首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Biochemical studies have been used to assess the quantitative changes in elastin and collagen in hypertensive vs. normotensive arteries. However, the relative distribution and organization of these fibrous proteins is likely to be equal in importance to their absolute amounts. In this study we have used scanning electron microscopy in association with selective digestion techniques to assess the organization of cellular and extracellular components of the tunica media of mesenteric arteries of spontaneously hypertensive rats. Superior and small mesenteric arteries were digested with acid, alkali, or bleach to exposure cells, collagen, or collagen and elastin, respectively. We observed that hypertension does not cause a qualitative change in the 3-dimensional arrangement of cells, collagen, or elastin in spontaneously hypertensive arteries when compared to normotensive arteries. However, cells in the superior artery are significantly different in overall shape and surface features when compared to cells of small arteries. These differences in surface morphology of cells are present in hypertensive and normotensive vessels and suggest that superior and small mesenteric artery cells transmit load to the isotropic matrix in different ways. In the elasto-muscular superior artery, force is transmitted across digitations throughout the cell surface. In the muscular small artery, force is transmitted across the tapered, smooth cell surface.  相似文献   

2.
We have previously described that chronic administration of ouabain induces hypertension and functional alterations in mesenteric resistance arteries. The aim of this study was to analyze whether ouabain treatment also alters the structural and mechanical properties of mesenteric resistance arteries. Wistar rats were treated for 5 wk with ouabain (8.0 microg/day sc). The vascular structure and mechanics of the third-order branches of the mesenteric artery were assessed with pressure myography and confocal microscopy. Total collagen content was determined by picrosirius red staining, collagen I/III was analyzed by Western blot, and elastin was studied by confocal microscopy. Vascular reactivity was analyzed by wire myography. Internal and external diameters and cross-sectional area were diminished, whereas the wall-to-lumen ratio was increased in arteries from ouabain-treated rats compared with controls. In addition, arteries from ouabain-treated rats were stiffer. Ouabain treatment decreased smooth muscle cell number and increased total and I/III collagens in the vascular wall. However, this treatment did not modify adventitia and media thickness, nuclei morphology, elastin structure, and vascular reactivity to norepinephrine and acetylcholine. The present work shows hypotrophic inward remodeling of mesenteric resistance arteries from ouabain-treated rats that seems to be the consequence of a combination of decreased cell number and impaired distension of the artery, possibly due to a higher stiffness associated with collagen deposition. The narrowing of resistance arteries could play a role in the pathogenesis of hypertension in this model.  相似文献   

3.
The ability of arterial smooth muscle to respond to vasoconstrictor stimuli is reduced in chronic portal hypertension (PHT). Additional evidence supports the existence of a postreceptor defect in vascular smooth muscle excitation contraction coupling. However, the nature of this defect is unclear. Recent studies have shown that vasoconstrictor stimuli induce actin polymerization in smooth muscle and that the associated increase in F-actin is necessary for force development. In the present study we have tested the hypothesis that impaired actin polymerization contributes to reduced vasoconstrictor function in small mesenteric arteries derived from rats with chronic prehepatic PHT. In vitro studies were conducted on small mesenteric artery vessel rings isolated from normal and PHT rats. Isometric tension responses to incremental concentrations of phenylephrine were significantly reduced in PHT arteries. The ability to polymerize actin in portal hypertensive mesenteric arteries stimulated by phenylephrine was attenuated compared with control. Inhibition of cAMP-dependent protein kinase (PKA) restored agonist-induced actin polymerization of arteries from PHT rats to normal levels. Depolymerization of actin in arteries from normal rats reduced maximal contractile force but not myosin phosphorylation, suggesting a key role for the dynamic regulation of actin polymerization in the maintenance of vascular smooth muscle contraction. We conclude that reductions in agonist-induced maximal force development of PHT vascular smooth muscle is due, in part, to impaired actin polymerization, and prolonged PKA activation may underlie these changes.  相似文献   

