首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosomal abnormalities are thought to be the most common cause of mental retardation (MR). However, apart from a few selected types with typical aneuploidy, like Downs syndrome, Klinefelter syndrome, Turner syndrome, etc., the frequency of detectable chromosomal abnormalities in association with idiopathic MR is very low. In this study, we have investigated chromosomal abnormalities in female MR subjects (n = 150) by high-resolution GTG banding. Of them, 30 cases were diagnosed as Downs syndrome. Among the remaining (n = 120), chromosomal abnormalities/marked polymorphisms were detectable in only three MR cases (0.025).  相似文献   

2.
A cytogenetic study was performed in a population of 1170 mentally retarded and/or behaviourly disturbed patients of the Hondsberg Institute in the south of the Netherlands. The cytogenetic data are presented and discussed. In all patients chromosomal evaluation was performed with Giemsa-banding and Quinacrine fluorescence, and additional banding techniques were performed whenever they were necessary to clarify the chromosomal abnormality. A fragile X screening with M199 cultures was performed in 311 males. In 22.1% of the patients a chromosomal basis was found for their developmental retardation: 14.3% Down syndrome patients, 6.1% other chromosomal abnormalities (mainly partial autosomal trisomies and monosomies and sex-chromosome abnormalities). In 24 males, through 21 index patients, a positive fragile X screening was found, i.e. 6.7% of the screened population and 1.8% of the total population. These results indicate that the diagnostic contribution of the fragile X screening is numerically of equal importance as are advanced chromosome banding techniques, and its contribution to the diagnosis of fragile X syndrome in one index male patient in general leads to the detection of several female relatives at risk to be carrier of this X-linked recessively inherited condition. The causal relationship between the occurrence of mental retardation and chromosomal aberration in genera i.e. autosomal trisomies, partial autosomal trisomies and monosomies, and Xq27-28 fragility is well established and is, to some extent, easy to understand. Whether carriers of other chromosomal rearrangements, mainly of balanced reciprocal and Robertsonian translocations, small extra chromosomes, paracentric inversions and chromosomal variants, have increased risk for mental handicap and/or congenital malformations in their progeny, remains unclear at the present time. Some of these residual problems and questions are discussed in the perspective of their importance for genetic counseling. Detailed data will be presented about the mental development and psychological profile of patients with these different types of chromosomal abnormalities and rearrangements.  相似文献   

3.
A family with X-linked mental retardation characterized by severe mental retardation, speech and behavioral abnormalities, and seizures in affected male patients has been found to have a G1141C transversion in the creatine-transporter gene SLC6A8. This mutation results in a glycine being replaced by an arginine (G381R) and alternative splicing, since the G-->C transversion occurs at the -1 position of the 5' splice junction of intron 7. Two female relatives who are heterozygous for the SLC6A8 mutation also exhibit mild mental retardation with behavior and learning problems. Male patients with the mutation have highly elevated creatine in their urine and have decreased creatine uptake in fibroblasts, which reflects the deficiency in creatine transport. The ability to measure elevated creatine in urine makes it possible to diagnose SLC6A8 deficiency in male patients with mental retardation of unknown etiology.  相似文献   

4.
The cause of mental retardation in one-third to one-half of all affected individuals is unknown. Microscopically detectable chromosomal abnormalities are the most frequently recognized cause, but gain or loss of chromosomal segments that are too small to be seen by conventional cytogenetic analysis has been found to be another important cause. Array-based methods offer a practical means of performing a high-resolution survey of the entire genome for submicroscopic copy-number variants. We studied 100 children with idiopathic mental retardation and normal results of standard chromosomal analysis, by use of whole-genome sampling analysis with Affymetrix GeneChip Human Mapping 100K arrays. We found de novo deletions as small as 178 kb in eight cases, de novo duplications as small as 1.1 Mb in two cases, and unsuspected mosaic trisomy 9 in another case. This technology can detect at least twice as many potentially pathogenic de novo copy-number variants as conventional cytogenetic analysis can in people with mental retardation.  相似文献   

