首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Using DAPI staining after pretreatment with distamycin A we detected a familial deficiency of chromosome 16 heterochromatin. A distinct positively staining band, however, was seen after C-banding. Thus, by using these different heterochromatin staining methods, heterogeneity of the constitutive heterochromatin in the centromeric region of human chromosome 16 was indicated. The same C-banding procedure was also applied to a previously described familial deficiency of chromosome 9 heterochromatin evidenced using distamycin A/DAPI staining and G 11 staining (Buys et al., 1979). In this case a C-band appeared to be virtually absent on the relevant chromosome. These staining methods may be valuable tools in the study of chromosome polymorphisms.  相似文献   

2.
The karyotype ofCestrum aurantiacum was analyzed for the presence of coldsensitive regions (CSRs) and other types of constitutive heterochromatin. A range of techniques was employed including the fluorescent DAPI, chromomycin/DAPI double staining and actinomycin D/DAPI counter-staining, and the non-fluorescent C-banding applied as single or sequential staining, sequential N-banding and silver impregnation. Four classes of constitutive heterochromatin were recognized: CSRs, nucleolar organizers, non-nucleolar chromomycin-positive bands, and indifferently fluorescent bands. The banded karyotype ofC. aurantiacum is compared with those of otherCestrum species. The sectionsHabrothamnus andCestrum are not karyologically distinct.  相似文献   

3.
Summary Variation of DA/DAPI intensity in the Yq12 band was observed in five amniotic cell specimens and one blood specimen from the father of one fetus. Three distinct classes of Yq heterochromatin were identified by distamycin A (DA) treatment of the cell cultures and various staining techniques. The heterochromatin in the Yq11.23 sub-band does not under-condense when exposed to DA, and shows pale fluorescence with quinacrine staining, positive C-banding, and bright fluorescence with DA/DAPI technique. This class of heterochromatin was consistently observed in all specimens studied. The other two classes of heterochromatin are in the Yq12 band. Both show undercondensation when exposed to DA, quinacrine-bright fluorescence, and positive C-banding; howover, one class of heterochromatin shows DA/DAPI-bright fluorescence and the other shows pale fluorescence. The size and banding intensity of the two classes of heterochromatin in Yq12 are variable. These results provide cytological evidence of heterogeneity within the Y heterochromatin region containing AT-rich DNA.  相似文献   

4.
Triple staining with fluorochromes (DA/DAPI/CMA) and C-banding were used to characterize the composition of Pseudonannolene strinatii heterochromatin. C-banding showed C+ bands of different labeling intensity on chromosomes 1 and 2 in some cells. Fluorochrome staining revealed DAPI+ regions corresponding to the C-banding pattern, indicating that the heterochromatin of this species is abundant in AT-rich sequences.  相似文献   

5.
Chromatin organization in the holocentric chromosomes of the green apple aphid Aphis pomi has been investigated at a cytological level after C-banding, NOR, Giemsa, fluorochrome staining and fluorescent in situ hybridization (FISH). C-banding technique showed that heterochromatic bands are exclusively located on X chromosomes. This data represents a peculiar feature that clearly contradicts the equilocal distribution of heterochromatin typical of monocentric chromosomes. Moreover, silver staining and FISH carried out with a 28S rDNA probe localized rDNA genes on one telomere of each X chromosome; CMA3 staining reveals that these silver positive telomeres are the only GC-rich regions among A. pomi heterochromatin, whereas all other C-positive bands are DAPI positive thus containing AT-rich DNA.  相似文献   

6.
The meaning of DAPI bands observed after C-banding and FISH procedures   总被引:1,自引:0,他引:1  
Abstract

Under specific technical conditions chromosome staining with 4′,6-diamidino-2-phenylindole (DAPI) permits characterization of heterochromatic regions as AT-rich (DAPI+) or AT-poor (DAPI?), especially when the chromosomes are counterstained with chromomycin A3 (CMA), which preferentially binds to GC-rich DNA. DAPI+ bands also often have been observed after C-banding or FISH. In these cases, however, it is not clear whether only AT-rich regions stain positively with DAPI or other heterochromatins with different base compositions also are stained. We evaluated the meaning of DAPI bands observed after C-banding and FISH using three plant species bearing different types of heterochromatin: DAPI+/CMA?, DAP?/CMA+ and DAPI0/CMA0 (neutral bands). Additional tests were performed using propidium iodide, a fluorochrome without preferential affinity for AT or GC. Our results indicate that AT-rich heterochromatin stains as DAPI+ bands after C-banding or FISH, but other kinds of heterochromatin also may be stained by DAPI.  相似文献   

