首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Alkaline phosphatase (ALP) refers to a group of nonspecific phosphomonoesterases located primarily in cell plasma membrane. It has been described in different cell lines that ecto-ALP is directly or indirectly involved in the modulation of organic cation transport. We aimed to investigate, in Caco-2 cells, a putative modulation of 1-methyl-4-phenylpyridinium (MPP(+)) apical uptake by an ecto-ALP activity. Ecto-ALP activity and (3)H-MPP(+) uptake were evaluated in intact Caco-2 cells (human colon adenocarcinoma cell line), in the absence and presence of a series of drugs. The activity of membrane-bound ecto-ALP expressed on the apical surface of Caco-2 cells was studied at physiological pH using p-nitrophenylphosphate as substrate. The results showed that Caco-2 cells express ALP activity, characterized by an ecto-oriented active site functional at physiological pH. Genistein (250 micro M), 3-isobutyl-1-methylxanthine (1 mM), verapamil (100 micro M), and ascorbic acid (1 mM) significantly increased ecto-ALP activity and decreased (3)H-MPP(+) apical transport in this cell line. Orthovanadate (100 micro M) showed no effect on (3)H-MPP(+) transport and on ecto-ALP activity. On the other hand, okadaic acid (310 nM) and all trans-retinoic acid (1 micro M) significantly increased (3)H-MPP(+) uptake and inhibited ecto-ALP activity. There is a negative correlation between the effect of drugs upon ecto-ALP activity and (3)H-MPP(+) apical transport (r = -0.9; P = 0.0014). We suggest that apical uptake of organic cations in Caco-2 cells is affected by phosphorylation/dephosphorylation mechanisms, and that ecto-ALP activity may be involved in this process.  相似文献   

2.
In this study, we examined the molecular and functional characterization of choline uptake into cultured rat cortical astrocytes. Choline uptake into astrocytes showed little dependence on extracellular Na+. Na+-independent choline uptake was saturable and mediated by a single transport system, with an apparent Michaelis-Menten constant (Km) of 35.7 +/- 4.1 microm and a maximal velocity (Vmax) of 49.1 +/- 2.0 pmol/mg protein/min. Choline uptake was significantly decreased by acidification of the extracellular medium and by membrane depolarization. Na+-independent choline uptake was inhibited by unlabeled choline, acetylcholine and the choline analogue hemicholinium-3. The prototypical organic cation tetrahexylammonium (TEA), and other n-tetraalkylammonium compounds such as tetrabutylammonium (TBA) and tetrahexylammonium (THA), inhibited Na+-independent choline uptake, and their inhibitory potencies were in the order THA > TBA > TEA. Various organic cations, such as 1-methyl-4-tetrahydropyridinium (MPP+), clonidine, quinine, quinidine, guanidine, N-methylnicotinamide, cimetidine, desipramine, diphenhydramine and verapamil, also interacted with the Na+-independent choline transport system. Corticosterone and 17beta-estradiol, known inhibitors of organic cation transporter 3 (OCT3), did not cause any significant inhibition. However, decynium22, which inhibits OCTs, markedly inhibited Na+-independent choline uptake. RT-PCR demonstrated that astrocytes expressed low levels of OCT1, OCT2 and OCT3 mRNA, but the functional characteristics of choline uptake are very different from the known properties of these OCTs. The high-affinity Na+-dependent choline transporter, CHT1, is not expressed in astrocytes as evidenced by RT-PCR. Furthermore, mRNA for choline transporter-like protein 1 (CTL1), and its splice variants CTL1a and CTL1b, was expressed in rat astrocytes, and the inhibition of CTL1 expression by RNA interference completely inhibited Na+-independent choline uptake. We conclude that rat astrocytes express an intermediate-affinity Na+-independent choline transport system. This system seems to occur through a CTL1 and is responsible for the uptake of choline and organic cations in these cells.  相似文献   