5.
Summary Chromosomal abnormalities are an important cause of mental retardation. We studied the frequency of karyotype abnormalities in 74 mentally retarded patients selected from 306 patients referred to our clinic. Giemsa-banding was done on all cases. Additional studies in abnormal cases included autoradiography and X and Y chromatin. Karyotype analyses and blood group (Xg and Duffy) studies were carried out in family members in some cases.Fourteen of these children had chromosomal abnormalities, seven sex chromosomal, and seven had autosomal abnormalities. Three patients had 45,X and one had a 45,X/46,Xr(X) karyotype. Other sex chromosomal abnormalities were 46,XX/ 48,XXXX;48,XXXY/49,XXXXY; and 48,XXYY. Autosomal abnormalities were 46,XX,1q-;46,XY,2q-;46,XY,5p-;46,XY, dup(5p); 45,XX,t(13,14); and 46,XY,17p-. This is the first report from India of cytogenetic abnormalities in idiopathic mental retardation. The chromosomal studies in these patients help not only in accurate diagnosis, proper prognosis, and genetic counseling but also in gene localization and in the study of the origin of X-chromosome abnormalities.  相似文献   

6.
Kabuki syndrome (KS) (MIM 147920) is a multiple congenital anomalies/mental retardation syndrome of unknown cause. There is multisystem involvement of anomalies, including 1) unique facial features, 2) postnatal growth retardation, 3) mild-to-moderate mental retardation, 4) skeletal anomalies and 5) dermatoglyphic abnormalities. Kabuki syndrome remains a clinical diagnosis despite significant research on detection of the genetic cause. We present 10 patients with Kabuki syndrome with a brief overview of the syndrome. An additional male patient and his affected aunt, both with trisomy 10p due to unbalanced segregation of a familial translocation, are also discussed for overlapping features and differential clinical diagnosis of the two conditions. Considering a significant overlap in clinical pictures of Kabuki syndrome and trisomy 10p in these two patients, as well as the previous patients with chromosomal abnormalities, we conclude that chromosome analysis is an important step in clinical work-up of patients with Kabuki syndrome.  相似文献   

7.
彭继苹  刘芳  谢华  陈晓丽 《遗传》2017,39(6):455-468
精神发育迟滞(旧称智力低下)作为儿科神经科常见的一组疾患,具有高度的遗传和表型异质性,大约25%~50%的精神发育迟滞是由遗传因素引起的,其中X染色体基因/基因组变异占25%~30%,导致X连锁的精神发育迟滞。X连锁的精神发育迟滞患者占所有精神发育迟滞患者的10%~15%以上,约20%~25%的男性精神发育迟滞归因于X连锁的精神发育迟滞。精神发育迟滞男女患病比例为1.3:1,这与男性只有一条X染色体的遗传背景有关。随着新一代基因组检测技术的快速发展和临床应用,尤其是全外显子测序、高深度测序、X染色体深度测序和全基因组芯片杂交,这些大大改善了精神发育迟滞患者的X染色体基因/基因组变异检出。本文综述了致精神发育迟滞的X染色体基因组/基因变异特点、其对男性精神发育迟滞的致病性,以及如何采用新测序技术提高检出率,旨在促进科研人员认识X染色体变异在男性精神发育迟滞的致病性,拓宽精神发育迟滞遗传病因的认识,同时也为遗传咨询和产前诊断提供理论依据。  相似文献   

8.
The proband and two maternal uncles were similarly affected by a unique constellation of mental retardation and physical abnormalities. There were severe retardation, growth less than the third percentile, and significantly delayed bone age. They manifested deafness, a flat nasal bridge, several ocular abnormalities, and a rudimentary scrotum with cryptorchidism, and one had a small penis. The proband also had onychodystrophy of his fingers and toes. Their birth weights and lengths were less than expected. No chromosomal or biochemical abnormality was detected. Both uncles died, but the proband is healthy at 4 years. Their phenotype is distinguished from other forms of X-linked mental retardation and appears to be a new syndrome.  相似文献   

