首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentrations of Cd, Pb and Zn were determined in stem wood of beech trees (Fagus sylvatica L.) from 3 sites in northern Germany. Distinct radial distribution patterns of the elements were observed in the xylem. Concentrations of Cd and Pb increased from the youngest, outermost annual rings towards the center of the stem. With Zn intermediate concentrations were observed in the sapwood and higher levels at the center of the stem.Temporal and spatial stability of such distribution patterns in the trunks was investigated. Wood samples taken from the same individual tree in different months of the year were analysed. Marked seasonal variations of mineral concentrations were observed. Also the shape of the distribution patterns of the elements varied with the season. Such variations were larger than those observed with samples taken simultaneously from different sides of the trunk. Furthermore, Pb concentrations in the stem showed variations with height above ground.The results indicate, that radial distribution patterns of Cd, Pb and Zn in xylem rings of beech are not stable. Biomonitoring trace element pollution levels by analysis of beech wood is, thus, questionable. To obtain a reliable historical record of pollution from tree rings, the distribution patterns should be stable over a long period of time. This basic requirement of the dendroanalytical method does not hold for the examined beech. Still, with other tree species and under more favourable conditions the dendroanalytical biomonitoring method may prove valuable.Presented as symposium paper at the V International Congress of Ecology, Yokohama, August 23–30, 1990.  相似文献   

2.
Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens   总被引:6,自引:0,他引:6  
For phytoextraction to be successful and viable in environmental remediation, strategies that can optimize plant uptake must be identified. Thlaspi caerulescens is an important hyperaccumulator of Cd and Zn, whether adjusting soil pH is an efficient way to enhance metal uptake by T. caerulescens must by clarified. This study used two soils differing in levels of Cd and Zn, which were adjusted to six different pH levels. Thlaspi caerulescens tissue metal concentrations and 0.1 M Sr(NO3)2 extractable soil metal concentrations were measured. The soluble metal form of both Cd and Zn was greatly increased with decreasing pH. Lowering pH significantly influenced plant metal uptake. For the high metal soil, highest plant biomass was at the lowest soil pH (4.74). The highest shoot metal concentration was at the second lowest pH (5.27). For low metal soil, due to low pH induced Al and Mn toxicity, both plant growth and metal uptake was greatest at intermediate pH levels. The extraordinary Cd phytoextraction ability of T. caerulescens was further demonstrated in this experiment. In the optimum pH treatments, Thlaspi caerulescens extracted 40% and 36% of total Cd in the low and high metal soils, respectively, with just one planting. Overall, decreasing pH is an effective strategy to enhance phytoextraction. But different soils had various responses to acidification treatment and a different optimum pH may exist. This pH should be identified to avoid unnecessarily extreme acidification of soils.  相似文献   

3.
The experiment assessed the variability of in seven clones of willow plants of high biomass production (Salix smithiana S-218, Salix smithiana S-150, Salix viminalis S-519, Salix alba S-464, Salix ’Pyramidalis’ S-141, Salix dasyclados S-406, Salix rubens S-391). They were planted in a pots for three vegetation periods in three soils differing in the total content of risk elements. Comparing the calculated relative decrease of total metal contents in soils, the phytoextraction potential of willows was obtained for cadmium (Cd) and zinc (Zn), moderately contaminated Cambisol and uncontaminated Chernozem, where aboveground biomass removed about 30% Cd and 5% Zn of the total element content, respectively. The clones showed variability in removing Cd and Zn, depending on soil type and contamination level: S. smithiana (S-150) and S. rubens (S-391) demonstrated the highest phytoextraction effect for Cd and Zn. For lead (Pb) and arsenic (As), the ability to accumulate the aboveground biomass of willows was found to be negligible in both soils. The results confirmed that willow plants show promising results for several elements, mainly for mobile ones like cadmium and zinc in moderate levels of contamination. The differences in accumulation among the clones seemed to be affected more by the properties of clones, not by the soil element concentrations or soil properties. However, confirmation and verification of the results in field conditions as well as more detailed investigation of the mechanisms of cadmium uptake in rhizosphere of willow plants will be determined by further research.  相似文献   

