首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
Land use change and the global carbon cycle: the role of tropical soils   总被引:31,自引:4,他引:31  
Millions of hectares of tropical forest are cleared annually for agriculture, pasture, shifting cultivation and timber. One result of these changes in land use is the release of CO2 from the cleared vegetation and soils. Although there is uncertainty as to the size of this release, it appears to be a major source of atmospheric CO2, second only to the release from the combustion of fossil fuels. This study estimates the release of CO2 from tropical soils using a computer model that simulates land use change in the tropics and data on (1) the carbon content of forest soils before clearing; (2) the changes in the carbon content under the various types of land use; and (3) the area of forest converted to each use. It appears that the clearing and use of tropical soils affects their carbon content to a depth of about 40 cm. Soils of tropical closed forests contain approximately 6.7 kg C · m-2; soils of tropical open forests contain approximately 5.2 kg C · m-2 to this depth. The cultivation of tropical soils reduces their carbon content by 40% 5 yr after clearing; the use of these soils for pasture reduces it by about 20%. Logging in tropical forests appears to have little effect on soil carbon. The carbon content of soils used by shifting cultivators returns to the level found under primary forest about 35 yr after abandonment. The estimated net release of carbon from tropical soils due to land use change was 0.11–0.26 × 1015 g in 1980.  相似文献   

2.
Magana  Adiel E. M. 《Hydrobiologia》2001,458(1-3):141-149
Allochthonous coarse particulate organic matter (CPOM) input into the Njoro River was measured between January and June 1998 at two contrasting sites: open-canopy and closed-canopy sites. Bank runoff and aerial drift traps were used for collecting CPOM inputs over periods of two weeks. Collected litter was sorted into four categories: leaves, fruits, wood and plant fragments. Monthly input ranged from 77 to 228 g ash free dry weight m–1 for bank runoff input and from 64 to 129 g ash free dry weight m–2 for aerial input. The highest input of 228 g ash free dry weight m–1 was recorded in May at the closed-canopy site. Wood, fruits and plant fragments of particle size >100 m contributed a mean ± SE of 60±9% of the total inputs with the rest from leaf litter. The closed-canopy site had higher inputs (P<0.05) of bank and aerial input than the open canopy site. There was no relationship between total bank runoff input and rainfall (r s = 0.08), however, total aerial input increased with decrease in rainfall (r s = – 0.59). There were differences between inputs from different plant species (P<0.05) that ranked in the following order: Syzygium cordatum > Rhus natalensis > Pittosporum viridiflorum > Vangueria madagascariensis. Removal of riparian vegetation from the banks of the Njoro River would alter the quantity and quality of the litter and reduce CPOM inputs to the river and to a downstream lake with attendant consequences to the energy budget of biocoenoses in the two ecosystems.  相似文献   

3.
Within the framework of the Kyoto Protocol, the potential mitigation of greenhouse gas emissions by terrestrial ecosystems has placed focus on carbon sequestration following afforestation of former arable land. Central to this soil C sequestration are the dynamics of soil organic matter (SOM). In North Eastern Italy, a mixed deciduous forest was planted on continuous maize field soil with a strong C4 isotopic C signature 20 years ago. In addition, a continuous maize field and a relic of the original permanent grassland were maintained at the site, thus offering the opportunity to compare the impacts on soil C dynamics by conventional agriculture, afforestation and permanent grassland. Soil samples from the afforested, grassland and agricultured systems were separated in three aggregate size classes, and inter‐ vs. intra‐aggregate particulate organic matter was isolated. All fractions were analyzed for their C content and isotopic signature. The distinct 13C signature of the C derived from maize vegetation allowed the calculation of proportions of old vs. forest‐derived C of the physically defined fractions of the afforested soil. Long‐term agricultural use significantly decreased soil C content (?48%), in the top 10 cm, but not SOM aggregation, as compared to permanent grassland. After 20 years, afforestation increased the total amount of soil C by 23% and 6% in the 0–10 and in the 10–30 cm depth layer, respectively. Forest‐derived carbon contributed 43% and 31% to the total soil C storage in the afforested systems in the 0–10 and 10–30 cm depths, respectively. Furthermore, afforestation resulted in significant sequestration of new C and stabilization of old C in physically protected SOM fractions, associated with microaggregates (53–250 μm) and silt&clay (<53 μm).  相似文献   