9.
X-linked West syndrome, also called "X-linked infantile spasms" (ISSX), is characterized by early-onset generalized seizures, hypsarrhythmia, and mental retardation. Recently, we have shown that the majority of the X-linked families with infantile spasms carry mutations in the aristaless-related homeobox gene (ARX), which maps to the Xp21.3-p22.1 interval, and that the clinical picture in these patients can vary from mild mental retardation to severe ISSX with additional neurological abnormalities. Here, we report a study of two severely affected female patients with apparently de novo balanced X;autosome translocations, both disrupting the serine-threonine kinase 9 (STK9) gene, which maps distal to ARX in the Xp22.3 region. We show that STK9 is subject to X-inactivation in normal female somatic cells and is functionally absent in the two patients, because of preferential inactivation of the normal X. Disruption of the same gene in two unrelated patients who have identical phenotypes (consisting of early-onset severe infantile spasms, profound global developmental arrest, hypsarrhythmia, and severe mental retardation) strongly suggests that lack of functional STK9 protein causes severe ISSX and that STK9 is a second X-chromosomal locus for this disorder.  相似文献   

10.
Summary Chromosomal studies of two brothers with mental retardation and dysmorphic features showed a 13p+chromosome. The same 13p+chromosome was found in the father and the other sib, who were both phenotypically normal. The relationship between the physical abnormalities and the chromosomal findings are discussed.  相似文献   

11.
Complex chromosomal rearrangements are very rare chromosomal abnormalities. Individuals with a complex chromosomal rearrangement can be phenotypically normal or display a clinical abnormality. It is believed that these abnormalities are due to either microdeletions or microduplications at the translocation breakpoints or as a result of disruption of the genes located in the breakpoints. In this study we describe a 2-year-old child with mental retardation and developmental delay in whom a de novo apparently balanced exceptional complex chromosomal rearrangement was found through conventional cytogenetic analysis. Using both cytogenetic and FISH analysis, the patient's karyotype was found to be: 46,XY,der(5)t(5;7)(p15.1;7q34),t(5;8)(q13.1;8q24.1)dn. A large, clinically significant deletion which encompassed 887.69 kb was detected at the 5q12.1–5q12.3 (chr5:62.886.523–63.774.210) genomic region using array-CGH. This deleted region includes the HTR1A and RNF180 genes. This is the first report of an individual with an apparently balanced complex chromosomal rearrangement in conjunction with a microdeletion at 5q12.1–5q12.3 in which there are both mental-motor retardation and dysmorphia.  相似文献   

12.
Trisomy 18 is usually a lethal chromosomal abnormality and is the second most common autosomal trisomy in humans, with an incidence of 1:8000 live births. It is commonly associated with abnormalities of the lower and upper extremities, having the frequency of 95% and 65%, respectively. A newborn female olive baboon (Papio hamadryas anubis) was diagnosed with intrauterine growth retardation and severe arthrogryposis-like congenital joint deformities. Cytogenetic analysis including G-banding and fluorescence in situ hybridization (FISH) revealed that the congenital abnormalities were associated with chromosomal mosaicism for trisomy 18. Genetic analysis with microsatellites from chromosome 18 confirmed the maternal origin of the extra chromosome 18. This is the first report of trisomy 18 in the baboon, which may be a promising animal model of human disease.  相似文献   