4.
Chronic treatment of spontaneously hypertensive rats (SHR) and Kyoto-Wistar normotensive rats (WKY) with nadolol was carried out from gestation until 28 weeks of age. Nadolol treatment caused some lowering of blood pressure but did not prevent the development of hypertension or cardiac hypertrophy in the SHR, in spite of significant beta-blockade. The lumen of large mesenteric arteries from control SHR was smaller than from WKY, and nadolol treatment increased the lumen size in the SHR. An increased number of smooth muscle cell layers present in the control SHR as compared with WKY was reduced slightly by nadolol treatment. However, the changes produced by nadolol did not reach the levels of control and treated WKY. In the aorta, the incidence of polyploid smooth muscle cells was higher in the SHR than the WKY in the control group. Nadolol treatment reduced the percentage of polyploid cells in both SHR and WKY, so that the difference between these two groups of animals was eliminated in the treated groups. The tissue level of norepinephrine in the plasma, heart, mesenteric arteries, and adrenal glands in the SHR and WKY was not affected by the treatment. We suggest that the ineffectiveness of nadolol in preventing hypertension development may be due to its lack of effect in preventing primary changes in the resistance arteries, and that the development of polyploidy of smooth muscle cells may be mediated by beta-receptors.  相似文献   

5.
M K Sim  C S Chan 《Life sciences》1992,50(23):1821-1825
The effect of experimentally-induced hypertension on the angiotensin converting enzyme (ACE) activity in the endothelium and smooth muscle cum adventitia of the Sprague Dawley rats was investigated. The ACE activity in both tissues of the 1-clip 2-kidney renovascular hypertensive rats and the deoxycorticosterone acetate/salt hypertensive rats were significantly higher than those of the normotensive control. These findings (i) support the suggestion that the 1-clip 2-kidney renovascular hypertensive rat represents a model of renin- and angiotensin-dependent hypertension and that the increased vascular ACE activity could play a role in the maintenance of hypertension (ii) provide new information regarding the association of increased vascular ACE activity and hypertension in the mineralocorticoid/salt treated hypertensive rats which may account for the finding by others that captopril is effective in preventing the development of hypertension in this low renin model of hypertension. On the other hand, the data also bring forth the possibility that the observed increase in vascular ACE activity could be the result of hypertension.  相似文献   

6.
Large mesenteric arteries from 3- to 4-wk-old spontaneously hypertensive rats (SHR) showed medial hypertrophy and an increased contractile response to various agonists before significant blood pressure increase. Here we determined the cellular nature of this vascular hypertrophy. Large mesenteric arteries from SHR and Wistar-Kyoto (WKY) rats were fixed at maximal relaxation either with an in situ perfusion fixation or an in vitro fixation method. With the use of morphometric protocols and confocal microscopy, the volume of the medial wall and lumen, numerical density of smooth muscle cell nuclei in the medial layer, and smooth muscle cell and nuclear length were measured. Both methods of fixation yielded similar results, showing significant medial volume expansion in SHR than WKY without lumen change. Numerical density of medial smooth muscle cells was significantly less in SHR than WKY, and their total number per 100 microm length were similar between the strains. Average smooth muscle nuclear and cell length from SHR was significantly longer than that of WKY. Regression analysis showed that the increase in smooth muscle cell length explained 80% of the medial volume increase. We concluded that increased smooth muscle cell length in prehypertensive SHR is responsible for increased medial volume in the mesenteric arteries.  相似文献   

7.
Prolonged isometric relaxation in hypertensive aortic and caudal arterial smooth muscle has been demonstrated; however, isobaric relaxation in resistance arteries is more pertinent to studies in hypertension. A comparative study of mesenteric arterial isobaric relaxation times was made using spontaneously hypertensive rats (SHR), normotensive Wistar-Kyoto rats (WKY), and MK-421 treated SHR (treatment commenced at 8 weeks of age and was maintained until sacrifice). Relaxation rates of vessels constricting against a range of pressures and achieving different degrees of narrowing or changes in circumference were analyzed. Comparisons were made between SHR, WKY, and MK-421 treated SHR arteries that had constricted from the same initial circumference and against the same magnitude of pressure. The SHR mesenteric arteries relaxed at a slower rate than did the WKY vessels. The normotensive MK-421 treated SHR showed the same prolonged relaxation rate as did the untreated SHR preparations. Thus the slower rate of relaxation in SHR arteries does not appear to be a consequence of the hypertension. Such prolonged time for narrowing would function to increase the average peripheral resistance and thus may contribute to the initiation and maintenance of increased blood pressure.  相似文献   

