12-lipoxygenases of porcine and bovine leukocytes were different in substrate specificity and immunogenicity from the enzyme of bovine platelets (Arch. Biochem. Biophys. (1988) 266, 613). In order to extend the comparative studies on the two types of 12-lipoxygenase, we purified the enzyme from the cytosol of human platelets by immunoaffinity chromatography to a specific activity of about 0.3 mumol/min per mg protein at 37 degrees C. The purified enzyme was active with eicosapolyenoic acids and docosahexaenoic acid. Linoleic and linolenic acids were poor substrates in contrast to the high reactivity of the leukocyte enzymes with these octadecapolyenoic acids. The finding that the human platelet enzyme catalyzed 15-oxygenation of 5S-hydroxy-6,8,11,14-eicosatetraenoic acid, raised a question if lipoxins were produced by incubation of the enzyme with leukotriene A4. However, the leukotriene A4 was scarcely transformed to lipoxin isomers by 12-lipoxygenases of human and bovine platelets. In sharp contrast, the porcine and bovine leukocyte enzymes converted leukotriene A4 to various lipoxin isomers by the reaction rates of 3% and 2% of the arachidonate 12-oxygenation. Thus, 12-lipoxygenases of human and bovine platelets were catalytically distinct from the porcine and bovine leukocyte enzymes in terms of their reactivities not only with linoleic and linolenic acids, but also with leukotriene A4 as lipoxin precursor.  相似文献   

13.
Arachidonate 12-lipoxygenase of porcine leukocytes, which was purified to homogeneity by immunoaffinity chromatography, was analyzed for iron content by atomic absorption spectrophotometry. The enzyme contained 0.70 +/- 0.09 g atom of iron per mol of enzyme (mean +/- S.D., n = 4). Inorganic iron, which was added to the enzyme solution as an internal standard, was recovered in almost 100% yield. Among various iron chelators tested, only 2,2'-dipyridyl at 1 mM inactivated the enzyme by 87%, but the enzyme was not reactivated by the addition of excess ferrous or ferric iron.  相似文献   

14.
In this study we present evidence for the existence of an intrinsic 12-lipoxygenase in the bovine polymorphonuclear leukocyte which differs from the well-known platelet 12-lipoxygenase. Intact bovine polymorphonuclear leukocytes synthesize predominantly 5-lipoxygenase products. However, this 5-lipoxygenase activity disappears completely upon sonication of the cells, whereas a 12-lipoxygenase activity then becomes apparent. This 12-lipoxygenase resembles the platelet 12-lipoxygenase in metabolizing arachidonic acid into 12(S)-hydroxyeicosatetraenoic acid and in being independent of Ca2+ as well as of ATP. The most striking difference between the two 12-lipoxygenases is their behaviour towards linoleic acid. While the platelet 12-lipoxygenase does not convert linoleic acid, the 12-lipoxygenase from bovine polymorphonuclear leukocytes, apparent only in the cell-free system, converts linoleic acid into 13-hydroxyoctadecadienoic acid as efficiently as it converts arachidonic acid into 12-hydroxyeicosatetraenoic acid. This provides a convenient method to distinguish both 12-lipoxygenase activities. The fact that this new 12-lipoxygenase is able to metabolize linoleic acid into 13-hydroxyoctadecadienoic acid suggests that this enzyme, in contrast to platelet 12-lipoxygenase, resembles 5-lipoxygenases in showing a preference for hydrogen abstraction at a position which is determined by the distance to the carboxylic end of the fatty acid.  相似文献   