13.
Chromosomal abnormalities are a major cause of mental retardation and/or multiple congenital anomalies (MCA/MR). Screening for these chromosomal imbalances has mainly been done by standard karyotyping. The objective of this study was to report standard chromosome analysis and FISH screening of a series of 24 patients with MCA/MR. Structural chromosomal abnormalities were detected in 24 alterations and included 5 deletions, 2 duplications, 6 unbalanced translocations, 3 inversions, 2 insertions, 3 derivative chromosomes, 2 marker chromosomes and 1 isochromosome. We confirm that a high percentage of MCA/MR cases hitherto considered idiopathic is caused by chromosomal imbalances. We conclude that patients with MCA/MR should be routinely karyotyped.  相似文献   

14.
Numerical chromosomal imbalances are a common feature of spontaneous abortions. However, the incidence of mosaic forms of chromosomal abnormalities has not been evaluated. We have applied interphase multicolor fluorescence in situ hybridization using original DNA probes for chromosomes 1, 9, 13, 14, 15, 16, 18, 21, 22, X, and Y to study chromosomal abnormalities in 148 specimens of spontaneous abortions. We have detected chromosomal abnormalities in 89/148 (60.1%) of specimens. Among them, aneuploidy was detected in 74 samples (83.1%). In the remaining samples, polyploidy was detected. The mosaic forms of chromosome abnormality, including autosomal and sex chromosomal aneuploidies and polyploidy (31 and 12 cases, respectively), were observed in 43/89 (48.3%) of specimens. The most frequent mosaic form of aneuploidy was related to chromosome X (19 cases). The frequency of mosaic forms of chromosomal abnormalities in samples with male chromosomal complement was 50% (16/32 chromosomally abnormal), and in samples with female chromosomal complement, it was 47.4% (27/57 chromosomally abnormal). The present study demonstrates that the postzygotic or mitotic errors leading to chromosomal mosaicism in spontaneous abortions are more frequent than previously suspected. Chromosomal mosaicism may contribute significantly to both pregnancy complications and spontaneous fetal loss.  相似文献   

15.
We have identified disruptions in the dedicator of cytokinesis 8 gene, DOCK8, in two unrelated patients with mental retardation (MR). In one patient, a male with MR and no speech, we mapped a genomic deletion of approximately 230 kb in subtelomeric 9p. In the second patient, a female with mental retardation and ectodermal dysplasia and a balanced translocation, t(X;9) (q13.1;p24), we mapped the 9p24 breakpoint to a region overlapping with the centromeric end of the 230-kb subtelomeric deletion. We characterized the DOCK8 gene from the critical 9p deletion region and determined that the longest isoform of the DOCK8 gene is truncated in both patients. Furthermore, the DOCK8 gene is expressed in several human tissues, including adult and fetal brain. Recently, a role for DOCK8 in processes that affect the organization of filamentous actin has been suggested. Several genes influencing the actin cytoskeleton have been implicated in human cognitive function and thus a possibility exists that the rare mutations in the DOCK8 gene may contribute to some cases of autosomal dominant mental retardation.  相似文献   

16.
Emanuel syndrome is an inherited chromosomal abnormality resulting from 3:1 meiotic segregation from parental balanced translocation carrier t(11;22)(q23;q11), mostly of maternal origin. It is characterized by mental retardation, microcephaly, preauricular tag or sinus, ear anomalies, cleft or high arched palate, micrognathia, congenital heart diseases, kidney abnormalities, structural brain anomalies and genital anomalies in male. Here in, we describe a female patient with supernumerary der(22) syndrome (Emanuel syndrome) due to balanced translocation carrier father t(11;22) (q23;q11). She was mentally and physically disabled and had most of the craniofacial dysmorphism of this syndrome. Our patient had cleft palate, maldeveloped corpus callosum and hind brain with normal internal organs. Additionally, arachnodactyly, hyperextensibility of hand joints, abnormal deep palmar and finger creases, extra finger creases and bilateral talipus were evident and not previously described with this syndrome. Cytogenetic analysis and FISH documented that the patient had both translocation chromosomes plus an additional copy of der(22) with karyotyping: 47,XX,t(11; 22)(q23;q11),+der(22)t(11;22)(q23;q11). We postulated that this rare chromosomal complement can arise from; 2:2 segregation in the first meiotic division of the balanced translocation father followed by non-disjunction at meiosis II in the balanced spermatocyte.  相似文献   