8.
Konishi C  Naito Y  Ohara N 《Life sciences》1999,64(15):1265-1273
In isolated mesenteric arteries of rats, dose-dependent increase in perfusion pressure by adenosine 5'-triphosphate (ATP, 0.1 approximately 3000 nmole) diminished with age. ATP responses of both 4- and 32-week-old rats were enhanced by indomethacin (5 microM), and further by the combination of indomethacin and N(G)-nitro-L-arginine methyl ester (L-NAME, 5 microM). The enhancement with each of the treatments was less in 32-week-old rats than that in 4-week-old rats, and there was no enhancement in 75-week-old rats. The ATP response was enhanced by removing the endothelium only in 4-week-old rats. The constrictions in response to ATP (1000 nmole) in both 4- and 32-week-old rats were equally enhanced by reactive blue 2 (30 micromole) and were inhibited by pyridoxal-phosphate-6-azophenyl-2',4-disulphonic acid (PPADS, 30 microM) and alpha, beta-methylene ATP (alpha, beta-mATP, 100 nmole) to a similar extent. The increased tone which was produced by the perfusion with physiological solution containing 100 mM potassium chloride was greater in older animals. This age-related change in the vascular tone disappeared when the responses were potentiated by L-NAME. These results demonstrate that in rat mesenteric arteries, ATP-induced constriction decreases with age. The age-related decline of vasoconstriction is not likely to arise from the changes in the contractility of smooth muscle, from the counterbalancing regulation by the endothelium, or from the cooperation of P2 purinoceptor subtypes. The density of purinoceptors and some post-receptor signal transduction mechanisms in the vascular smooth muscle cells may change with age. The enhanced ATP response might have special physiological significance in rats during development.  相似文献   

9.
This study examines vascular reactivity to alpha-adrenoceptor agonists in mineralocorticoid (deoxycorticosterone acetate (DOCA-salt) hypertensive and normotensive rats. The rats were anesthetized and the mesenteric artery was excised and cut helically into strips that were mounted in a muscle bath for the measurement of isometric force development. Addition of norepinephrine, epinephrine, phenylephrine, methoxamine, or clonidine to the bath caused contractions in all arteries. Arteries from hypertensive rats were more sensitive (lower ED50 values) to each of the agonists than arteries from normotensive rats. alpha-Adrenoceptor affinity for phentolamine (Schild analysis; norepinephrine as the agonist) in hypertensive arteries was not significantly different from that in normotensive arteries. Maximal force generation to clonidine was greater in hypertensive arteries than in normotensive arteries. These results demonstrate an augmented vascular sensitivity to several alpha-adrenoceptor agonists in DOCA hypertensive rats. This change in sensitivity is independent of a change in affinity for the adrenoceptor antagonist, phentolamine. It may be that a change in receptor number or an alteration in a post-receptor activation event accounts for this enhanced adrenoceptor responsiveness in mineralocorticoid hypertension.  相似文献   

10.
The systemic vasculature is known to undergo marked change in both human and experimental hypertension. The in vitro study of individual cellular components from the blood vessel wall and the regulation of their intracellular biochemical processes will aid in developing an understanding of the pathogenesis of hypertension. Vascular smooth muscle cells derived from the aorta and mesenteric arteries of normotensive and hypertensive rats can be successfully maintained in culture, providing a system free of confounding variables such as blood pressure. To assist in fully understanding the pathophysiology of hypertension, this cell culture model can be used to examine interactions between receptor and ligand, the transduction of an associated signal, characterization of subsequent intracellular responses and ultimately, quantification of a physiological and functional consequence of these events, for example, proliferation. The application of in vitro techniques to hypertension research will continue to contribute new knowledge to increase our understanding of the mechanisms behind the hypertensive disease process.  相似文献   

11.
The responsiveness of acetylcholine (ACh), nitroglycerin (NG) and norepinephrine (NE) (aorta only) in both basilar arteries (BA) and thoracic aortic (TA) rings from coarctation hypertensive rats (CHR) were studied and compared to their sham-operated normotensive control rats (SNR). The effects of these agents were also evaluated in TA or BA with and without endothelium from naive normotensive rats (NNR). Blood pressure (BP) and plasma renin activity (PRA) of CHR were significantly higher than their time-matched SNR. Endothelium removal from TA of NNR significantly enhanced NE and NG sensitivity and reduced the maximum ACh relaxation. Removal of BA endothelium of NNR abolished ACh-induced relaxation but had no effect on NG-induced relaxation. In BA from CHR at any stage of hypertension studied, the sensitivity and maximum relaxation induced by ACh or NG were not significantly different than their respective time-matched SNR. ACh sensitivity of TA did not change in 1 Day CHR but decreased in 4 and 14 Day CHR. NG sensitivity increased, did not change and decreased in 1, 4 and 14 Day CHR, respectively. NE sensitivity increased in all stages of hypertension. These data suggest that in coarctation-induced hypertension there is a complex progression of events in TA which is modulated by different mechanisms as evidenced by the changes in the effects of NE, ACh and NG at various stages of hypertension. The results also suggest that the vascular endothelium of TA but not of BA may provide an acute protective mechanism to counteract the imbalance created by the increased sensitivity of smooth muscle cells to contractile agonists in the early stage of hypertension. However, persistent hypertension appears to override this mechanism.  相似文献   