3.
Organic cation uptake by a cultured renal epithelium   总被引:2,自引:0,他引:2  
Several organic cations are actively transported by proximal renal tubules by mediated processes across both the apical and basolateral cell membranes. In order to evaluate this transport system in a cultured renal epithelium, uptake of 3H-tetraethylammonium (TEA) across the apical membrane was measured in LLCPK1 cells, a cell line with several characteristics of proximal tubules. 3H-TEA progressively entered these cells and reached a near-steady state by 30 min. Three-minute uptake was saturable with an apparent Vmax of 1,669 +/- 129 fmoles/micrograms DNA and apparent Km of 34.0 +/- 3.4 microM. 3H-TEA uptake was inhibited by an excess of nonradioactive TEA, other organic cations, sodium azide, and hypothermia. An alkaline external pH was associated with greater 3H-TEA uptake than an acid pH. However, efflux of 3H-TEA from cells was not appreciably affected by changes in external pH. Preincubation of cells in acid or alkaline media did not affect uptake. Alteration of cell pH by ammonium chloride addition or removal had little effect on 3H-TEA uptake. Finally, uptake of 3H-TEA was not accelerated by preloading cells with an excess of nonradioactive TEA. These results indicate that intact LLCPK1 cells possess a mechanism(s) in their apical membranes for the mediated transport of a prototypic organic cation. The mechanism(s) involved in this transport is uncertain. However, neither organic cation/proton nor organic cation/organic cation exchange appears to be the predominant process.  相似文献   

4.
3,4-methylenedioxymethamphetamine (MDMA) is an illegal amphetamine-type stimulant (ATS) that is abused orally in the form of tablets for recreational purposes. The aim of this work is to investigate the absorption mechanism of MDMA and other related compounds that often occur together in ATS tablets, and to determine whether such tablet components interact with each other in intestinal absorption. The characteristics of MDMA uptake by the human intestinal epithelial Caco-2 cell line were investigated. The Michaelis constant and the maximal uptake velocity at pH 6.0 were 1.11 mM and 13.79 nmol/min/mg protein, respectively, and the transport was electroneutral. The initial uptake rate was regulated by both intra- and extracellular pH. MDMA permeation from the apical to the basolateral side was inferior to that in the reverse direction, and a decrease in apical pH enhanced MDMA permeation from the basolateral to the apical side. These facts indicate that this transport system may be an antiporter of H+. However, under physiological conditions, the proton gradient cannot drive the MDMA uptake because it is inwardly directed. Large concentration differences of MDMA itself drive this antiporter. Various compounds with similar amine moieties inhibited the uptake, but substrates of organic cation transporters (OCT1-3) and an H+-coupled efflux antiporter, MATE, were not recognized.  相似文献   

5.
Protective properties of moderate wine consumption against cancers, cardiovascular, metabolic and degenerative diseases have been reported in various clinical studies. Here, we analysed the effect of red wine (RW) and white wine (WW) on myelination using an in vitro embryonic co-culture mouse model. The total amount of myelin was found to be significantly increased after RW and WW treatment, while only RW significantly increased the number of internodes. Both types of wine increased rat Schwann cell- (rSC) expression of the NAD+-dependent deacetylase sirtuin-two-homolog 2 (Sirt2), a protein known to be involved in myelination.Detailed chemical analysis of RW revealed a broad spectrum of anthocyanins, piceids, and phenolics, including resveratrol (RSV). In our assay system RSV in low concentrations induced myelination. Furthermore RSV raised intracellular glutathione concentrations in rSCs and in co-cultures and therefore augmented antioxidant capacity.We conclude that wine promotes myelination in a rodent in vitro model by controlling intracellular metabolism and SC plasticity. During this process, RSV exhibits protective properties; however, the fostering effect on myelinaton during exposure to wine appears to be a complex interaction of various compounds.  相似文献   

6.
3,4-Methylenedioxymethamphetamine (MDMA) is an illegal amphetamine-type stimulant (ATS) that is abused orally in the form of tablets for recreational purposes. The aim of this work is to investigate the absorption mechanism of MDMA and other related compounds that often occur together in ATS tablets, and to determine whether such tablet components interact with each other in intestinal absorption. The characteristics of MDMA uptake by the human intestinal epithelial Caco-2 cell line were investigated. The Michaelis constant and the maximal uptake velocity at pH 6.0 were 1.11 mM and 13.79 nmol/min/mg protein, respectively, and the transport was electroneutral. The initial uptake rate was regulated by both intra- and extracellular pH. MDMA permeation from the apical to the basolateral side was inferior to that in the reverse direction, and a decrease in apical pH enhanced MDMA permeation from the basolateral to the apical side. These facts indicate that this transport system may be an antiporter of H+. However, under physiological conditions, the proton gradient cannot drive the MDMA uptake because it is inwardly directed. Large concentration differences of MDMA itself drive this antiporter. Various compounds with similar amine moieties inhibited the uptake, but substrates of organic cation transporters (OCT1-3) and an H+-coupled efflux antiporter, MATE, were not recognized.  相似文献   