4.
Archived soils can provide valuable information about changes in the carbon and carbon isotope content of soils during the past century. We characterized soil carbon dynamics in a Russian steppe preserve using a 100‐year‐old‐soil archive and modern samples collected from the same site. The site has been protected since 1885 to the present, during which time the region has experienced widespread conversion to cultivation, a decrease in fire frequency, and a trend of increasing precipitation. In the preserve, the amount of organic carbon did not change appreciably between the 1900 and 1997 sampling dates, with 32 kg C/m2 in the top meter and a third of that in the top 20 cm. Carbon and nitrogen stocks varied by less than 6% between two replicate modern soil pits or between the modern sites and the archive. Radiocarbon content decreased with depth in all sites and the modern SOM had positive Δ values near the surface due to nuclear weapons testing in the early 1960s. In the upper 10 cm, most of the SOM had a turnover time of 6–10 years, according to a model fit to the radiocarbon content. Below about 10 cm, the organic matter was almost all passive material with long (millennial) turnover times. Soil respiration Δ14CO2 on a summer day was 106–109‰, an isotopic disequilibrium of about 9‰ relative to atmospheric 14CO2. In both the modern and archive soil, the relative abundance of 13C in organic matter increased with depth by 2‰ in the upper meter from δ13C = ‐‐26‰ at 5 cm to ‐‐24‰ below a meter. In addition, the slope of δ13C vs. depth below 5 cm was the same for both soils. Given the age of the soil archive, these results give clear evidence that the depth gradients are not due to depletion of atmospheric 13CO2 by fossil fuel emissions but must instead be caused by isotopic fractionation between plant litter inputs and preservation of SOM. Overall, the data show that these soils have a large reservoir of recalcitrant C and stocks had not changed between sampling dates 100 years apart.  相似文献   

5.
We studied soil organic carbon (C) chemistry at the mountain birch forest‐tundra ecotone in three regions of the Fennoscandian mountain range with comparable vegetation cover but contrasting degrees of continentality and latitude. The aim of the study was to identify functional compound classes and their relationships to decomposition and spatial variation across the ecotone and latitudinal gradient. Solid‐state 13C nuclear magnetic resonance (CPMAS 13C NMR) was used to identify seven functional groups of soil organic C: alkyls, N‐alkyls, O‐alkyls, acetals, aromatics, phenolics and carboxyls. N‐alkyls, O‐alkyls and acetals are generally considered labile substrates for a large number of saprotrophic fungi and bacteria, whilst phenolics and aromatics are mainly decomposed by lignolytic organisms and contribute to the formation of soil organic matter together with aliphatic alkyls and carboxyls. All soils contained a similar proportional distribution of functional groups, although relatively high amounts of N‐alkyls, O‐alkyls and acetals were present in comparison to earlier published studies, suggesting that large amounts of soil C were potentially vulnerable to microbial degradation. Soil organic matter composition was different at the most southerly site (Dovrefjell, Norway), compared with the two more northerly sites (Abisko, Sweden, and Joatka, Norway), with higher concentrations of aromatics and phenolics, as well as pronounced differences in alkyl concentrations between forest and tundra soils. Clear differences between mountain birch forest and tundra heath soil was noted, with generally higher concentrations of labile carbon present in tundra soils. We conclude that, although mesic soils around the forest‐tundra ecotone in Fennoscandia are a potential source of C to the atmosphere in a changing environment, the response is likely to vary between comparable ecosystems in relation to latitude and continentality as well as soil properties especially soil nitrogen content and pH.  相似文献   