7.
Numerous selective and differential staining techniques have been used to investigate the hierarchical organisation of the human genome. This investigation demonstrates the unique characteristics that are produced on fixed human chromosomes when sequential procedures involving restriction endonuclease TaqI, distamycin A (DA) and 4,6-diamidino-2-phenylindole (DAPI) are employed. TaqI produces extensive gaps in the heterochromatic regions associated with satellite II and III DNAs of human chromosomes 1, 9, 15, 16 and Y. DA/DAPI selectively highlights, as brightly fluorescent C-bands, the heterochromatin associated with the alpha, beta, satellite II and III DNAs of these chromosomes. When DA and DAPI are used on chromosomes before TaqI digestion, and then stained with Giemsa, the centromeric regions appear to be more resistant, producing a distinct C-banding pattern and gaps in the heterochromatin regions. Sequential use of the DA/DAPI technique after TaqI treatment produces a bright fluorescence on the remaining pericentromeric regions of chromosomes 1, 9, 16 and Y, which also displayed a cytochemically unique banding pattern. This approach has produced specific enhanced chromosomal bands, which may serve as tools to characterize genomic heterochromatin at a fundamental level.  相似文献   

8.
The development of high resolution methods of chromosome banding helped the finding of homologous chromosomes, detecting chromosomal abnormalities, and assigning the gene loci to particular chromosomes in mammals. Unfortunately, small and numerous fish chromosomes do not show GC rich and GC poor compartments, this preventing the establishment of G banding pattern. The combination of techniques enabling the identification of constitutive heterochromatin (C-banding), heterochromatin resistant to restriction endonucleas, NOR bearing chromosomes (AgNO3 banding), or AT rich regions on chromosomes (DAPI banding) in sequential staining provides a better characteristic of fish chromosomes. In this work sequentially DAPI, DdeI, AgNO3 stained chromosomes of rainbow trout resulted in the characteristic banding pattern of some homologous chromosomes. Procedure of FISH with telomere probe and DAPI as a counterstaining fluorochrome visualized simultaneous hybridization signals and DAPI banding. Possibility of detection both FISH and DAPI signals can help in procedures of gene mapping on chromosomes.  相似文献   

9.
The karyotypes of three accessions, one each from three annual species of the genus Cicer, namely Cicer arietinum, Cicer reticulation, and Cicer echinospermum, were examined and compared using C-banding, the fluorochromes chromomycin A3, DAPI, and Hoechst 33258, in situ hybridization of the 18S-5.8S-25S and 5S rDNA sequences, and silver staining. The nuclear DNA content of the three species and the amount of heterochromatin were also determined. The results suggest an evolutionary pathway in which C. reticulatum is the ancestral species from which both C. arietinum and C. echinospermum are derived with the loss of one pair of satellites; subsequently, C. echinospermum further differentiated by the accumulation of chromosomal rearrangement(s) that gave rise to a hybrid sterility barrier. Key words : Cicer, C-banding, fluorochromes, Ag staining, rRNA genes.  相似文献   

10.
The chromatin structure of six diploids species ofCostus was analysed using conventional Giemsa staining, C-banding and DAPI/CMA fluorochromes. The interphase nuclei in all the species show an areticulate structure and the prophase chromosomes show large blocks of proximal condensed chromatin. After banding procedures, each chromosome exhibits only centromeric dot-like DAPI+/CMA C-bands whereas the satellites (one pair at each karyotype) are weakly stained after C-banding and show a DAPI/CMA+ fluorescence. Two chromocentres show bright fluorescence with CMA and weak staining after C-banding whereas the others chromocentres show only a small fraction of DAPI+ heterochromatin. These results were interpreted to mean that the greater part of the condensed chromatin has an euchromatic nature whereas two types of well localized heterochromatin occur in a small proportion. The Z-stage analysis suggests that heterochromatin and condensed euchromatin decondense at different times. The chromosome number and morphology of all species are given and the implications of the condensed euchromatin are discussed.Dedicated to Prof.Elisabeth Tschermak-Woess on the occasion of her 70th birthday.  相似文献   