4.
四种金花茶组植物叶片金属元素含量及富集特性研究   总被引:1,自引:0,他引:1  
以四种金花茶组植物为研究对象,采用原子吸收光谱法和原子荧光法,测定其嫩叶、老叶及对应土壤中Mg、Ca、Mn、Fe、Zn、Ni、Se、Pb、Cd、Hg、As共11种元素的含量,并分别计算嫩叶和老叶对土壤金属元素的富集系数.结果表明:(1)4种金花茶组植物叶片富含Mg、Ga、Mn、Fe、Zn、Ni等营养元素,各元素在叶片中含量为Ca>Mg>Mn>Fe>Zn>Ni>Se;Pb、Cd、As、Hg等重金属元素含量较低,均达到无公害茶叶标准.(2)老叶和嫩叶中各金属元素含量差异较大,老叶中的Ca、Mn、Fe、Zn、Pb、Cd、Hg、As、Se元素含量均大于嫩叶,尤以Ca、Mn、Fe差异显著;嫩叶中的Mg和Ni含量大于老叶.(3)金花茶组植物对不同金属元素的富集能力不同,对各元素富集能力强弱为Ca、Mn、Mg>Zn、Ni、Hg>Pb、Se>Fe、As,老叶和嫩叶的富集规律存在差异.(4)不同金花茶组植物对金属元素的富集能力有较大差异,龙州金花茶(Camellia longzhouensis)和黄花抱茎茶(C.murauchii)对Mg、Ca、Mn、Zn、Ni、Se、Pb的富集能力均大于金花茶(C.nitidissima)和毛籽金花茶(C.ptilosperma).其中,龙州金花茶对Mg、Mn、Se的富集能力最强,黄花抱茎茶对Ca、Pb、Hg富集能力最强,金花茶对Hg的富集能力较强,对其它元素的富集能力均较弱;毛籽金花茶对Ca、Mn、Ni、Zn的富集能力均最弱.该研究结果为金花茶组植物的进一步开发和利用提供了理论依据.  相似文献   

5.
Two experiments were carried out in pots with three compartments, a central one for root and hyphal growth and two outer ones which were accessible only for hyphae of the arbuscular mycorrhizal fungus, Glomus mosseae ([Nicol. and Gerd.] Gerdemann and Trappe). In the first experiment, mycorrhizal and nonmycorrhizal bean (Phaseolus vulgaris L.) plants were grown in two soils with high geogenic cadmium (Cd) or nickel (Ni) contents. In the second experiment, mycorrhizal and nonmycorrhizal maize (Zea mays L.) or bean plants were grown in a non-contaminated soil in the central compartment, and either the Cd- or Ni-rich soil in the outer compartments. In additional pots, mycorrhizal plants were grown without hyphal access to the outer compartments. Root and shoot dry weight was not influenced by mycorrhizal inoculation, but plant uptake of metals was significantly different between mycorrhizal and nonmycorrhizal plants. In the first experiment, the contribution of mycorrhizal fungi to plant uptake accounted for up to 37% of the total Cd uptake by bean plants, for up to 33% of the total copper (Cu) uptake and up to 44% of the total zinc (Zn) uptake. In contrast, Ni uptake in shoots and roots was not increased by mycorrhizal inoculation. In the second experiment, up to 24% of the total Cd uptake and also up to 24% of the total Cu uptake by bean could be attributed to mycorrhizal colonisation and delivery by hyphae from the outer compartments. In maize, the mycorrhizal colonisation and delivery by hyphae accounted for up to 41% of the total Cd uptake and 19% of the total Cu uptake. Again, mycorrhizal colonisation did not contribute to Ni uptake by bean or maize. The results demonstrate that the arbuscular mycorrhizal fungus contributed substantially not only to Cu and Zn uptake, but also to uptake of Cd (but not Ni) by plants from soils rich in these metal cations. Deceased 21 September 1996 Deceased 21 September 1996  相似文献   