7.
It is becoming increasingly evident that the absorption of certain nutrients and drugs and their effects are largely influenced by the concomitant ingestion of other substances. As various xeno- and endobiotics belong to the class of organic cations, the aim of this work was to study the modulation of the intestinal apical uptake of organic cations by diet procyanidins.Five procyanidin fractions with different structural complexity were obtained after fractionation of a grape seed extract. The effect of these compounds on 1-methyl-4-phenylpyridinium (MPP+) uptake was evaluated in Caco-2 cells.Apical uptake of 3H-MPP+ by Caco-2 cells was increased by a 60 min exposure to 600 μg ml−1 of procyanidin fractions, that increase being positively related with procyanidins structural complexity. It was verified that 3H-MPP+ uptake increased with preincubation time. It was speculated that procyanidins were oxidized during preincubation, this change could interfered with transport activity. Tested oxidizing agents showed that the redox state of the transporter could affect its activity. Additionally, trans-stimulation experiments showed that catechin and fraction I (the simpler fraction) can use the same transporter as MPP+. The results are compatible with the hypothesis of these compounds being competitive inhibitors of MPP+ transport.In conclusion, procyanidins are capable to modulate MPP+ apical uptake in Caco-2 cells, this transport being most probably modulated through oxidation-reduction phenomena. Interactions between these compounds and drugs present in the diet may affect their absorption and bioavailability. Both the concentration and complexity of the procyanidin compounds should be taken into account in medical practice.  相似文献   

8.
The molecular mechanisms of organic cation transport by rat OCT2 was examined in the Xenopus oocyte expression system. When extracellular Na+ ions were replaced with K+ ions, uptake of tetraethylammonium (TEA) by OCT2-expressing oocytes was decreased, suggesting that TEA uptake by OCT2 is dependent on membrane potential. Kinetic analysis revealed that the decreased TEA uptake by ion substitution was caused at least in part by decreased substrate affinity. Acidification of extracellular buffer resulted in decreased uptake of TEA, whereas TEA efflux from OCT1- and OCT2-expressing oocytes was not stimulated by inward proton gradient, in consistent with basolateral organic cation transport in the kidney. Inhibition of TEA uptake by various organic cations revealed that apparent substrate spectrum of OCT2 was similar with that of OCT1. However, the affinity of procainamide to OCT1 was higher than that to OCT2. Uptake of 1-methyl-4-phenylpyridinium was stimulated by OCT2 as well as OCT1, but uptake of levofloxacin, a zwitterion, was not stimulated by both OCTs. These results suggest that OCT2 is a multispecific organic cation transporter with the characteristics comparable to those of the basolateral organic cation transporter in the kidney.  相似文献   

9.
Pan T  Fei J  Zhou X  Jankovic J  Le W 《Life sciences》2003,72(9):1073-1083
As antioxidants, polyphenols are considered to be potentially useful in preventing chronic diseases in man, including Parkinson's disease (PD), a disease involving dopamine (DA) neurons. Our studies have demonstrated that polyphenols extracted from green tea (GT) can inhibit the uptake of 3H-dopamine (3H-DA) and 1-methyl-4-phenylpyridinium (MPP(+)) by DA transporters (DAT) and partially protect embryonic rat mesencephalic dopaminergic (DAergic) neurons from MPP(+)-induced injury. The inhibitory effects of GT polyphenols on 3H-DA uptake were determined in DAT-pCDNA3-transfected Chinese Hamster Ovary (DAT-CHO) cells and in striatal synaptosomes of C57BL/6 mice in vitro and in vivo. The inhibitory effects on 3H-MPP(+) uptake were determined in primary cultures of embryonic rat mesencephalic DAergic cells. Inhibition of uptake for both 3H-DA and 3H-MPP(+) was dose-dependent in the presence of polyphenols. Incubation with 50 microM MPP(+) resulted in a significant loss of tyrosine-hydroxylase (TH)-positive cells in the primary embryonic mesencephalic cultures, while pretreatment with polyphenols (10 to 30 microg/ml) or mazindol (10 microM), a classical DAT inhibitor, significantly attenuated MPP(+)-induced loss of TH-positive cells. These results suggest that GT polyphenols have inhibitory effects on DAT, through which they block MPP(+) uptake and protect DAergic neurons against MPP(+)-induced injury.  相似文献   