15.
Cloned 15-lipoxygenase has been expressed for the first time in eukaryotic and prokaryotic cells. Transfection of osteosarcoma cells with a mammalian expression plasmid containing the cDNA for human reticulocyte 15-lipoxygenase resulted in cell lines that were capable of oxidizing body arachidonic acid and linoleic acid. The lipoxygenase metabolites were identified by reverse-phase and straight-phase high pressure liquid chromatography, ultraviolet spectroscopy, and direct mass spectrometry, verifying that the cDNA for 15-lipoxygenase encodes an enzyme with authentic 15-lipoxygenase activity. Incubation of the transformed cells with arachidonic acid generated 15-hydroxyeicosatetraenoic acid (HETE) and 12-HETE in a ratio of 8.6 to 1, demonstrating that 15-lipoxygenase can also perform 12-lipoxygenation. Lesser amounts of 15-keto-ETE, four isomers of 8,15-diHETE, and one isomer of 14,15-diHETE were observed. Incubation with linoleic acid generated predominantly 13-hydroxy linoleic acid. The reaction was inhibited by eicosatetraynoic acid but not by indomethacin. Antibodies to a peptide corresponding to a unique region of the predicted amino acid sequence were generated and shown to react with one major band of 70 kDa on immunoblots of human leukocyte 15-lipoxygenase. To obtain antibodies to the full length enzyme, the cDNA was subcloned into a bacterial expression vector and was expressed as a fusion with the CheY protein. The overexpressed protein was readily purified from bacteria and was shown to be immunoreactive to the peptide-derived antibody. Antibodies raised to this recombinant enzyme did not cross-react with human leukocyte 5-lipoxygenase but did identify 15-lipoxygenase in rabbit reticulocytes, human leukocytes, and tracheal epithelial cells, suggesting that the 15-lipoxygenases from these different cell types are structurally related.  相似文献   

16.
Rat basophilic leukemia cells exhibit 12-lipoxygenase activity only upon cell disruption. 12-Lipoxygenase may also possess 15-lipoxygenase activity, as is indicated by the formation of low amounts of 15(S)-HETE, in addition to the predominant product 12(S)-HETE, upon incubation of partially purified 12-lipoxygenase with arachidonic acid. With 5(S)-HPETE as substrate not only 5(S), 12(S)-diHETE and 5(S), 15(S)-diHETE are formed, but also LTA4, as was indicated by the presence of LTA4-derived LTB4-isomers. 12-Lipoxygenase from rat basophilic leukemia cells has many features in common with 12-lipoxygenase from bovine leukocytes. As was suggested for the latter enzyme, 12-lipoxygenase from rat basophilic leukemia cells may represent the remaining LTA4-synthase activity of 5-lipoxygenase, of which the 5-dioxygenase activity has disappeared upon cell disruption. Such a possible shift from 5-lipoxygenase activity to 12-lipoxygenase activity could not simply be induced by interaction of cytosolic 5-lipoxygenase with a membrane fraction after cell disruption, but may involve release of membrane-associated 5-lipoxygenase upon disruption of activated rat basophilic leukemia cells.  相似文献   

17.
12-Lipoxygenase from porcine leukocytes was partially purified by using of DEAE-Toyopearl chromatography (pH 7.5). Phosphatidylcholine and Phosphatidylinositol in reaction mixtures with mixed micelles Lubrol PX/linoleic acid inhibited the enzyme. The pH-optimum of lipoxygenase reaction in presence of phospholipids shifted into alkaline region. In the absence of phospholipids 3 additional substrate molecules bound with enzyme-substrate complex. In the presence of either phosphatidylcholine of phosphatidylinositol up to 2 substrate molecules bound with enzyme-substrate complex. The phospholipids competed with linoleic acid for one of the enzyme binding centers. A kinetic scheme of 12-lipoxygenase reaction has been proposed: Phosphatidylinositol lowered the values of Ks and Kns of the reaction of linoleic acid oxidation by 12-lipoxygenase, while phosphatidylcholine had opposite effect on these parameters. We suppose that phospholipids can regulate 12-lipoxygenase activity via control of the enzyme affinity to the substrate (polyunsaturated fatty acid).  相似文献   