12.
Noradrenaline (NA) effect on the number of vesicles in smooth muscle cells was investigated in small mesenteric arteries of spontaneously hypertensive rats (SHR), aged 8 or 12 weeks, and age-matched normotensive Wistar-Kyoto (WKY) rats. The presence of NA in the incubation medium resulted in an increase in the number of vesicles in SHR of both age groups, but not in WKY. The results are discussed in view of the relationship between the vesicles and Ca transport in smooth muscle cells.  相似文献   

13.
Angiotensin IV, (V-Y-I-H-P-F), binds to AT4 receptors in blood vessels to induce vasodilatation and proliferation of cultured bovine endothelial cells. This latter effect may be important not only in developing tissues but also in injured vessels undergoing remodelling. In the present study, using normal rabbit carotid arteries, we detected AT4 receptors in vascular smooth muscle cells and in the vasa vasorum of the adventitia. Very low receptor levels were observed in the endothelial cells. In keeping with the described binding specificity of AT4 receptors, unlabelled angiotensin IV competed for [125I]angiotensin IV binding in the arteries, with an IC50 of 1.4 nM, whereas angiotensin II and angiotensin III were weaker competitors. Within the first week following endothelial denudation of the carotid artery by balloon catheter, AT4 receptor binding in the media increased to approximately 150% of control tissue. AT4 receptor binding further increased in the media, large neointima and re-endothelialized cell layer to 223% at 20 weeks after injury. In view of the known trophic effects of angiotensin IV, the elevated expression of AT4 receptors, in both the neointima and media of arteries, following balloon injury to the endothelium, suggests a role for the peptide in the adaptive response and remodelling of the vascular wall following damage.  相似文献   

14.
Connexins are the protein constituents of gap junctions which mediate intercellular communication in most tissues. In arterioles gap junctions appear to be important for conduction of vasomotor responses along the vessel. Studies of the expression pattern of connexin isoforms in the microcirculation are sparse. We investigated the expression of the three major vascular connexins in mesenteric arterioles (diameter <50 micro m) from male Sprague-Dawley rats, since conducted vasomotor responses have been described in these vessels. The findings were compared with those obtained from upstream small resistance arteries. Indirect immunofluorescence techniques were used on whole mounts of mesenteric arterioles and on frozen sections of resistance arteries (diameter approximately 300 micro m). Mesenteric arterioles expressed Cx40 and Cx43 in the endothelial layer, and Cx37 was found in most but not all vessels. Connexins were not demonstrated in the media. In resistance arteries endothelial cells expressed Cx37, Cx40 and Cx43. Ultrastructural studies of mesenteric arterioles confirmed that gap junction plaques between endothelial cells are present, whereas myoendothelial, or smooth muscle cell gap junctions could not be demonstrated. The findings suggest that smooth muscle cells in mesenteric arterioles may not be well coupled and favour that conducted vasomotor responses in these vessels are propagated through the endothelial cell layer.  相似文献   

