首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have mapped the positions in a ~1.4-Mb region of genomic DNA around the human hprt gene which are accessible in vivo to cleavage by topoisomerase II associated with the nuclear matrix. These positions, which are interpreted as the boundaries of DNA loop domains, were mapped in K562 cells by examining the truncation of rare-cutter restriction fragments separated by pulsed field gel electrophoresis after topoisomerase II-mediated cleavage, using seven linked markers mapped in this region as probes for indirect end-labeling. Eleven cleavage positions were detected and were interpreted as defining ten loop domains of lengths between 70 and 210?kb (average ~135?kb); the hprt gene resides in a 150-kb loop domain. Loop domain boundaries coincided with three of the fifteen deletion breakpoints mapped in a 600-kb sector of this region in human lymphocytes, within the limits of resolution of pulsed field gel electrophoresis; this correlation was not statistically significant.  相似文献   

3.
The major positive regulatory activity of the human alpha-globin gene complex has been localized to an element associated with a strong erythroid-specific DNase I hypersensitive site (HS -40) located 40 kb upstream of the zeta 2-globin mRNA cap site. Footprint and gel shift analyses of the element have demonstrated the presence of four binding sites for the nuclear factor GATA-1 and two sites corresponding to the AP-1 consensus binding sequence. This region resembles one of the major elements of the beta-globin locus control region in its constitution and characteristics; this together with evidence from expression studies suggests that HS -40 is a primary element controlling alpha-globin gene expression.  相似文献   

4.
We have mapped the positions in a ∼1.4-Mb region of genomic DNA around the human hprt gene which are accessible in vivo to cleavage by topoisomerase II associated with the nuclear matrix. These positions, which are interpreted as the boundaries of DNA loop domains, were mapped in K562 cells by examining the truncation of rare-cutter restriction fragments separated by pulsed field gel electrophoresis after topoisomerase II-mediated cleavage, using seven linked markers mapped in this region as probes for indirect end-labeling. Eleven cleavage positions were detected and were interpreted as defining ten loop domains of lengths between 70 and 210 kb (average ∼135 kb); the hprt gene resides in a 150-kb loop domain. Loop domain boundaries coincided with three of the fifteen deletion breakpoints mapped in a 600-kb sector of this region in human lymphocytes, within the limits of resolution of pulsed field gel electrophoresis; this correlation was not statistically significant. Received: 14 June 1998 / Accepted: 4 September 1998  相似文献   

5.
DNA tertiary structures are shown to be formed by denaturation and reannealing in vitro of molecularly-cloned DNA containing multiple tandem repeat sequences. Electron microscopy of homoduplex DNA molecules containing the human c-Harvey-ras gene revealed knot-like structures which mapped to the position of the 812 bp variable tandem repeat (VTR) sequence. We propose that the structures result from slipped-strand mispairing within the VTR and hybridisation of homologous repetitive sequences in the single-stranded loops so produced. Similar structures were also found in freshly-linearized supercoiled plasmids. More complex knot-like structures were found in homoduplexes of a 4 kb tandem array from the hypervariable region 3' to the human alpha-globin locus. Formation of such DNA tertiary structures in vitro also provides a practical method for identifying and mapping direct tandem repeat arrays that are at least 800 bp long.  相似文献   

6.
We show here that human U2 small nuclear RNA genes contain a 'strong nuclease S1 cleavage site' (SNS1 site), a sequence that is very sensitive to digestion by nuclease S1. This site is located 0.50-0.65 kb downstream of the U2 RNA coding region. It comprises a 0.15-kb region in which (dC-dT)n:(dA-dG)n co-polymeric stretches represent greater than 90% of the sequence. Nuclease S1 is able to excise unit length repeats of the human U2 RNA genes both from cloned fragments and total human genomic DNA. The precise locations of the cleavage sites are dependent on the superhelicity of the substrate DNA. In negatively supercoiled substrates, cleavages are distributed over the entire 0.15-kb region, but in linearized substrates, they occur within a more limited region, mainly at the boundary of the SNS1 site closest to the human U2 RNA coding region. Nuclease S1 cleavage of negatively supercoiled substrates occurs at pHs as high as 7.0; in contrast, cleavage of linearized substrates requires a pH less than 5.0, indicating that supercoiling contributes to the sensitivity of this site. Mung bean nuclease gives results similar to that observed with nuclease S1.  相似文献   