11.
Slides pretreated for C-banding and stained with DAPI or CMA3 show different banding patterns in human metaphase chromosomes compared to those obtained with either standard Giemsa C-banding or fluorochrome staining alone. Human chromosomes show C-plus DA-DAPI banding after C-banding plus DAPI and enhanced R-banding after C-banding plus Chromomycin A3 staining. If C-banding preferentially removes certain classes of DNA and proteins from different chromosome domains, C-banding pre-treatment may cause a differential DNA extraction from G- and R-bands in human chromosomes, resulting in a preferential extraction of DNA included in G-bands. This hypothesis is partially supported by the selective cleavage and removal of DNA from R-bands of restriction endonuclease HaeIII with C-banding combined with DAPI or Chromomycin A3 staining. Structural factors relating to regional differences in DNA and/or proteins could also explain these results.  相似文献   

12.
13.
Pereira LG  de Souza MJ 《Cytobios》2000,103(403):111-119
The constitutive heterochromatin (CH) of Phaeoparia megacephala was studied using C-banding and fluorochrome staining (CMA3, DAPI and acridine orange). The nucleolar organizer regions (NOR) were identified with silver staining. The chromosome complement of this species was 2n = 23, XO in males, and 2n = 24, XX in females. The CH was pericentromeric in all chromosomes. L1, L2, L3 and X chromosomes showed large blocks of CH, while the medium and small chromosomes had small blocks. The staining procedure with acridine orange revealed the same pattern. All the pericentromeric regions showed small blocks of CMA3-positive constitutive heterochromatin (GC-rich regions), while only part of the large C-band positive chromosome segments (L1, L2, L3 and X) were CMA3 positive. This character demonstrates an uncommon heterogeneity of constitutive heterochromatin in P. megacephala. The fluorochrome DAPI did not reveal DAPI-positive regions (AT-rich regions). Silver staining revealed only one pair of medium chromosomes with NOR.  相似文献   

14.
A chromosome study was carried out on a number of European and Central Asiatic diploid green toad populations by means of standard and various other chromosome banding and staining methods (Ag-NOR-, Q-, CMA3-, late replicating [LR] banding pattern, C- and sequential C-banding + CMA3 + DAPI). This study revealed the remarkable karyological uniformity of specimens from all populations, with the only exception being specimens from a Moldavian population, where one chromosome pair was heteromorphic. Though similar in shape, size and with an identical heterochromatin distribution, the difference in the heteromorphic pair was due to a large inverted segment on its long arms. This heteromorphism was restricted to females, suggesting a female heterogametic sex chromosome system of ZZ/ZW type at a very early step of differentiation.  相似文献   

15.
T. Haaf  H. Müller  M. Schmid 《Genetica》1986,70(3):179-185
The sequential staining with distamycin A/DAPI provides an ideal method for studying the behaviour of heterochromatic regions in human male meiosis. The various meiotic and postmeiotic stages were found to have different staining qualities. Although all heterochromatic regions in human pachytene cells show specific DA/DAPI fluorescence, bright and clearly stained heterochromatic blocks can be distinguished from small DA/DAPI spots. Pachytene nuclei exhibit associations between heterochromatic regions of non-homologous bivalents. The heterochromatin of bivalent 9 generally presents as a cluster of small, discrete bodies. The heterochromatic regions of chromosomes 1, 9, 15, 16 and Y are preferentially stained at diakinesis and metaphase of the second meiotic division. The specific DA/DAPI staining disappears with the progressive volume reduction of middle and late spermatid nuclei. The heterochromatin of the chromatids fuses to form a large chromocenter during spermatid differentiation.  相似文献   

16.
Chromosomes of the Amazon molly, Poecilia formosa, a unisexual species of hybrid origin, were investigated by C-banding, silver staining, and fluorescent staining with DAPI, quinacrine dihydrochloride, and chromomycin A3. Analysis of heterochromatin distribution indicates that chromosomes similar to the W chromosome of P. latipinna are not present in the unisexual species. Therefore, morphologically differentiated sex chromosomes do not form the basis of the unisexuality in P. formosa. The number and location of nucleolar organizer regions vary in P. formosa and do not correlate well with those of the parental species.  相似文献   

17.
Huang X  Hu J  Hu X  Zhang C  Zhang L  Wang S  Lu W  Bao Z 《Genes & genetic systems》2007,82(3):257-263
The chromosomes of Argopecten irradians irradians were studied by various cytogenetic approaches. Conventional chromosome characterization built on C-banding, DAPI-staining, and silver staining was complemented by the physical mapping of ribosomal DNA and telomeric sequence (TTAGGG)n by FISH. Results showed that the constitutive heterochromatin revealed by C-banding was mainly distributed at telomeric and centromeric regions. However, interstitial C-bands were also observed. The pattern of DAPI banding was almost consistent with that of C-banding. Silver staining revealed that NORs were located on the short arms of chromosome 3 and 10, and this was further confirmed by FISH using 18S-28S rDNA. 5S rDNA was mapped as two distinguishable loci on the long arm of chromosome 11. 18S-28S and 5S rDNA were located on different chromosomes by sequential FISH. FISH also showed that the vertebrate telomeric sequence (TTAGGG)n was located on both ends of each chromosome and no interstitial signals were detected. Sequential 18S-28S rDNA and (TTAGGG)n FISH demonstrated that repeated units of the two multicopy families were closely associated on the same chromosome pair.  相似文献   