6.
行道树毛白杨树干中重金属元素分布   总被引:3,自引:1,他引:2  
王荣芬  邱尔发  唐丽清 《生态学报》2014,34(15):4212-4222
采用电感耦合等离子体发射光谱法(ICP),测定分析首都机场高速公路旁毛白杨(Populus tomentosa Carr.)树干中Pb、Cd、Cr、Cu、Zn、Ni和Mn 7种重金属元素的含量及积累量,比较分析树干不同组织、不同方位、不同龄级年轮重金属含量差异及与交通量、关键气候因子的相关性。结果表明:树干木质部中各重金属平均含量由大到小依次为Zn、Cu、Cr、Mn、Ni、Pb、Cd,树皮中依次为Zn、Mn、Cr、Pb、Cu、Cd、Ni,树皮中各重金属元素的含量明显高于木质部;同一树干木质部中,各重金属元素在不同方位的分布有所差异,其中,靠近车道一侧的各重金属元素含量均高于背离车道一侧,南北向比较中,Ni、Zn为南侧含量高于北侧,其他5种重金属元素均为北侧高于南侧;以5a为一个龄级将年轮划分为5个龄组,各龄级年轮中重金属含量随时间的变化趋势各异,其中Pb、Cd、Cu、Zn总体呈递减趋势,且与年降水量、最低气温、日照时数、雨天日数和大风日数呈正相关趋势,与年平均气温和最高气温呈负相关趋势;各元素在毛白杨树干木质部中的积累量表现为ZnCrCuMnPbNiCd。  相似文献   

7.
Three-year-old spruce (Picea abies) saplings were planted and cultivated for 2 years in pots with 3 1 substrate, consisting of a homogenized mixture of sand, peat and forest soil with a high organic content (volume ratio 11.52). This substrate was amended with 10–180 mol Cd [kg soil dry weight (DW)]–1, 50–7500 mol Zn (kg soil DW)–1 (determined with 1 M ammonium acetate extracts) or combinations of both elements. Annual xylem growth rings in stems of plants treated with 50 mol Cd (kg soil DW)–1 or 7500 mol Zn (kg soil DW)–1 were significantly narrower than in control plants. Growth reductions were more pronounced in the second year of the experiment. The contents of Cd and Zn in stem wood and needles were positively correlated with the substrate concentrations. The Mg contents of the spruce needles were inversely correlated with soil concentrations of Cd and Zn. Root development was impeded at moderate concentrations of Cd (50 mol kg–1) or Zn (1000 mol kg–1) in the substrate. The adverse effects of potentially toxic trace elements, like Cd or Zn, on xylem growth of spruce plants are discussed with regard to possible growth reductions in forest trees under field conditions.  相似文献   

8.
Risk element (As, Cd, Cu, Pb, and Zn) contamination in soils and in two edible vegetables (Solanum melongena L. and Capsicum annum L.) was investigated in the vicinity of Guixi Smelter, South China. Soil As concentrations averaged 23.9 mg/kg. Sites near the smelter tailings recorded the highest levels of As and heavy metals in soils. The concentration order of heavy metals in soils was Cd < Pb < Zn < Cu. Cu and Cd in soils were abundant in the exchangeable and bound to carbonate fraction, while Pb and Zn were in the residual fraction, limiting their potential toxicity as pollutants. The proportions of the metals in the mobile fraction followed the order Pb < Zn < Cu < Cd. In Solanum melongena L. and Capsicum annum L., Zn concentration was the highest, followed by Cu, Cd, and Pb, different from that in soils and in the mobile fraction. Concentrations of heavy metals in the labile fractions in soils and in vegetables presented significant correlation (p < 0.05). Both of the two vegetables are not the Cu and Zn accumulators. As for Cd and As, Capsicum annum L. poses a higher risk to animal and human health than Solanum melongena L., with soil-plant transfer coefficients more than three. Root-stem is the main barrier for most of the heavy metals and As in the two vegetables, resulting in higher metal concentrations in roots relative to other plant tissues. The low stem-fruit transfer coefficients for Zn in Solanum melongena L. and for Pb in Capsicum annum L. suggested that very few of them could reach the fruits.  相似文献   