6.
The fate of immobilized N in soils is one of the great uncertainties in predicting C sequestration at increased CO2 and N deposition. In a dual isotope tracer experiment (13C, 15N) within a 4‐year CO2 enrichment (+200 ppmv) study with forest model ecosystems, we (i) quantified the effects of elevated CO2 on the partitioning of N; (ii) traced immobilized N into physically separated pools of soil organic matter (SOM) with turnover rates known from their 13C signals; and (iii) estimated the remobilization and thus, the bio‐availability of newly sequestered C and N. (1) CO2 enrichment significantly decreased NO3? concentrations in soil waters and export from 1.5 m deep lysimeters by 30–80%. Consequently, elevated CO2 increased the overall retention of N in the model ecosystems. (2) About 60–80% of added 15NH415NO3 were retained in soils. The clay fraction was the greatest sink for the immobilized 15N sequestering 50–60% of the total new soil N. SOM associated with clay contained only 25% of the total new soil C pool and had small C/N ratios (<13), indicating that it consists of humified organic matter with a relatively slow turn over rate. This implies that added 15N was mainly immobilized in stable mineral‐bound SOM pools. (3) Incubation of soils for 1 year showed that the remobilization of newly sequestered N was three to nine times smaller than that of newly sequestered C. Thus, inorganic inputs of N were stabilized more effectively in soils than C. Significantly less newly sequestered N was remobilized from soils previously exposed to elevated CO2. In summary, our results show firstly that a large fraction of inorganic N inputs becomes effectively immobilized in relative stable SOM pools and secondly that elevated CO2 can increase N retention in soils and hence it may tighten N cycling and diminish the risk of nitrate leaching to groundwater.  相似文献   

7.
Soil carbon is returned to the atmosphere through the process of soil respiration, which represents one of the largest fluxes in the terrestrial C cycle. The effects of climate change on the components of soil respiration can affect the sink or source capacity of ecosystems for atmospheric carbon, but no current techniques can unambiguously separate soil respiration into its components. Long‐term free air CO2 enrichment (FACE) experiments provide a unique opportunity to study soil C dynamics because the CO2 used for fumigation has a distinct isotopic signature and serves as a continuous label at the ecosystem level. We used the 13C tracer at the Duke Forest FACE site to follow the disappearance of C fixed before fumigation began in 1996 (pretreatment C) from soil CO2 and soil‐respired CO2, as an index of belowground C dynamics during the first 8 years of the experiment. The decay of pretreatment C as detected in the isotopic composition of soil‐respired CO2 and soil CO2 at 15, 30, 70, and 200 cm soil depth was best described by a model having one to three exponential pools within the soil system. The majority of soil‐respired CO2 (71%) originated in soil C pools with a turnover time of about 35 days. About 55%, 50%, and 68% of soil CO2 at 15, 30, and 70 cm, respectively, originated in soil pools with turnover times of less than 1 year. The rest of soil CO2 and soil‐respired CO2 originated in soil pools that turn over at decadal time scales. Our results suggest that a large fraction of the C returned to the atmosphere through soil respiration results from dynamic soil C pools that cannot be easily detected in traditionally defined soil organic matter standing stocks. Fast oxidation of labile C substrates may prevent increases in soil C accumulation in forests exposed to elevated [CO2] and may consequently result in shorter ecosystem C residence times.  相似文献   

8.
Increased plant productivity under elevated atmospheric CO2 concentrations might increase soil carbon (C) inputs and storage, which would constitute an important negative feedback on the ongoing atmospheric CO2 rise. However, elevated CO2 often also leads to increased soil moisture, which could accelerate the decomposition of soil organic matter, thus counteracting the positive effects via C cycling. We investigated soil C sequestration responses to 5 years of elevated CO2 treatment in a temperate spring wheat agroecosystem. The application of 13C‐depleted CO2 to the elevated CO2 plots enabled us to partition soil C into recently fixed C (Cnew) and pre‐experimental C (Cold) by 13C/12C mass balance. Gross C inputs to soils associated with Cnew accumulation and the decomposition of Cold were then simulated using the Rothamsted C model ‘RothC.’ We also ran simulations with a modified RothC version that was driven directly by measured soil moisture and temperature data instead of the original water balance equation that required potential evaporation and precipitation as input. The model accurately reproduced the measured Cnew in bulk soil and microbial biomass C. Assuming equal soil moisture in both ambient and elevated CO2, simulation results indicated that elevated CO2 soils accumulated an extra ~40–50 g C m?2 relative to ambient CO2 soils over the 5 year treatment period. However, when accounting for the increased soil moisture under elevated CO2 that we observed, a faster decomposition of Cold resulted; this extra C loss under elevated CO2 resulted in a negative net effect on total soil C of ~30 g C m?2 relative to ambient conditions. The present study therefore demonstrates that positive effects of elevated CO2 on soil C due to extra soil C inputs can be more than compensated by negative effects of elevated CO2 via the hydrological cycle.  相似文献   