10.
Transport of organic cations by a renal epithelial cell line (OK)   总被引:1,自引:0,他引:1  
The goal of this study was to determine the mechanisms involved in the transport of the organic cation, tetraethylammonium (TEA), across the apical membrane of OK cells. [14C]TEA accumulated in OK cell monolayers reaching equilibrium in 2 h. The uptake of [14C]TEA at equilibrium was dependent upon temperature and was inhibited by sodium azide and by various organic cations, including N1-methylnicotinamide (NMN), mepiperphenidol, and cimetidine but not by the organic anion, p-aminohippuric acid. The initial uptake of [14C]TEA was characterized by a saturable process. The mean +/- S.D. Km was 27.8 +/- 2.6 microM and the Vmax was 414 +/- 26.5 pmol/mg protein/min. Both an accelerated efflux and influx of [14C]TEA in the presence of a trans-gradient of unlabeled TEA and NMN was observed, whereas a deaccelerated influx and efflux was observed in the presence of a trans-gradient of mepiperphenidol. The mechanism of interaction between NMN and TEA was examined. NMN significantly increased the apparent Km (mean +/- S.D.) of TEA to 82.8 +/- 16.4 microM (p less than 0.001), whereas the Vmax (mean +/- S.D.) was only slightly affected (478 +/- 72 pmol/mg protein/min) suggesting a competitive inhibition. The stimulatory effect of trans-gradients of NMN on TEA transport was due to an increase in the Vmax of TEA suggesting that NMN trans-stimulates TEA transport by increasing the turnover rate of the exchanger. In the presence of an inwardly directed proton gradient, the efflux at 30 s of [14C]TEA from the OK cell monolayers was significantly accelerated (p less than 0.05). Studies with the pH-sensitive fluorescent probe, 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, suggested that TEA could drive the countertransport of protons. In apical membrane vesicles prepared from OK cells, the uptake of [3H]NMN exhibited an apparent "overshoot phenomenon" in the presence of an initial outwardly directed proton gradient. Protons competitively inhibited TEA uptake suggesting that the proton/organic cation and the organic cation/organic cation self exchange mechanism are the same mechanism. This is the first report describing both TEA self-exchange and proton/TEA exchange in the apical membrane of a continuous cell line. OK cells are an excellent model for the study of organic cation transport across the apical membrane.  相似文献   

11.
Feng B  Dresser MJ  Shu Y  Johns SJ  Giacomini KM 《Biochemistry》2001,40(18):5511-5520
Organic anion transporters (OATs) and organic cation transporters (OCTs) mediate the flux of xenobiotics across the plasma membranes of epithelia. Substrates of OATs generally carry negative charge(s) whereas substrates of OCTs are cations. The goal of this study was to determine the domains and amino acid residues essential for recognition and transport of organic anions by the rat organic anion transporter, rOAT3. An rOAT3/rOCT1 chimera containing transmembrane domains 1-5 of rOAT3 and 6-12 of rOCT1 retained the specificity of rOCT1, suggesting that residues involved in substrate recognition reside within the carboxyl-terminal half of these transporters. Mutagenesis of a conserved basic amino acid residue, arginine 454 to aspartic acid (R454D), revealed that this amino acid is required for organic anion transport. The uptakes of p-aminohippurate (PAH), estrone sulfate, and ochratoxin A were approximately 10-, approximately 48-, and approximately 32-fold enhanced in oocytes expressing rOAT3 and were only approximately 2-, approximately 6-, and approximately 5-fold enhanced for R454D. Similarly, mutagenesis of the conserved lysine 370 to alanine (K370A) suggested that K370 is important for organic anion transport. Interestingly, the charge specificity of the double mutant, R454DK370A, was reversed in comparison to rOAT3-R454DK370A preferentially transported the organic cation, MPP(+), in comparison to PAH (MPP(+) uptake/PAH uptake = 3.21 for the double mutant vs 0.037 for rOAT3). These data indicate that arginine 454 and lysine 370 are essential for the anion specificity of rOAT3. The studies provide the first insights into the molecular determinants that are critical for recognition and translocation of organic anions by a member of the organic anion transporter family.  相似文献   