9.
Anthropogenic activities like agriculture have resulted in increased concentrations of some trace elements of toxicological and environmental concern in soils. Application of fertilizers has been one of the major inputs of these contaminants to agricultural soils in developing countries. Twenty-two fertilizers, including straight nitrogen (N), phosphorus (P), potassium (K), and NK fertilizers and micronutrient sources, were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn). As expected, the trace element content of fertilizers was highly variable and related to the origin of the material. Phosphorus fertilizers, especially triple superphosphate, presented the highest As, Cd, Cu, Cr, Ni, V, and Zn concentrations. In some of these fertilizers, the Cr, V, and Zn contents reached values greater than 3475 mg kg?1 of P, and the Cd content (up to 288 mg kg?1 of P) was several times higher than the regulatory limits of different countries. Some micronutrient sources presented the highest concentrations of Mn and Pb. In the cases of N, K, and NK fertilizers, the trace element concentration was very low, sometimes below the detection limits. In some agricultural systems the input of trace elements such as As and Cd to the soil through P fertilizers application may be higher than the outputs through plant uptake and leaching; therefore the long-term use of these fertilizers may cause the trace element concentration to increase in the plow layer of agricultural soils.  相似文献   

10.
In a model hyperaccumulation study a Cd/Zn hyperaccumulator Thlaspi caerulescens accession Ganges and a recently reported Cd/Zn hyperaccumulator Thlaspi praecox grown in increasing Cd and Zn concentrations in the substrate and in field collected polluted soil were compared. Plant biomass, concentrations of Cd and Zn, total chlorophylls and anthocyanins, antioxidative stress parameters and activities of selected antioxidative enzymes were compared. Increasing Cd, but not Zn in the substrate resulted in the increase of biomass of roots and shoots of T. praecox and T. caerulescens. The two species hyperaccumulated Cd in the shoots to a similar extent, whereas T. caerulescens accumulated more Zn in the shoots than T. praecox. Cadmium amendment decreased total chlorophyll concentration and glutathione reductase activity, and increased non-protein thiols concentration only in T. praecox, suggesting that it is less tolerant to Cd than T. caerulescens. In the field-contaminated soil, T. caerulescens accumulated higher Cd concentrations; but as T. praecox produced higher biomass, both species have similar ability to extract Cd.  相似文献   

11.
Klang-Westin  Erika  Eriksson  Jan 《Plant and Soil》2003,249(1):127-137
Biomass production and Cd uptake in Salix (willow) is generally high. The aim of this study was to quantify the amounts of Cd in different plant and soil compartments in commercial Salix stands grown on different soil types and to use these data for estimation of the long-term effects of Cd removal by Salix at stem harvest on the soil Cd content by calculating Cd balances. Ten commercial short rotation willow coppice stands, planted with clone 78183 of Salix viminalis (L.) were investigated in order to include three different soil types with respect to pH. Stands with high stem biomass production generally had lower Cd concentrations in the plant and grew on more alkaline soils with low Cd availability when compared to stands with low stem biomass production. The highest output of Cd by Salix is therefore not necessarily achieved by stands with the highest yields or the highest Cd concentrations, as both these parameters have to be considered. The net removal of Cd from the plough layer by the Salix crop under different conditions varied between 2.6 and 16.5 g Cd ha–1 year–1. The long-term effects of Salix cultivation on soil Cd content, i.e. after 6–7 cutting cycles (25 years), were calculated and we reached the conclusion that there is a high potential in Salix to remove significant amounts of Cd at stem harvest. Salix can therefore presumably be used to counteract Cd pollution of agricultural soils in Sweden provided that the Cd in furnace ashes is taken care of.  相似文献   

12.
Sayed  W. F. 《Plant and Soil》2003,254(1):19-25
Phytoextraction of Cd by some populations of Thlaspi caerulescens which have the ability to co-hyperaccumulate Cd and Zn requires information about the distribution of both metals within the plant at the organ-level. This work was conducted to determine whether the distribution and solubility of Cd and Zn in Thlaspi caerulescens are affected by the age of plant and organ, and whether Cd and Zn have a common distribution in the plant in soils contaminated by both metals. A series of pot experiments were conducted where a Cd- and Zn-hyperaccumulating population was grown on soils contaminated by Cd and Zn. Temporal changes in metal concentration of roots and of shoots was recorded, along with the water and CaCl2 solubility of metals in the plant organs. Also, leaves were grouped according to their age and their respective content of Cd and Zn was measured. Both metals were present at higher concentrations in leaves than in roots. The whole-plant content of Zn decreased with time while that of Cd increased or remained unchanged. At harvest, young leaves exhibited higher Cd concentration than older, but the reverse was true for Zn. Both metals were more soluble in dry leaves and senescent leaves than in fresh material, and Zn was more water-soluble than Cd. In conclusion, the distribution of Cd and Zn in the hyperaccumulator T. caerulescensvaried according to the organ and plant age, and Cd and Zn were shown to have a different distribution within the plant.  相似文献   