17.
Individuals with mental disabilities are a heterogeneous group, mainly when we consider the etiology of mental retardation (MR). Recent advances in molecular genetics techniques have enabled us to unveil more about the molecular basis of several genetic syndromes associated with MR. In this study, we surveyed 85 institutionalized individuals with severe MR, 38 males and 47 females, by two molecular techniques, to detect CGG amplifications in the FMR1 gene. No FRAXA mutations were found in the FMR1 gene, reinforcing the low prevalence of Fragile X syndrome among institutionalized individuals with severe MR. We considered the PCR protocol used adequate for screening males with mental retardation of unknown etiology. The use of the Southern blot is still necessary for the decisive diagnosis of the Fragile X syndrome. To exclude chromosomal abnormalities associated with MR as a possible cause of the phenotype in these individuals, G-banded chromosome analysis was performed in all patients and 7.3% of chromosomal aberrations were found. Our results are similar to those reported previously and point to the necessity of expanding the molecular investigation toward other causes of MR, such as subtle chromosomal rearrangements, as suggested recent by a combination of fluorescence in situ hybridization (FISH) and PCR studies.  相似文献   

18.
We report on a twenty-two months old male patient with hypotonia, mental and motor retardation and trigonocephaly. Standard GTG banding chromosomal analysis (from metaphyses of a periferal blood lymphocyte culture) showed 46,XY, der(9) monosomy 9pter-->p22, trisomy 10q26--> qter karyotype. This unbalanced translocation resulted from the father's t(9,10) (p22;p26) karyotype. Deletions of the terminal part of 9p and partial trisomy of chromosome 10q are rare chromosomal disorders. To our knowledge, this is the first case report in the literature of a deletion of 9pter-->p22.3 and a duplication of 10q26-->qter. We assume that the clinical anomalies are due to der(9) monosomy 9pter-->p22, trisomy 10q-->26qter.  相似文献   

19.
Summary A cytogenetic study was made on 341 mentally retarded children in the Provincial Nantou Rehabilitation Center for the Mentally Retarded and the St. Raphael Opportunity Center in Tainan. Of the 89 mentally retarded children with chromosomal abnormalities, 63 had Down syndrome, 13 had the fragile X [fra(X)] syndrome, and the remaining had other aneuploid constitutions. Family studies were possible for 2 of the 13 fra(X) probands. The results of this study illustrate the contribution of chromosomal abnormalities to the pathogenesis of mental retardation in children.  相似文献   

20.
Subtelomeric chromosomal rearrangements detected in patients with idiopathic mental retardation and dysmorphic features: Cryptic aberrations involving the subtelomeric regions of chromosomes are thought to be responsible for idiopathic mental retardation (MR) and multiple congenital anomalies, although the exact incidence of these aberrations is still unclear. With the advent of chromosome-specific telomeric Fluorescence In Situ Hybridization (FISH) probes, it is now possible to identify submicroscopic rearrangements of distal ends of the chromosomes that can not be detected by conventional cytogenetic methods. In this study, cryptic subtelomeric chromosomal aberrations were detected in two of ten patients with idiopathic MR and dysmorphic features by using FISH probes of subtelomeric regions of all chromosome arms. A cryptic unbalanced de novo translocation was detected between the subtelomeric regions of the chromosome 10p and 18p in a patient with severe mental retardation, sensorineuronal deafness and several dysmorphic features. In the other patient, with mild mental retardation and dysmorphic features, a de novo subtelomeric deletion of chromosome 2q was found. In conclusion, in both familial and sporadic cases with idiopathic MR and dysmorphic features, the detection of chromosomal aberrations including subtelomeric rearrangements is of great importance in offering genetic counseling and prenatal diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号