12.
Many organic cations are transported across the apical membrane of the proximal tubule by specific saturable mechanisms. The goal of this study was to determine if the transporter for tetraethylammonium (TEA) in the brush border membrane of an established opossum kidney (OK) cell line is glycosylated and to elucidate the function of this glycosylation. The uptake of TEA was determined in OK cell monolayers treated with tunicamycin (TM), a compound that prevents synthesis of the core oligosaccharide precursor molecules. TM exposure significantly decreased the incorporation of [3H]mannose in OK cell proteins and significantly reduced TEA uptake in a time and a concentration dependent manner. No effect of TM exposure on cellular protein synthesis, DNA content, cell viability, or on [3H]proline uptake was observed. The transport of TEA in control cells was characterized by a Km of 26.9 +/- 16.4 microM and a Vmax of 378 +/- 39 pmol/mg of protein/min. TM treatment (1 microgram/ml for 21 h) significantly increased the Km by over 4-fold to 111.5 +/- 18.4 microM while not affecting the Vmax. The apparent KI values of other organic cations known to interact with this transport system were also significantly increased by TM exposure. Estimated KI values of N1-methylnicotinamide, cimetidine, and mepiperphenidol increased by 6-fold, 4-fold, and 2-fold, respectively, after exposure of OK cells to TM. An increased KI for protons was also observed. Additional inhibitors of the N-linked glycosylation pathway, castanospermine, deoxynojirimycin, and deoxymannojirimycin significantly decreased TEA transport, whereas swainsonine had no effect. Our results suggest that the organic cation transporter is glycosylated. The N-linked oligosaccharide side chain appears to be of the hybrid type, and it either directly or indirectly affects the binding site of the transporter for both organic cations and protons. This is the first report describing the importance of glycosylation in the function of the organic cation transporter in the apical membrane of OK cells.  相似文献   

13.
The rat organic cation transporter rOCT1 with six histidine residues added to the C-terminus was expressed in Sf9 insect cells, and expression of organic cation transport was demonstrated. To purify rOCT1 protein, Sf9 cells were lysed with 1% (w/v) CHAPS [3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate], centrifuged, and subjected to sequential affinity chromatography using lentil-lectin Sepharose and nickel(II)-charged nitrilotriacetic acid-agarose. This procedure yielded approximately 70 microg of purified rOCT1 protein from 10 standard culture plates. Using a freeze-thaw procedure, purified rOCT1 was reconstituted into proteoliposomes formed from phosphatidylcholine, phosphatidylserine, and cholesterol. Proteoliposomes exhibited uptake of [3H]-1-Methyl-4-phenylpyridinium ([3H]MPP) that was inhibited by quinine and stimulated by an inside-negative membrane potential. MPP uptake was saturable with an apparent K(m) of 30 +/- 17 microM. MPP uptake (0.1 microM) was inhibited by tetraethylammonium, tetrabutylammonium, and tetrapentylammonium with IC50 values of 197 +/- 11, 19 +/- 1, and 1.8 +/- 0.03 microM, respectively. With membrane potential clamped to 0 mV using valinomycin in the presence of 100 mM potassium on both sides of the membrane, uptake of 0.1 microM MPP was trans stimulated 3-fold by 2.5 mM intracellular choline, and efflux of 0.1 microM MPP was trans stimulated 4-fold by 9.5 mM extracellular choline. The data show that rOCT1 is capable and sufficient to mediate transport of organic cations. The observed trans stimulation under voltage-clamp conditions shows that rOCT1 operates as a transporter rather than a channel. Purification and reconstitution of functional active rOCT1 protein is an important step toward the biophysical characterization and crystallization.  相似文献   