7.
8.
DNA structure equilibria in the human c-myc gene   总被引:14,自引:0,他引:14  
T C Boles  M E Hogan 《Biochemistry》1987,26(2):367-376
  相似文献   

9.
Molecular cloning and characterization of the human beta-like globin gene cluster   总被引:104,自引:0,他引:104  
E F Fritsch  R M Lawn  T Maniatis 《Cell》1980,19(4):959-972
The genes encoding human embryonic (epsilon), fetal (G gamma, A gamma) and adult (delta, beta) beta-like globin polypeptides were isolated as a set of overlapping cloned DNA fragments from bacteriophage lambda libraries of high molecular weight (15-20 kb) chromosomal DNA. The 65 kb of DNA represented in these overlapping clones contains the genes for all five beta-like polypeptides, including the embryonic epsilon-globin gene, for which the chromosomal location was previously unknown. All five genes are transcribed from the same DNA strand and are arranged in the order 5'-epsilon-(13.3 kb)-G gamma-(3.5 kb)-A gamma-(13.9 kb)-delta-(5.4 kb)-beta-3'. Thus the genes are positioned on the chromosome in the order of their expression during development. In addition to the five known beta-like globin genes, we have detected two other beta-like globin sequences which do not correspond to known polypeptides. One of these sequences has been mapped to the A gamma-delta intergenic region while the other is located 6-9 kb 5' to the epsilon gene. Cross hybridization experiments between the intergenic sequences of the gene cluster have revealed a nonglobin repeat sequence (*) which is interspersed with the globin genes in the following manner: 5'-**epsilon-*G gamma-A gamma*-**delta-beta*-3'. Fine structure mapping of the region located 5' to the delta-globin gene revealed two repeats with a maximum size of 400 bp, which are separated by approximately 700 bp of DNA not repeated within the cluster. Preliminary experiments indicate that this repeat family is also repeated many times in the human genome.  相似文献   

10.
In extracellular fluids the insulin-like growth factors (IGFs) are bound to specific binding proteins (IGBPs). The genes for two members of this protein family have been mapped, the IGBP1 gene to human chromosomal region 7p14-p12 and the IGBP2 gene to region 2q33-q34. In this study, somatic cell hybrid analysis indicated that IGBP3 is also located on chromosome 7. Pulsed-field gel electrophoresis was used to demonstrate the close physical linkage between IGBP1 and IGBP3. Overlapping cosmid clones encompassing these genes were isolated, and restriction endonuclease mapping showed that the genes are arranged in a tail-to-tail fashion separated by 20 kb of DNA. Further characterization of the IGBP1 DNA sequence disclosed a duplication of the intron 3-exon 4 junction within the third intron. In addition, we report RFLPs for ApaLI and TaqI in the IGBP1 locus.  相似文献   

11.
12.
Z Xiang  X L Hu  J Flint  H C Riethman 《Genomics》1999,58(2):207-210
A half-YAC clone derived from human chromosome 17p was mapped at high resolution using cosmid subclone fingerprint analysis. Colinearity of the half-YAC with the telomeric human genomic DNA fragment was ascertained by RecA-assisted restriction endonuclease cleavage mapping. Previously isolated and radiation hybrid-mapped markers TEL17P37, TEL17P49, and TEL17P80 mapped 30-60 kb from the 17p terminus. This sequence-ready map permits high-resolution integration of genetic maps with the DNA sequences directly adjacent to the tip of human chromosome 17p, and will provide the cloned DNA required for ascertaining the nucleotide sequence of this subtelomeric region.  相似文献   