18.
The aim of this work is to characterize Nephilengys cruentata in relation to the diploid number, chromosome morphology, type of sex determination chromosome system, chromosomes bearing the Nucleolar Organizer Regions (NORs), C-banding pattern, and AT or GC repetitive sequences. The chromosome preparations were submitted to standard staining (Giemsa), NOR silver impregnation, C-banding technique, and base-specific fluorochrome staining. The analysis of the cells showed 2n = 24 and 2n = 26 chromosomes in the embryos, and 2n = 26 in the ovarian cells, being all the chromosomes acrocentric. The long arm of the pairs 1, 2 and 3 showed an extensive negative heteropycnotic area when the mitotic metaphases were stained with Giemsa. The sexual chromosomes did not show differential characteristics that allowed to distinguish them from the other chromosomes of the complement. Considering the diploid numbers found in N. cruentata and the prevalence of X1X2 sex determination chromosome system in Tetragnathidae, N. cruentata seems to possess 2n = 24 = 22 + X1X2 in the males, and 2n = 26 = 22 + X1X1X2X2 in the females. The pairs 1, 2 and 3 showed NORs which are coincident with the negative heteropycnotic patterns. Using the C-banding technique, the pericentromeric region of the chromosomes revealed small quantity or even absence of constitutive heterochromatin, differing of the C-banding pattern described in other species of spiders. In N. cruentata the fluorochromes DAPI/DA, DAPI/MM and CMA3/DA revealed that the constitutive heterochromatin is rich in AT bases and the NORs possess repetitive sequences of GC bases.  相似文献   

19.
Phyllostomidae comprises the most diverse family of neotropical bats, its wide range of morphological features leading to uncertainty regarding phylogenetic relationships. Seeing that cytogenetics is one of the fields capable of providing support for currently adopted classifications through the use of several markers, a comparative analysis between two Phyllostomidae species was undertaken in the present study, with a view to supplying datasets for the further establishment of Phyllostomidae evolutionary relationships. Karyotypes of Lonchorhina aurita (2n = 32; FN = 60) and Trachops cirrhosus (2n = 30; FN = 56) were analyzed by G- and C-banding, silver nitrate staining (Ag-NOR) and base-specific fluorochromes. Chromosomal data obtained for both species are in agreement with those previously described, except for X chromosome morphology in T. cirrhosus, hence indicating chromosomal geographical variation in this species. A comparison of G-banding permitted the identification of homeologies in nearly all the chromosomes. Furthermore, C-banding and Ag-NOR patterns were comparable to what has already been observed in the family. In both species CMA(3) /DA/DAPI staining revealed an R-banding-like pattern with CMA (3) , whereas DAPI showed uniform staining in all the chromosomes. Fluorochrome staining patterns for pericentromeric constitutive heterochromatin (CH) regions, as well as for nucleolar organizing regions (NORs), indicated heterogeneity regarding these sequences among Phyllostomidae species.  相似文献   

20.
Males of Zophobas aff. confusus and Nyctobates gigas (Tenebrionidae) collected in the State of Pernambuco, Brazil, were studied through conventional staining, C-banding, silver nitrate impregnation (AgNO(3)), and the base specific fluorochromes CMA(3) and DAPI. Z. aff. confusus was found to have 2n = 20 (9+Xyp) while N. gigas exhibited 2n = 18 (8+neoXY). Large pericentromeric blocks of constitutive heterochromatin (CH) were detected throughout the autosomal complement of the two species, except in one autosomal pair of N. gigas in which no heterochromatic block was observed. The sex chromosomes of both species were almost totally heterochromatic. Double staining with CMA(3)/DA (distamycin) and DAPI/DA marked CH in Z. aff. confusus. However, DAPI staining was more intense. N. gigas was found to possess blocks of CH-positive CMA(3) and homogeneous DAPI. AgNO(3) staining also revealed differences between the two species. In Z. confusus an NOR was observed in the sexual bivalent Xyp and N. gigas was found to have an autosomal NOR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号