14.
Organic cation transporters (OCT1–3) mediate the transport of organic cations including inhaled drugs across the cell membrane, although their role in lung epithelium hasn't been well understood yet. We address here the expression and functional activity of OCT1–3 in human airway epithelial cells A549, Calu-3 and NCl-H441. Kinetic and inhibition analyses, employing [3H]1-methyl-4-phenylpyridinium (MPP+) as substrate, and the compounds quinidine, prostaglandine E2 (PGE2) and corticosterone as preferential inhibitors of OCT1, OCT2, and OCT3, respectively, have been performed. A549 cells present a robust MPP+ uptake mediated by one high-affinity component (Km ~ 50 μM) which is identifiable with OCT3. Corticosterone, indeed, completely inhibits MPP+ transport, while quinidine and PGE2 are inactive and SLC22A3/OCT3 silencing with siRNA markedly lowers MPP+ uptake. Conversely, Calu-3 exhibits both a high (Km < 20 μM) and a low affinity (Km > 0.6 mM) transport components, referable to OCT3 and OCT1, respectively, as demonstrated by the inhibition analysis performed at proper substrate concentrations and confirmed by the use of specific siRNA. These transporters are active also when cells are grown under air–liquid interface (ALI) conditions. Only a very modest saturable MPP+ uptake is measurable in NCl-H441 cells and the inhibitory effect of quinidine points to OCT1 as the subtype functionally involved in this model. Finally, the characterization of MPP+ transport in human bronchial BEAS-2B cells suggests that OCT1 and OCT3 are operative. These findings could help to identify in vitro models to be employed for studies concerning the specific involvement of each transporter in drug transportation.  相似文献   

15.
Uptake of guanidine, an endogenous organic cation, into brush-border membrane vesicles isolated from human term placentas was investigated. Initial uptake rates were manyfold greater in the presence of an outward-directed H+ gradient ([pH]o greater than [pH]i) than in the absence of a H+ gradient ([pH]o = [pH]i). Guanidine was transiently accumulated inside the vesicles against a concentration gradient in the presence of the H+ gradient. The H+ gradient-dependent stimulation of guanidine uptake was not due to a H+-diffusion potential because an ionophore (valinomycin or carbonylcyanide p-trifluoromethoxyphenylhydrazone)-induced inside-negative membrane potential failed to stimulate the uptake. In addition, uphill transport of guanidine could be demonstrated even in voltage-clamped membrane vesicles. The H+ gradient-dependent uptake of guanidine was inhibited by many exogenous as well as endogenous organic cations (cis-inhibition) but not by cationic amino acids. The presence of unlabeled guanidine inside the vesicles stimulated the uptake of labeled guanidine (trans-stimulation). These data provide evidence for the presence of an organic cation-proton antiporter in human placental brush-border membranes. Kinetic analysis of guanidine uptake demonstrated that the uptake occurred via two saturable, carrier-mediated transport systems, one being a high affinity, low capacity type and the other a low affinity, high capacity type. Studies on the effects of various cations on the organic cation-proton antiporter and the Na+-H+ exchanger revealed that these two transport systems are distinct.  相似文献   