13.
A map encompassing 300 kilobases (kb) in and around the human alpha-globin gene complex shows features with important implications for understanding the structure and function of the human genome. In contrast to other segments of the mammalian genome that have been analysed by pulsed field gradient electrophoresis (PFGE), this region contains an unusually high density of sites for infrequently cutting restriction enzymes that recognise GC rich motifs including the under-represented CpG doublet. This suggests that the 26 kilobase (kb) stretch of DNA containing the alpha-globin gene family, which is known from sequence analysis to be 60% GC rich, is itself embedded within a region of high GC content. This long-range structure, identified by PFGE, corresponds to a class of GC rich isochores that are thought to represent early replicating DNA present in Giemsa negative chromosomal bands. The identification of such regions by PFGE will be of value in understanding the organisation of human chromosomes and will influence the strategies used to construct a physical map of the genome.  相似文献   

14.
We determined DNA bend sites in the promoter region of the human estrogen receptor (ER) gene by the circular permutation assay. A total of five sites (ERB-4 to -1, and ERB+1) mapped in the 3 kb region showed an average distance of 688 bp. Most of the sites were accompanied by short poly(dA) x poly(dT) tracts including the potential bend core sequence A2N8A2N8A2 (A/A/A). Fine mapping of the ERB-2 site indicated that this A/A/A and the 20 bp immediate flanking sequence containing one half of the estrogen response element were the sites of DNA curvature. All of the experimentally mapped bend sites corresponded to the positions of DNA curvature as well as to nucleosomes predicted by computer analysis. In vitro nucleosome mapping at ERB-2 revealed that the bend center was located 10-30 bp from the experimental and predicted nucleosome dyad axes.  相似文献   

15.
16.
17.
18.
Isolation and sequence organization of human ribosomal DNA.   总被引:6,自引:0,他引:6  
The genes coding for 28 S and 18 S ribosomal RNA have been purified from leukemic leukocytes of one human individual by density gradient centrifugation. The purified ribosomal DNA was analyzed by restriction endonuclease digestion and electron microscopy. The location of cleavage sites for the restriction endonuclease EcoRI was established by R-loop mapping of restriction fragments by electron microscopy. The results are in agreement with gel analysis and gel transfer hybridization. One type of ribosomal DNA repeating unit contains four cleavage sites for EcoRI. Two of these cuts are located in the genes coding for 28 S and 18 S rRNA, while the other two are in the non-transcribed spacer. Thus, one of the restriction fragments generated contains non-transcribed spacer sequences only and is not detected by gel transfer hybridization if labeled rRNA is used as the hybridization probe. A second type of repeating unit lacks one of the EcoRI cleavage sites within the non-transcribed spacer. This indicates that sequence heterogeneity exists in human rDNA spacers. R-loop mapping of high molecular weight rDNA in the electron microscope reveals that the majority of repeats are rather uniform in length. The average size of 22 repeats was 43.65(±1.27) kb. Two repeats were found with lengths of 28.6 and 53.9 kb, respectively. This, and additional evidence from gels, indicates that some length heterogeneity does exist in the non-transcribed spacer. The structure of the human rDNA repeat is summarized in Figure 10.  相似文献   

19.
DNA replication is initiated within a few chromosomal bands as normal human fibroblasts enter the S phase. In the present study, we determined the timing of replication of sequences along a 340 kb region in one of these bands, 1p36.13, an R band on chromosome 1. Within this region, we identified a segment of DNA (approximately 140 kb) that is replicated in the first hour of the S phase and is flanked by segments replicated 1-2 h later. Using a quantitative PCR-based assay to measure sequence abundance in size-fractionated (900-1,700 nt) nascent DNA, we mapped two functional origins of replication separated by 54 kb and firing 1 h apart. One origin was found to be functional during the first hour of S and was located within a CpG island associated with a predicted gene of unknown function (Genscan NT_004610.2). The second origin was activated in the second hour of S and was mapped to a CpG island near the promoter of the aldehyde dehydrogenase 4A1 (ALDH4A1) gene. At the opposite end of the early replicating segment, a more gradual change in replication timing was observed within the span of approximately 100 kb. These data suggest that DNA replication in adjacent segments of band 1p36.13 is organized differently, perhaps in terms of replicon number and length, or rate of fork progression. In the transition areas that mark the boundaries between different temporal domains, the replication forks initiated in the early replicated region are likely to pause or delay progression before replication of the 340 kb contig is completed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号