13.
The heavy metal hyperaccumulator Thlaspi caerulescens occurs both on heavy metal polluted soils (metallicolous ecotype MET) and on soils with normal heavy metal content (non-metallicolous ecotype: NMET). In order to assess the extent and structure of variation in growth, shoot accumulation of Cd, Zn and mineral element (Ca, Mg, K, Fe), a MET ecotype from Belgium and a NMET ecotype from Luxembourg were studied. Seven maternal families from two populations of each ecotype were grown on both Cd and Zn contaminated soil. Although both ecotypes presented a similar heavy metal tolerance in the experimental conditions tested, they differed in several points. The MET populations had markedly higher biomass and higher root:shoot ratio compared to NMET populations. The Zn, and at lesser extent, the Cd hyperaccumulation capacity tended to be higher in the NMET populations. The same trend was observed for the foliar concentrations of Mg, Ca and Fe with NMET populations having higher concentrations compared to MET ones. Cd and Zn concentrations were negatively correlated with the biomass of both ecotype. However, the negative correlation between the Zn and biomass was much lower in MET ecotype suggesting a tighter control of internal Zn concentration in this ecotype. Finally, although the Cd phytoextraction capacity was similar in both ecotype, a higher Zn phytoextraction capacity was detected in NMET ecotype when these plants grow on moderate Cd and Zn concentrations.  相似文献   

14.
Contamination of agricultural topsoils with Cd above guideline values is of concern in many countries throughout the world. Extraction of metals from contaminated soils using high-biomass, metal-accumulating Salix sp. has been proposed as a low-cost, gentle remediation strategy, but reasonable phytoextraction rates remain to be demonstrated. In an outdoor pot experiment we assessed the phytoextraction potential for Cd and Zn of four willow species (Salix caprea, S. fragilis, S. × smithiana, S. × dasyclados) and intercropping of S. caprea with the hyperaccumulator Arabidopsis halleri on three moderately contaminated, agricultural soils. Large concentrations of Cd (250 mg kg−1) and Zn (3,300 mg kg−1) were determined in leaves of Salix × smithiana grown on a soil containing 13.4 mg kg−1 Cd and 955 mg kg−1 Zn, resulting in bioaccumulation factors of 27 (Cd) and 3 (Zn). Total removal of up to 20% Cd and 5% Zn after three vegetation periods were shown for Salix × smithiana closely followed by S. caprea, S. fragilis and S. × dasyclados. While total Cd concentrations in soils were reduced by up to 20%, 1 M NH4NO3-extractable metal concentrations did not significantly decrease within 3 years. Intercropping of S. caprea and A. halleri partly increased total removal of Zn, but did not enhance total Cd extraction compared to single plantings of S. caprea after two vegetation periods.  相似文献   

15.
A pot culture experiment and a field experiment were carried out separately to study heavy metal (HM) uptake from soil contaminated with Cu, Zn, Pb and Cd by Elsholtzia splendens Nakai ex F. Maekawa inoculated with arbuscular mycorrhizal (AM) fungi and the potential for phytoremediation. The HM-contaminated soil in the pot experiment was collected from the field experiment site. Two AM fungal inocula, MI containing only one AM fungal strain, Glomus caledonium 90036, and M II consisting of Gigaspora margarita ZJ37, Gigaspora decipens ZJ38, Scutellospora gilmori ZJ39, Acaulospora spp. andGlomus spp., were applied to the soil under unsterilized conditions. In the pot experiment, the plants were harvested after 24 weeks of growth. Mycorrhizal colonization rate, plant dry weight (DW) and P, Cu, Zn, Pb, Cd concentrations were determined. MI-treated plants had higher mycorrhizal colonization rates than MII-treated plants. Both MI and MII increased shoot and root DW, and MII was more effective than MI. In shoots, the highest P, Cu, Zn and Pb concentrations were all observed in the plants treated with MII, while MI decreased Zn and Pb concentrations and increased P but did not alter Cu, and Cd concentrations were not affected by either of two inocula. In roots, MII increased P, Zn, Pb concentrations but did not alter Cu and Cd, and MI did not affect P, Cu, Zn, Pb, Cd concentrations. Cu, Zn, Pb, Cd uptake into shoots and roots all increased in MII-treated plants, while in MI-treated plants, Cu and Zn uptake into shoots and Cu, Zn, Pb, Cd into roots increased but Pb and Cd uptake into shoots decreased. In general, MII was more effective than MI in promoting plant growth and HM uptake. The field experiment following the pot experiment was carried out to investigate the effects of MII under field conditions. The 45-day-old nonmycorrhizal and MII-colonized seedlings of E. splendens were transplanted to HM-contaminated plots and harvested after 5 months. MII-inoculation increased shoot DW and shoot P, Cu, Zn, Pb concentrations significantly but did not alter shoot Cd concentrations, which led to higher uptake of Cu, Zn, Pb, Cd by E. splendens shoots. These results indicate that the AM fungal consortium represented by MII can benefit phytoextraction of HMs and therefore play a role in phytoremediation of HM-contaminated soils.  相似文献   