16.
Liou HH  Hsu HJ  Tsai YF  Shih CY  Chang YC  Lin CJ 《Life sciences》2007,81(8):664-672
To examine the interaction between nicotine and MPTP/MPP+ in the blood-brain barrier, cellular uptake of MPTP and MPP+ was studied in the presence of nicotine and several compounds, including MPTP/MPP+ analogs and a specific inhibitor of organic cation transporter (OCT) in an adult rat brain microvascular endothelial cell line (ARBEC). The kinetic properties of the uptake of MPTP, MPP+, and nicotine were also examined. In addition, a microdialysis study was performed to evaluate the in vivo effect of nicotine (i.p.) on extracellular levels of MPTP and MPP+ in the brain after intravenous administration of MPTP. The results showed that uptake of MPTP, MPP+, and nicotine was partly mediated by a carrier system that was sensitive to decynium22, a specific OCT inhibitor. RT-PCR showed the presence of OCT1 mRNA in ARBEC. Capacity for uptake of MPTP and nicotine was much higher than that for MPP+ (Km and Vm values of 10.94+/-1.44 microM and 0.049+/-0.007 pmol/mg s, respectively, for MPP+, compared to values of 35.75+/-0.85 microM and 40.95+/-3.56 pmol/mg s for MPTP and 25.29+/-6.44 microM and 51.15+/-14.18 pmol/mg s for nicotine). In addition, nicotine competitively inhibited the uptake of both MPTP and MPP+, with inhibition constants (Ki) of 328 microM and 210 microM, respectively. In vivo microdialysis results showed that nicotine significantly reduced brain extracellular levels of MPTP in the first 30 min (507.4+/-8.5 ng/ml vs. 637.9+/-30.8 ng/ml with and without nicotine pre-treatment, respectively), but did not have significant effect on those of MPP+. In conclusion, nicotine can inhibit in vitro cellular uptake and in vivo transfer of MPTP across the blood-brain barrier, which can be mediated by multiple pathways including OCT1.  相似文献   

17.
Uptake by the liver of the organic cation and essential nutrient choline is required for the hepatic synthesis of phosphatidylcholine. Uptake of other organic cations is also important for the metabolism and secretion of numerous endobiotics and drugs. Although a high affinity mammalian hepatic choline transporter has been kinetically defined, it has not been previously identified. We have developed stable transfectants of BALB/3T3 cells, using a murine member of the organic cation transporter gene family (mOct1/Slc22a1), and used these cells to characterize the transport of the organic cation choline and model organic cation tetraethylammonium (TEA). Functional expression of mOct1/Slc22a1 in BALB/3T3 cells confers the saturable, temperature-dependent uptake of choline with a K(m) of 42 micrometer, and uptake of TEA with a K(m) of 43 micrometer. We subsequently used our cell culture uptake system to kinetically define in HepG2 cells a high affinity choline uptake process, which transports choline with a K(m) similar to that of mOct1/Slc22a1 protein. We also demonstrated that organic cation transport by mOct1/Slc22a1 is inhibited by several organic cations, and that the gene is expressed in the perinatal period, at a time when phosphatidylcholine synthesis increases.We conclude that mOct1/Slc22a1 encodes a high affinity mammalian hepatic choline/organic cation transporter. This transporter may be important for hepatic phosphatidylcholine synthesis, and for the metabolism and secretion of many organic cationic drugs.  相似文献   

18.
Rodrigo R  Rivera G  Orellana M  Araya J  Bosco C 《Life sciences》2002,71(24):2881-2895
This study evaluated the antioxidant defense system of the rat kidney following chronic exposure to red wine rich in flavonols. Both ethanol and antioxidant non-alcoholic wine components, mainly polyphenols, could contribute to the antioxidant status of kidney. Adult rats were given separately, water, ethanol (12.5%), red wine or alcohol-free red wine. After ten weeks of treatment, blood samples were obtained to determine plasma antioxidant capacity (FRAP, ferric reducing ability of plasma), uric acid and ethanol levels. Kidney tissues (cortex and papilla) were separated to perform measurements of reduced glutathione (GSH), glutathione disulfide (GSSG), lipid peroxidation (malondialdehyde, MDA) and the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). The activity of (Na + K)-ATPase, a membrane-bound enzyme, was also assessed. Red wine in plasma, elevated the FRAP without changing the concentration of uric acid; in kidney, it diminished the MDA production and elevated the GSH/GSSG ratio and the activity of CAT and GSH-Px. The activity of SOD did not change. Despite the finding that renal (Na + K)-ATPase activity was upregulated by ethanol, it was not altered by either red wine or alcohol-free red wine. The effects on the antioxidant enzymes could be attributed to ethanol, but the increase in the FRAP and GSH/GSSG ratio is attributed to the non-alcoholic components of red wine. These data suggest that there is an enhancement of the antioxidant defense potential in kidney and plasma, after chronic red wine consumption. Both ethanol and the non-alcoholic antioxidant constituents of red wine could be responsible for these effects.  相似文献   