9.
The distribution of ectomycorrhizas on Dryas octopetala L in grass heaths of the 450 km2 karst region known as the Burren in Western Ireland was examined in relation to soil factors and vegetation type. Ectomycorrhizas were identified or characterised from 56 soil cores from 30 sites, and the occurrence of each ectomycorrhizal (EM) type was quantified by estimating the total length of mycorrhizal tips of each type. Soil organic matter, total nitrogen, extractable phosphorus, pH and depth were the soil factors determined. In total, 24 EM types were recorded. The EM community of Dryas roots was significantly more species-rich in one vegetation type—Hyperico-Dryadetum—than in others (Arctostaphylo-Dryadetum or Asperulo-Seslerietum). Multiple linear regression analyses indicated that soil organic matter and soil depth explained a significant portion of the variation in EM abundance, while soil organic matter and extractable phosphorus explained a significant portion of the variation in EM diversity. Canonical correspondence analysis showed that some individual EM types (e.g. Craterellus lutescens, Cenococcum geophilum, Tomentella sp., Boletus sp.) exhibited distinct soil preferences, most markedly in relation to soil organic matter, which, in this analysis, was the main significant soil variable distinguishing the three vegetation types.  相似文献   

10.
The Okavango wetlands in north western Botswana are the most fire-prone environment in Botswana. Most of these fires are anthropogenic. The fires in this environment are thought to impact the environment negatively and therefore practices that are associated with extensive use of fire have been strongly criticized. Despite this, there has been little work done to understand how these fires impact the wetlands environment and its dynamics, especially the vegetation resources that are used by the local communities in the wetlands. The objective of the study was to identify fire spatial and temporal trends in relation to settlement distribution, through the use of remote sensing, socio-economic and phytosociological surveys. The fire history results show that geographically there has not been any significant change in vegetation structure and that in fact fires may have promoted biodiversity. The results of analysis show an overall variance on vegetation structure of 23% whereas the rest are unaccounted for. There is a strong association between settlements, ethnicities, literacy and fire occurrences. The most fire-prone areas are inhabited by communities that have used fire in the past for various resource use practices.  相似文献   

11.
Dynamics of soil organic carbon (SOC) inchronosequences of soils below forests that had beenreplaced by grazed pastures 3–25 years ago, wereinvestigated for two contrasting soil types (AndicHumitropept and Eutric Hapludand) in the Atlantic Zoneof Costa Rica. By forest clearing and subsequentestablishment of pastures, photosynthesis changes froma C-3 to a C-4 pathway. The accompanying changes inC-input and its 13C and 14Csignals, were used to quantify SOC dynamics. C-input from rootturnover at a pasture site was measured by sequentialharvesting and 14C-pulse labelling. With aspatial resolution of 5 cm, data on total SOC,13C and 14C of soil profileswere interpreted with a model that distinguishes threepools of SOC: active C, slow C and passive C,each with a 1-st order decomposition rate(ka, ks and kp). The modelincludes carbon isotope fractionation and depth-dependentdecomposition rates. Transport of C between soillayers was described as a diffusion process, whichaccounts for physical and biotic mixing processes.Calibrated diffusion coefficients were 0.42 cm2yr-1 for the Humitropept and 3.97 cm2yr-1 for the Hapludand chronosequence.Diffusional transport alone was insufficient foroptimal simulation; it had to be augmented bydepth-dependent decomposition rates to explain thedynamics of SOC, 13C and14C. Decomposition rates decreasedstrongly with depth. Upon increased diffusion,differences between calibrated decomposition rates ofSOC fractions between surface soils and subsoilsdiminished, but the concept of depth-dependentdecomposition had to be retained, to obtain smallresiduals between observed and simulated data. At areference depth of 15–20 cm ks was 90 yr-1in the Humitropept and 146 yr-1 in the Hapludand.Slow C contributed most to total organic C in surfacesoils, whereas passive C contributed most below 40 cmdepth. After 18–25 years of pasture, net loss of C was2180 g C m-2 for the Hapludand and 150 g m-2for the Humitropept soil.  相似文献   

12.