16.
濒危植物海南风吹楠营养器官解剖结构特征   总被引:1,自引:0,他引:1  
该研究采用石蜡切片和光学显微技术,对海南风吹楠营养器官的解剖结构及其对环境的适应性进行了探讨。结果表明:海南风吹楠为典型异面叶,叶片中脉发达,中部分化出髓,上表皮外侧具角质层,内侧具1层内皮层,下表皮外侧无角质层,有气孔器分布,气孔器为双环型,略下陷;栅栏组织3~4层细胞,海绵组织4~6层细胞。茎的初生结构中表皮轻微角质化,维管束为外韧型,8~10个初生维管束围绕髓排列为1轮;茎的次生结构中,表皮外部角质层加厚,维管柱紧密排列连成环状,次生韧皮部和次生木质部发达,形成层细胞3~5层。根的初生结构中表皮细胞外壁加厚,外皮层细胞体积大,形状不规则,内侧具1层形成层,内皮层具凯氏带,初生木质部为多原型,呈辐射状排列。根的次生结构中木栓层细胞5~6层,木栓层内侧具1层木栓形成层,栓内层细胞3层。海南风吹楠营养器官具有一定耐阴和耐旱结构特征,同时与其生活的热带雨林沟谷中高温荫湿的环境相适应。  相似文献   

17.
The study was conducted to determine Cd and Zn concentrations in soils with three different ages of oil palm trees (<10, >15, >20 years) and plant parts as affected by long-term application of phosphate rock fertilizers. To investigate this issue on Malaysia's oil palm plantations, six soil series that undergo a scheduled fertilizer program were collected. Jawa, Selangor, and Sedu Series were selected from a plantation in the coastal area, whilst Munchong, Rengam, and Segamat Series were collected from a plantation in the inland area. Fronds and fruitlets were also collected along with the soils (paired sampling). To verify the findings of the field study, Cd and Zn adsorption isotherms were prepared. Competitive adsorption between Zn and Cd was also conducted. There was no accumulation of Cd in all the soil series but Zn accumulated in the Selangor and Segamat Series. Fruitlets (edible part) show no increase in Cd and Zn concentrations, but Jawa and Selangor Series show increasing values of Zn concentrations in the fronds. A correlation study reveals that soil pH and clay content were the soil properties that controlled Cd and Zn concentrations in soils. Cadmium in soils and soil solutions most probably contributed to the Cd concentrations in fruitlets, whereas Cd and Zn in soils may influence the uptake of these elements by the oil palm trees. The highest Cd and Zn accumulation in Segamat Series Soil had been shown in the adsorption isotherm study. Cadmium adsorption was decreased in the presence of Zn, leading to no accumulation of Cd in all the soil series.  相似文献   