18.
Leukotrienes are lipid mediators that are produced primarily by certain types of leukocytes. The synthesis of the leukotriene LTB4 is initiated by the enzyme 5-lipoxygenase and completed by LTA4 hydrolase. Epithelial cells constitutively express LTA4 hydrolase but normally lack 5-lipoxygenase. In this study, we report that the stratified squamous epithelial cells from inflamed or hyperplastic tissues of palatine and pharyngeal tonsils (nasopharyngeal-associated lymphoid tissue) express 5-lipoxygenase protein. The localization of 5-lipoxygenase was indicated by immunohistochemical staining and presence confirmed by immunoblot. Positive staining for 5-lipoxygenase in infiltrating leukocytes in inflamed tissues served as internal positive controls for immunohistochemical staining. Staining for 5-lipoxygenase in appendix tissue was negative for epithelial cells while positive for polymorphonuclear leukocytes, indicating that 5-lipoxygenase expression is not a general feature of epithelial cells in mucosa-associated lymphoid tissue. In tonsils, 5-lipoxygenase staining was pronounced in broad regions but reduced or absent in others, suggesting regional regulation of expression. Epithelial cells of tonsils were also positive for 5-lipoxygenase activating protein and leukotriene A4 hydrolase, indicating a capacity to produce LTB4. Taken together, these results suggest that the specialized epithelial cells of the mucosa-associated lymphoid tissue of human tonsils can synthesize LTB4. This lipid mediator may serve to modulate the function of cells within the lymphoid tissue as well as promote an inflammatory response.  相似文献   

19.
We have previously shown that porcine leukocytes convert leukotriene B4 (LTB4) to two major products, 10,11-dihydro-LTB4 and 10,11-dihydro-12-oxo-LTB4. Although we did not detect these products after incubation of LTB4 with human polymorphonuclear leukocytes, these cells converted 12-epi-6-trans-LTB4 to the corresponding 6,11-dihydro metabolite (i.e., there appeared to be a shift in the positions of the remaining double bonds). The objective of the present investigation was to determine whether 6-trans isomers of LTB4 are metabolized by porcine leukocytes by a pathway similar to LTB4, or whether they are metabolized by a pathway analogous to that in human leukocytes. We found that 6-trans-LTB4 and 12-epi-6-trans-LTB4 are metabolized more much extensively than LTB4 by porcine leukocytes. 6-trans-LTB4 appears to be converted by two different reductase pathways to two dihydro products differing in the positions of the two remaining double bonds between carbons 5 and 12. Dihydro-12-oxo and dihydro-5-oxo metabolites are also formed from this substrate. Porcine leukocytes also convert 6-trans-LTB4, presumably by a combination of the above two pathways, to tetrahydro, tetrahydro-12-oxo and tetrahydro-5-oxo metabolites, none of which possesses any conjugated double bonds. 12-epi-6-trans-LTB4 is also converted to tetrahydro metabolites by these cells. Experiments with deuterium-labeled 6-trans-LTB4 indicated that the deuterium in the 5-position was almost completely lost during the formation of tetrahydro-6-trans-LTB4, whereas about 80-85% of the deuterium in the 12-position was lost, suggesting a requirement for a 5-oxo intermediate. As with LTB4, 12-epi-8-cis-6-trans-LTB4, the product of the combined actions of 5-lipoxygenase and 12-lipoxygenase, was converted principally to dihydro and dihydro-12-oxo metabolites. Only a relatively small amount of the tetrahydro metabolite was detected.  相似文献   

20.
Flavonoids: potent inhibitors of arachidonate 5-lipoxygenase   总被引:2,自引:0,他引:2  
Various flavonoids were found to be relatively selective inhibitors of arachidonate 5-lipoxygenase which initiates the biosynthesis of leukotrienes with the activity of slow reacting substance of anaphylaxis. Cirsiliol (3',4',5-trihydroxy-6,7-dimethoxyflavone) was most potent, and the enzyme partially purified from rat basophilic leukemia cells was inhibited by 97% at a concentration of 10 microM (IC50, about 0.1 microM). 12-Lipoxygenases from bovine platelets and porcine leukocytes were also inhibited but at higher concentrations (IC50, about 1 microM), and fatty acid cyclooxygenase purified from bovine vesicular gland was scarcely affected. The compound at 10 microM suppressed by 99% the immunological release of slow reacting substance of anaphylaxis from passively sensitized guinea pig lung (IC50, about 0.4 microM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号