A, assimilation rate
a, fractionation against 13C for CO2 diffusion through air
b, net fractionation against 13C during CO2 fixation
Ca, ambient CO2 concentration
Cc, CO2 concentration at the chloroplast
Ci, intercellular CO2 concentration
D, vapour pressure deficit
En, needle transpiration rate
Ep, whole plant water use
gw, leaf internal transfer conductance to CO2
gs, stomatal conductance to water vapour
L, projected leaf area
NUE, nitrogen use efficiency
PEP, phosphoenolpyruvate
Rubisco, ribulose-1,5-biphosphate carboxylase
TDR, time domain reflectometry
WUE, water use efficiency
Δ, carbon isotope discrimination
δ13C, carbon isotope abundance parameter
δ13Ca, carbon isotopic composition of atmospheric CO2
θ, volumetric soil water content

The effect of nitrogen stress on needle δ13C, water-use efficiency (WUE) and biomass production in irrigated and dry land white spruce (Picea glauca (Moench) Voss) seedlings was investigated. Sixteen hundred seedlings, representing 10 controlled crosses, were planted in the field in individual buried sand-filled cylinders. Two nitrogen treatments were imposed, nitrogen stressed and fertilized. The ranking of δ13C of the crosses was maintained across all combinations of water and nitrogen treatments and there was not a significant genetic versus environmental interaction. The positive relationships between needle δ13C, WUE and dry matter production demonstrate that it should be possible to use δ13C as a surrogate for WUE, and to select for increased WUE without compromising yield, even in nitrogen deficient environments. Nitrogen stressed seedlings had the lowest needle δ13C in both irrigated and dry land conditions. There was a positive correlation between needle nitrogen content and δ13C that was likely associated with increased photosynthetic capacity. There was some indication that decreased nitrogen supply led to increased stomatal conductance and hence lower WUE. There was a negative correlation between intrinsic water use efficiency and photosynthetic nitrogen use efficiency (NUE). This suggests that white spruce seedlings have the ability to maximize NUE when water becomes limited. There was significant genetic variation in NUE that was maintained across treatments. Our results suggest that in white spruce, there is no detectable effect of anaplerotic carbon fixation and that it is more appropriate to use a value of 29‰ (‘Rubisco only’) for the net discrimination against 13C during CO2 fixation. This leads to excellent correspondence between values of Ci/Ca derived from gas exchange measurements or from δ13C.  相似文献   

13.
The objective of this study was to examine the chemical structure of the organic matter (SOM) of Oxisols soils in slash and burn agriculture, in relation to its biological properties and soil fertility. The CP/MAS 13C technique was used to identify the main structural groups in litter and fine roots as SOM precursors; to identify the changes on the nature of the SOM upon cultivation and the proportion of labile and stable components; and to identify the nature of the organics present in water extracts (DOC). Carbohydrates were the main structural components in litter whereas components such as carbonyl C, carboxyl C,O-alkyl C and alkyl C were more common in SOM. Phenolic C and the degree of aromaticity were similar in litter and SOM. Cultivation resulted in a small decrease in the relative proportion of carbohydrates in SOM, little change in the levels of O-alkyl C and carbonyl C, but an increase in carboxyl C, phenolic C and aromaticity of the SOM. The level of alkyl C in soil was higher than the level of O-alkyl C, indicating the importance of long-chain aliphatics along with lignins in the stabilization of the SOM in Oxisols. The SOM of Mollisols from the Canadian Prairies differed from the Oxisol, with a generally stronger expression of aromatic structures, particularly in a cultivated soil in relation to a native equivalent. Carbohydrate components were the predominant structures in the DOC, indicating their importance in nutrient cycling and vertical translocations in the Oxisol.  相似文献   

14.
We report an analysis of both the long‐ and short‐term drivers of the carbon (C) isotope composition (δ13C) values of current year needles of Pinus sylvestris L. linked to changing atmospheric carbon dioxide (CO2) concentrations (ca) and climate using data from a uniquely long‐term nitrogen (N) fertilization experiment in the north of Sweden (consisting of three N dosage levels and a control treatment) from 1970 until 2002. N loading produced trees with less negative δ13C of foliage, by around 0.45‰ on average, with the difference in δ13C between control and N treatments not dependant upon N dosage. The average δ13C values decreased at a rate of around 0.03‰ yr−1, even after accounting for the Suess effect (the decrease in the atmospheric CO2δ13C due to anthropogenic emissions of isotopically light CO2). This decrease is large enough to cause a significant, progressive change in the δ13C down through a soil profile. Modelled values of plant intrinsic water use efficiency (WUEi) and the ratio of leaf internal to external [CO2] (ci/ca) showed that this was the result of ci increasing in parallel with ca (while ci/ca increased), thus causing little change in WUEi over the 32 years of study. The residuals from the relationships between year and δ13C were used to examine the impact of climate on the interannual variation of C isotope composition of needles. This included the use of a fire hazard index (FHI) model, which integrates climatic factors known to influence plant stomatal conductance and hence δ13C. The FHI produced the best fit with δ13C values when climate data were averaged over the whole growth season (for control plots) and for July for all the N treatments, explaining ca. 60% of the total interannual variation in δ13C. Further, trees from the N treatments appeared more susceptible to air‐humidity‐based climate parameters, as seen from higher correlation coefficients, than were control trees. Thus, our data suggest the possibility of increased susceptibility to drought conditions in ecosystems with moderate to high N deposition rates. Also, there is the possibility that, because there was no apparent change in WUEi of P. sylvestris in this ecosystem over the last 32 years, the rate of sequestration of C into boreal ecosystems may not increase with ca, as has been predicted.  相似文献   