19.
Cadmium (Cd) uptake and secretion across the apical membrane of epithelial cells was studied using LLC-PK1 cells cultured on Petri dishes and permeable membranes, respectively. Cd accumulation in cells from the apical medium was decreased by low temperature and metabolic inhibitors. A saturable tendency was observed between initial Cd accumulation and increased concentrations of Cd in the apical medium at 37 degrees C, but not at 4 degrees C. Co-incubation with ZnCl2 or CuCl2 competitively decreased Cd accumulation at 37 degrees C. A decrease in the pH of the apical medium markedly decreased Cd accumulation. Pretreatment of cells with an inorganic anion-exchange inhibitor significantly decreased Cd uptake at pH 7.4 in the presence of bicarbonate, but only marginally in its absence. A decrease in the pH of the apical medium increased the secretory (basolateral-to-apical) transport of Cd, with a concomitant decrease in the cellular accumulation of Cd. Co-incubation with Cd and tetraethylammonium, a typical substrate of the organic cation transporter, decreased Cd transport, with a concomitant increase in cellular Cd accumulation. The uptake and secretion of Cd across the apical membrane appear to be partly mediated via an inorganic anion exchanger and a H+ antiport of the organic cation transport system, respectively. Therefore, a decrease in pH of the apical medium markedly decreases Cd accumulation, possibly as a result of not only the decrease in Cd uptake via an inorganic anion exchanger, but also the increase in Cd secretion via the Cd2+/H+ antiport. Further evidence of the antiport was obtained from experiments using brush border membrane vesicles isolated from rat kidney and small intestine. In addition, passive diffusion of Cd appears to be decreased by low temperature and a decrease in pH.  相似文献   

20.
In this study we examined the functional expression of the extraneuronal monoamine transporter (EMT) in normal human astrocytes (NHA). RT-PCR with EMT-specific primers demonstrated the presence of EMT mRNA in NHA. The RT-PCR products were subjected to restriction-site analysis using three different enzymes (HinfI, SacI and BclI). The restriction patterns with the three enzymes were identical and were exactly as expected from the known restriction map of human EMT cDNA. DNA sequencing was performed for the RT-PCR products from NHA. Sequence analysis demonstrated that the sequences of RT-PCR products were identical to that of EMT. The extract of NHA was immunoblotted with anti-EMT polyclonal antibody raised against EMT polypeptides. Western blotting indicated that anti-EMT polyclonal antibody recognized a band of 63 kDa. Immunocytochemical staining using anti-EMT polyclonal antibody in NHA revealed that the plasma membrane, as well as intracellular, perinuclear compartments, presumably endoplasmic reticulum or Golgi membranes, showed a considerable level of immunoreactivity. We examined the time course of temperature-dependent [3H]MPP+ uptake in NHA for 60 min. Temperature-dependent [3H]MPP+ uptake increased in a time-dependent manner for the initial 45 min and almost reached a plateau level (8.70 +/- 0.59 pmol/mg protein) at 60 min. In the presence of 3 micro m decynium22 (D22) (the most potent EMT inhibitor), temperature-dependent [3H]MPP+ uptake was strongly reduced by 61% (3.39 +/- 0.76 pmol/mg protein at 60 min). D22-sensitive [3H]MPP+ uptake was saturable over a MPP+ concentration of 6.25-200 micro m. Km for this process was 78.01 +/- 7.64 micro m and Vmax was 295.4 +/- 12.8 pmol/mg protein/min. D22-sensitive [3H]MPP+ uptake was reduced when the astrocyte membrane potential was depolarized by increasing the concentration of K+ in the uptake buffer or by adding Ba2+ to the uptake buffer. These results provide evidence that the MPP+ transport activity in NHA is potential-sensitive. Moreover, D22-sensitive [3H]MPP+ uptake was independent of extracellular Na+. D22-sensitive [3H]MPP+ uptake was inhibited by D22, various organic cations, steroids and monoamine neurotransmitters. Our results showed that the EMT is functionally expressed in NHA and may also play a key role in the disposition of cationic drugs, neurosteroids, the neurotoxin MPP+ and monoamine neurotransmitters in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号