15.
Communication between vascular smooth muscle (VSM) cells via low-resistance gap junctions may facilitate vascular function by synchronizing the contractile state of individual cells within the vessel wall. We hypothesized that inhibition of gap junctional communication would impair constrictor responses of mesenteric resistance arteries. Immunohistochemical experiments revealed positive staining for connexin 37 (Cx37) in both endothelium and smooth muscle of rat mesenteric arterioles, whereas connexin 43 (Cx43) immunoreactivity was not detected in the mesenteric vasculature. Administration of the gap junction inhibitory peptide Gap27, which targets Cx37 and Cx43, significantly diminished myogenic vasoconstriction (8.6 +/- 3.8% of passive diameter at 100 Torr) and changes in vessel wall intracellular [Ca2+] of mesenteric resistance arteries compared with vessels treated with either vehicle (physiological saline solution) (33.5 +/- 6.1%) or a control peptide (32.1 +/- 6.5%). Administration of 18alpha-glycyrrhetinic acid, structurally distinct from Gap27, also significantly attenuated myogenic constriction compared with its vehicle control (DMSO) (9.6 +/- 3.2% vs. 23.8 +/- 4.6%). In contrast, phenylephrine-induced vasoconstriction was not altered by gap junction blockers. Attenuated myogenic vasoconstriction resulting from inhibition of gap junctions persisted after disruption of the endothelium. In additional experiments, VSM cell membrane potential was recorded in mesenteric resistance arteries pressurized to 20 or 100 Torr. VSM membrane potential was depolarized at 100 Torr compared with 20 Torr. However, VSM cells in arteries treated with Gap27 were significantly hyperpolarized (-48.6 +/- 1.4 mV) at the higher pressure compared with vehicle (-41.4 +/- 1.5 mV) and Gap20-treated (-38.4 +/- 0.7 mV) vessels. Our findings suggest that inhibition of smooth muscle gap junctions attenuates pressure-induced VSM cell depolarization and myogenic vasoconstriction.  相似文献   

16.
The purpose of the present study was to examine the effects of portal hypertension on agonist-induced myosin phosphorylation and RhoA expression in vascular smooth muscle. A possible link to cAMP-dependent events was also examined. Portal hypertension was produced by stenosis of the portal vein. Vessel segments were treated with or without 50 microM of the PKA inhibitor Rp-cAMPS for 30 min and subsequently stimulated with 10(-4) M phenylephrine. Myosin regulatory light-chain phosphorylation was detected by immunoblotting. Total RNA from first-order mesenteric arteries and portal veins was isolated and amplified by RT-PCR using RhoA and GAPDH primers. RhoA protein expression was also measured in first-order mesenteric arteries using Western blot analysis. Myosin phosphorylation in maximally stimulated first-order mesenteric arteries was significantly lower in portal hypertensive animals (19.9 +/- 2.86%) when compared with sham-operated control (43.8 +/- 3.53%). Inhibition of PKA selectively increased myosin phosphorylation to 34.7 +/- 4.18%. Rp-cAMPS did not affect the phosphorylation of the portal veins or superior mesenteric arteries. RhoA mRNA and membrane-associated RhoA protein expression in portal hypertensive first-order mesenteric arteries were significantly lower when compared with controls. Acute inhibition of PKA had no effect on RhoA mRNA expression. However, it restored membrane-associated RhoA protein expression in portal hypertensive vessels to control levels. The results suggest that reductions in membrane-associated RhoA expression, which appear to be regulated by cAMP-dependent events, lead to reduced myosin phosphorylation and may underlie the reduced vasoconstrictor effectiveness in the resistance vasculature of portal hypertensive intestine.  相似文献   

17.
The aim of this study was to examine the morphological and functional changes in rabbit mesenteric arterial tissue cultured with fetal bovine serum. In the endothelium-denuded arteries cultured under a serum-free condition for one week (serum-free arteries), morphology of the smooth muscle layer was intact. In the serum-free arteries, high K+ -induced contraction did not change but norepinephrine-induced contraction slightly decreased compared with that in the freshly isolated arteries, whereas the sensitivity to these stimulants was significantly augmented. In the medial layer of the arteries cultured with 10% fetal bovine serum for one week (serum-treated arteries), proliferation, disorientation and death of smooth muscle cells were observed. In the serum-treated arteries, both the amplitude of contractions induced by high K+ and norepinephrine and the sensitivity to these stimulants were significantly reduced compared with those of the serum-free arteries. The reduced norepinephrine-induced contraction in the serum-treated arteries was partially recovered by adding NG-monomethyl-L-arginine (L-NMMA), a nitric oxide (NO) synthase inhibitor, to the assay medium. In alpha-toxin permeabilized arteries, the amplitude of Ca2+ -induced contraction and the sensitivity of the contractile apparatus to Ca2+ were significantly reduced after serum-treatment. These results suggest that chronic serum-treatment of rabbit mesenteric arteries impairs muscle contractility by the morphological and phenotypic changes in smooth muscle cells. NO production in smooth muscle cells is also responsible for the decreased contractility after the serum-treatment.  相似文献   