15.
Global warming, increasing CO2 concentration, and environmental disturbances affect grassland communities throughout the world. Here, we report on variations in the C3/C4 pattern of Inner Mongolian grassland derived from soil and vegetation. Soil samples from 149 sites covering an area of approximately 250 000 km2 within Inner Mongolia, People's Republic of China were analyzed for the isotopic composition (δ13C) of soil organic carbon (SOC). The contrast in δ13C between C3 and C4 plants allowed for calculation of the C3/C4 ratio from δ13C of SOC with a two‐member mixing model, which accounted for influences of aridity and altitude on δ13C of the C3 end‐member and for changes in δ13C of atmospheric CO2. Maps were created geostatistically, and showed a substantially lower C4 abundance in soil than in recent vegetation (?10%). The difference between soil and vegetation varied regionally and was most pronounced within an E–W belt along 44°N and in a mountainous area, suggesting a spread of C4 plants toward northern latitudes (about 1°) and higher altitudes. The areas of high C4 abundance for present vegetation and SOC were well delineated by the isotherms of crossover temperature based on the climatic conditions of the respective time periods. Our study indicates that change in the patterns of C3/C4 composition in the Inner Mongolia grassland was mainly triggered by increasing temperature, which overrode the antagonistic effect of rising CO2 concentrations.  相似文献   

16.
Acclimation of photosynthesis and respiration in shoots and ecosystem carbon dioxide fluxes to rising atmospheric carbon dioxide concentration (C a ) was studied in a brackish wetland. Open top chambers were used to create test atmospheres of normal ambient and elevated C a (=normal ambient + 34 Pa CO2) over mono-specific stands of the C3 sedge Scirpus olneyi, the dominant C3 species in the wetland ecosystem, throughout each growing season since April of 1987. Acclimation of photosynthesis and respiration were evaluated by measurements of gas exchange in excised shoots. The impact of elevated C a on the accumulation of carbon in the ecosystem was determined by ecosystem gas exchange measurements made using the open top chamber as a cuvette.Elevated C a increased carbohydrate and reduced Rubisco and soluble protein concentrations as well as photosynthetic capacity(A) and dark respiration (R d ; dry weight basis) in excised shoots and canopies (leaf area area basis) of Scirpus olneyi. Nevertheless, the rate of photosynthesis was stimulated 53% in shoots and 30% in canopies growing in elevated C a compared to normal ambient concentration. Elevated C a inhibited R d measured in excised shoots (–19 to –40%) and in seasonally integrated ecosystem respiration (R e ; –36 to –57%). Growth of shoots in elevated C a was stimulated 14–21%, but this effect was not statistically significant at peak standing biomass in midseason. Although the effect of elevated C a on growth of shoots was relatively small, the combined effect of increased number of shoots and stimulation of photosynthesis produced a 30% stimulation in seasonally integrated gross primary production (GPP). The stimulation of photosynthesis and inhibition of respiration by elevated C a increased net ecosystem production (NEP=GPP–R e ) 59% in 1993 and 50% in 1994. While this study consistently showed that elevated C a produced a significant increase in NEP, we have not identified a correspondingly large pool of carbon below ground.  相似文献   