18.
The concentrations of 55 elements in the millipede, Oxidus gracilis, soil and plant in the habitat were examined using inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). In all the millipedes, Ca concentration derived from calcium carbonate in the exoskeleton was the highest at average 94 μ/mg-weight. The other major elements were the following: Mg, K, Na, Zn, Fe, Al, Cu, Sr, Ba, Mn and Ti (> 1 ng/mg-body weight), whereas Se, Mo, Ag, Cd, Co, Li and Ce etc. were in trace levels. Interestingly, the various 15 elements such as Ca, Na, Zn, Al, Ba, Ga, Ag, Cd, Co and Y in environmental habitats were well reflected in the body of the millipede. Although the heavy metal contents, in the order of Cu>Pb>Cd, were similar to those of other invertebrates, Cu in the millipede was remarkably high concentration. Zn was maintained in a range of 72–394 ng/mg-weight as essential element in the body and no difference was found in the sexes. The C1 chondrite normalization pattern for lanthanoid series elements in the millipede, soil and plant indicated that the environmental habitats were well protected from pollution. These characteristics of internal elements and metal accumulation in the millipede or relation to their habitats would be useful information for the environmental pollution studies.  相似文献   

19.
Mycorrhizal fungus colonization of roots may modify plant metal acquisition and tolerance. In the present study, the contribution of the extraradical mycelium of an arbuscular mycorrhizal (AM) fungus, Glomus mosseae (BEG 107), to the uptake of metal cations (Cu, Zn, Cd and Ni) by cucumber (Cucumis sativus) plants was determined. The influence of the amount of P supplied to the hyphae on the acquisition and partitioning of metal cations in the mycorrhizal plants was also investigated. Pots with three compartments were used to separate root and root-free hyphal growing zones. The shoot concentration of Cd and Ni was decreased in mycorrhizal plants compared to non-mycorrhizal plants. In contrast, shoot Zn and Cu concentrations were increased in mycorrhizal plants. High P supply to hyphae resulted in decreased root Cu concentrations and shoot Cd and Ni concentrations in mycorrhizal plants. These results confirm that some elements required for plant growth (P, Zn, Cu) are taken up by mycorrhizal hyphae and are then transported to the plants. Conversely, Cd and Ni were transported in much smaller amounts by hyphae to the plant, so that arbuscular mycorrhizal fungus colonization could partly protect plants from toxic effects of these elements. Selective uptake and transport of plant essential elements over non-essential elements by AM hyphae, increased growth of mycorrhizal plants, and metal accumulation in the root may all contribute to the successful growth of mycorrhizal plants on metal-rich substrates. These effects are stimulated when hyphae can access sufficient P in soil.  相似文献   

20.
Heavy metal phytoextraction is a soil remediation technique which implies the optimal use of plants to remove contamination from soil. Plants must thus be tolerant to heavy metals, adapted to soil and climate characteristics and able to take up large amounts of heavy metals. Their roots must also fit the spatial distribution of pollution. Their different root systems allow plants to adapt to their environment and be more or less efficient in element uptake. To assess the impact of the root system on phytoextraction efficiency in the field, we have studied the uptake and root systems (root length and root size) of various high biomass plants (Brassica juncea, Nicotiana tabacum, Zea mays and Salix viminalis) and one hyperaccumulator (Thlaspi caerulescens) grown in a Zn, Cu and Cd contaminated soil and compared them with total heavy metal distribution in the soil. Changes from year to year have been studied for an annual (Zea mays) and a perennial plant (Salix viminalis) to assess the impact of the climate on root systems and the evolution of efficiency with time and growth. In spite of a small biomass, T. caerulescens was the most efficient plant for Cd and Zn removal because of very high concentrations in the shoots. The second most efficient were plants combining high metal concentrations and high biomass (willows for Cd and Zn and tobacco for Cu and Cd). A large cumulative root density/aboveground biomass ratio (LA/B), together with a relative larger proportion of fine roots compared to other plants seemed to be additional favourable characteristics for increased heavy metal uptake by T. caerulescens. In general, for all plants correlations were found between L A/B and heavy metal concentrations in shoots (r=0.758***, r=0.594***, r=0.798*** (P<0.001) for Cd, Cu and Zn concentrations resp.). Differences between years were significant because of variations in climatic conditions for annual plants or because of growth for perennial plants. The plants exhibited also different root distributions along the soil profile: T. caerulescens had a shallow root system and was thus best suited for shallow contamination (0.2 m) whereas maize and willows were the most efficient in colonising the soil at depth and thus more applicable for deep contamination (0.7 m). In the field situation, no plant was able to fit the contamination properly due to heterogeneity in soil contamination. This points out to the importance and the difficulty of choosing plant species according to depth and heterogeneity of localisation of the pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号