18.
To determine the role of peroxiredoxin (Prx) in response to oxidative stress and during hypertension in the vasculature, we identified Prx proteins and analyzed their antioxidant effects. Rat aortic smooth muscle contains all six Prxs (I-VI). Prx I, II, and VI shifted to its acidic site on two-dimensional polyacrylamide gel electrophoresis after exposure to H(2)O(2). The total expression of Prx I and VI was increased in response to H(2)O(2). The expression of Prx I, but not that of Prx II and VI, increases and the acidic form of Prx I and the sulfonic acid form of Prx (SO(3)H-Prx) are more strongly expressed in the aortic smooth muscle of hypertensive rats than in that of normotensive control rats. Prxs were also found in the mesenteric artery, heart, and kidney. The expression levels of Prx I and VI were increased in mesenteric artery, but not heart and kidney, from hypertensive rats compared with that from normotensive rats. These results suggest that Prxs play a crucial role against oxidative stress in vascular smooth muscles during hypertension.  相似文献   

19.
To separate the role of ANG II from pressure in hypertrophy of the vascular wall in one-kidney, one-clip (1K1C) hypertension, experimental and sham-operated rats were given the AT(1)-receptor antagonist losartan (20 mg x kg(-1) x day(-1)) or tap water for 14 days. Mean arterial pressure was elevated in both experimental groups compared with controls. Rats were anesthetized with pentobarbital sodium, and the thoracic aorta and carotid, small mesenteric, and external spermatic arteries were harvested and embedded in paraffin. Tissue sections were used for morphological analysis, immunohistochemistry for 5-bromo-2'-deoxyuridine (BrdU) and platelet-derived growth factor (PDGF)-AA, stereological measurements, and in situ hybridization with a (35)S-labeled riboprobe for PDGF-A mRNA. Elevated cross-sectional areas of thoracic, carotid, and small mesenteric artery in 1K1C rats were not reduced by losartan. The internal diameter of the external spermatic artery and microvascular density of the cremaster muscle were reduced in 1K1C rats. The number of BrdU-positive nuclei per cross section did not differ between 1K1C and control arteries. PDGF-A mRNA was elevated in the arterial walls of 1K1C rats compared with controls and was hardly changed by losartan. PDGF-A protein stained strongly in the media of 1K1C arteries and was not inhibited by losartan; it appeared in the adventitia of all aortas and carotid arteries. These observations demonstrate that effects of ANG II mediated through the AT(1) receptor are not necessary for hypertrophy of the vascular wall during 1K1C hypertension or expression of PDGF-A.  相似文献   

20.
Vascular capacitance is reduced by endothelin-1 (ET-1) in deoxycorticosterone (DOCA)-salt hypertensive rats. This may contribute to hypertension development. Because the splanchnic blood vessels (especially veins) are important in determining vascular capacitance, we tested the hypothesis that ET-1 levels in the splanchnic vasculature are elevated in hypertensive DOCA-salt compared with normotensive rats. Tissue ET-1 content was measured by ELISA in aorta, vena cava, superior mesenteric artery and vein, and small mesenteric arteries and veins from normotensive sham-operated (sham) and 4-wk DOCA-salt rats. We also determined ET-1 concentration in aortic and portal venous blood (draining the nonhepatic splanchnic organs) in anesthetized and conscious sham and DOCA-salt rats before and after acute blockade of ETB receptor-mediated plasma clearance of ET-1. Results showed a higher ET-1 content in veins than in arteries of similar size. However, ET-1 content was similar in vessels from sham and DOCA-salt rats, except in aorta and superior mesenteric artery, where ET-1 content was greater in DOCA-salt rats. ET-1 concentration was significantly higher in portal venous than in aortic blood, indicating net nonhepatic splanchnic release (nNHSR) of ET-1. However, nNHSR of ET-1 was similar in sham and DOCA-salt rats. Although nNHSR of ET-1 increased significantly after ETB receptor blockade in sham rats, it was completely unchanged in DOCA-salt rats. These data suggest that, despite the absence of ETB receptor-mediated plasma clearance of ET-1, neither the venous peptide content nor the net release of ET-1 is increased in the splanchnic vasculature of DOCA-salt rats. These results argue against the hypothesis that increased venomotor tone in DOCA-salt hypertension is caused by increased ET-1 concentration around splanchnic venous smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号