17.
Wheat and maize were grown in a growth chamber with the atmospheric CO2 continuously labelled with 14C to study the translocation of assimilated carbon to the rhizosphere. Two different N levels in soil were applied. In maize 26–34% of the net assimilated 14C was translocated below ground, while in wheat higher values (40–58%) were found. However, due to the much higher shoot production in maize the total amount of carbon translocated below ground was similar to that of wheat. At high N relatively more of the C that was translocated to the root, was released into the soil due to increased root respiration and/or root exudation and subsequent microbial utilization and respiration. The evolution rate of unlabelled CO2 from the native soil organic matter decreased after about 25 days when wheat was grown at high N as compared to low N. This negative effect of high N in soil was not observed with maize.  相似文献   

18.
Tarré  R.  Macedo  R.  Cantarutti  R.B.  de Rezende  C. P.  Pereira  J.M.  Ferreira  E.  Alves  B.J.R.  Urquiaga  S.  Boddey  R.M. 《Plant and Soil》2001,234(1):15-26
The impact of forest clearance, and its replacement by Brachiaria pastures, on soil carbon reserves has been studied at many sites in the Brazilian Amazonia, but to date there appear to be no reports of similar studies undertaken in the Atlantic forest region of Brazil. In this study performed in the extreme south of Bahia, the changes in C and N content of the soil were evaluated from the time of establishment of grass-only B. humidicola and mixed B. humidicola/Desmodium ovalifolium pastures through 9 years of grazing in comparison with the C and N contents of the adjacent secondary forest. The decline in the content of soil C derived from the forest (C3) vegetation and the accumulation of that derived from the Brachiaria (C4) were followed by determining the 13C natural abundance of the soil organic matter (SOM). The pastures were established in 1987, 10 years after deforestation, and it was estimated that until 1994 there was a loss in forest-derived C in the top 30 cm of soil of approximately 20% (9.1 Mg C ha–1). After the establishment of the pastures, C derived from Brachiaria accumulated steadily such that at the final sampling (1997) it was estimated 13.9 Mg ha–1 was derived from this source under the grass-only pasture (0–30 cm). Samples taken from all pastures and the forest in 1997 to a depth of 100 cm showed that below 40 cm depth there was no significant contribution of the Brachiaria-derived C and that total C reserves under the grass/legume and the grass-only pastures were slightly higher than under the forest (not significant at P=0.05). The more detailed sampling under the pastures showed that to a depth of 30 cm there was significantly (P<0.05) more C under the mixed pasture than the grass-only pasture. It was estimated that from the time of establishment the apparent rate of C accumulation (0–100 cm depth) under the grass/legume pastures (1.17 Mg ha–1 yr–1) was almost double that under the grass-only pastures (0.66 Mg ha–1 yr–1). The data indicated that newly incorporated SOM derived from the Brachiaria had a considerably higher C:N ratio than that present under the forest.  相似文献   

19.
The predicted worldwide increase in arid areas and water stress episodes will strongly affect crop production. Plants have developed a wide diversity of physiological mechanisms for drought tolerance. A decline in photosynthesis and thus yield production is a common response to drought, as are increases in the water use efficiency of photosynthesis (WUEph) and productivity (WUEp). The aim of our study was to determine the physiological effects (especially WUEph and WUEp) of progressive drought and subsequent recovery in three cultivars adapted to a Mediterranean climate [Tafilalet (TA), Tierra de Campos (TC), and Moapa (MO)], and another representative from an oceanic climate (Europe (EU)). The accuracy of the relationships between WUEph or WUEp and carbon isotope discrimination (Δ 13C) in shoots was also investigated as a function of water stress intensity. Mild drought (7 days of water withholding) decreased the net CO2 exchange (A), leaf conductance to water (g) and transpiration in EU leading to an increased WUEph. Δ 13C was correlated with WUEp but not with WUEph, probably due to a late decrease in g. After moderate drought (14 days), A and g decreased in all cultivars, increasing WUEph. In this period WUEp also increased. Both WUE parameters were correlated with Δ 13C, which may indicate that the g value at the end of moderate water stress was representative of the growing period. After 21 days, TA was the most productive cultivar but under severe drought conditions there was no difference in DM accumulation among cultivars. After the recovery period, leaf area was increased but not total DM, showing that leaves were the most responsive organs to rewatering. Severe water stress did not decrease WUEph or WUEp, and Δ 13C did not increase after recovery. This absence of a response to severe drought may indicate significant effects on the photosynthetic apparatus after 21 days of withholding water. As for mild drought, WUEp but not WUEph was correlated with Δ 13C, supporting the view that WUEp is a more integrative parameter than WUEph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号